Abstract

This work presents a novel concept for 2D Scheimpflug lidar. A light-sheet based 2D Scheimpflug lidar system is developed and realized for surface profile measurements. The theory of a geometrical relationship underlying the system is developed, and the possibility of 3D profile measurements for a plastic bowl, a rhombic carton box and a manikin are presented. The sizes of reconstructed images are consistent with respective physical objects with small (~mm) errors at close range. Experimental results show that the 2D Scheimpflug lidar system performs well for 3D surface profiling and has great potential for close-range applications in other fields.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Atmospheric CO2 sensing using Scheimpflug-lidar based on a 1.57-µm fiber source

Jim Larsson, Joakim Bood, Can T. Xu, Xiong Yang, Robert Lindberg, Fredrik Laurell, and Mikkel Brydegaard
Opt. Express 27(12) 17348-17358 (2019)

Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system

Liang Mei and Mikkel Brydegaard
Opt. Express 23(24) A1613-A1628 (2015)

Implementation of a violet Scheimpflug lidar system for atmospheric aerosol studies

Liang Mei, Zheng Kong, and Peng Guan
Opt. Express 26(6) A260-A274 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. Yoshizawa and T. Wakayama, “Compact camera system for 3D profile measurement,” Proc. SPIE 7513, 751304 (2009).
    [Crossref]
  2. T. Yoshizawa, Handbook of optical metrology: Principles and Applications (Chemical Rubber Company, 2015).
  3. F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13(1), 231–244 (2004).
    [Crossref]
  4. F. Bernardini and H. Rushmeier, “The 3D model acquisition pipeline,” Comput. Graph. Forum 21(2), 149–172 (2002).
    [Crossref]
  5. C. English, S. Zhu, C. Smith, S. Ruel, and I. Christie, “Tridar: A hybrid sensor for exploiting the complimentary nature of triangulation and LIDAR technologies,” In Proceedings of the ISAIRAS, Munich, Germany, (2005).
  6. G. Fu, A. Menciassi, and P. Dario, “Development of a low-cost active 3D triangulation laser scanner for indoor navigation of miniature mobile robots,” Robot. Auton. Syst. 60(10), 1317–1326 (2012).
    [Crossref]
  7. L. Mei and M. Brydegaard, “Continuous-wave differential absorption lidar,” Laser Photonics Rev. 9(6), 629–636 (2015).
    [Crossref]
  8. M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles—-application to interacting flying insects,” Prog. Electromagnetics Res. 147, 141–151 (2014).
    [Crossref]
  9. T. Scheimpflug, “Improved method and apparatus for the systematic alteration or distortion of plane pictures and images by means of lenses and mirrors for photography and for other purposes,” GB Pat. No.1196 (1904).
  10. L. Mei and M. Brydegaard, “Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system,” Opt. Express 23(24), A1613–A1628 (2015).
    [Crossref] [PubMed]
  11. E. Malmqvist, S. Jansson, S. Török, and M. Brydegaard, “Effective parameterization of laser radar observations of atmospheric fauna,” IEEE J. Sel. Top. Quant 22(3), 327–334 (2016).
    [Crossref]
  12. C. Kirkeby, M. Wellenreuther, and M. Brydegaard, “Observations of movement dynamics of flying insects using high resolution lidar,” Sci. Rep. 6(1), 29083 (2016).
    [Crossref] [PubMed]
  13. S. Zhu, E. Malmqvist, W. Li, S. Jansson, Y. Li, Z. Duan, K. Svanberg, H. Feng, Z. Song, G. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
    [Crossref]
  14. M. Brydegaard, J. Larsson, S. Török, E. Malmqvist, G. Zhao, S. Jansson, M. Andersson, S. Svanberg, S. Åkesson, F. Laurell, and J. Bood, “Short-wave infrared atmospheric Scheimpflug lidar,” presented at the 28th International Laser Radar Conference, Bucharest, Romania, (2017).
  15. L. Mei, P. Guan, Y. Yang, and Z. Kong, “Atmospheric extinction coefficient retrieval and validation for the single-band Mie-scattering Scheimpflug lidar technique,” Opt. Express 25(16), A628–A638 (2017).
    [Crossref] [PubMed]
  16. L. Mei and P. Guan, “Development of an atmospheric polarization Scheimpflug lidar system based on a time-division multiplexing scheme,” Opt. Lett. 42(18), 3562–3565 (2017).
    [Crossref] [PubMed]
  17. L. Mei, Z. Kong, and P. Guan, “Implementation of a violet Scheimpflug lidar system for atmospheric aerosol studies,” Opt. Express 26(6), A260–A274 (2018).
    [Crossref] [PubMed]
  18. L. Mei, P. Guan, and Z. Kong, “Remote sensing of atmospheric NO2 by employing the continuous-wave differential absorption lidar technique,” Opt. Express 25(20), A953–A962 (2017).
    [Crossref] [PubMed]
  19. E. Malmqvist, M. Brydegaard, M. Aldén, and J. Bood, “Scheimpflug Lidar for combustion diagnostics,” Opt. Express 26(12), 14842–14858 (2018).
    [Crossref] [PubMed]
  20. G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
    [Crossref]
  21. F. Gao, J. Li, H. Lin, and S. He, “Oil pollution discrimination by an inelastic hyperspectral Scheimpflug lidar system,” Opt. Express 25(21), 25515–25522 (2017).
    [Crossref] [PubMed]
  22. G. Zhao, E. Malmqvist, K. Rydhmer, A. Strand, G. Bianco, L.-A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for aquatic ecosystems monitoring and landscape plant scanning test,” in ILRC28, Bucharest, (2017).
  23. M. Brydegaard, E. Malmqvist, S. Jansson, J. Larsson, S. Torok, and G. Zhao, “The Scheimpflug lidar method,” Proc. SPIE 10406, 104060I (2017).
  24. G. Bickel, G. Hausler, and M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24(6), 246975 (1985).
    [Crossref]
  25. G. Häusler and W. Heckel, “Light sectioning with large depth and high resolution,” Appl. Opt. 27(24), 5165–5169 (1988).
    [Crossref] [PubMed]
  26. A. Krischke, C. Knothe, P. Gips, and U. Oechsner, “Laser line generators for light-sectioning in rail inspection: 3D-measurement and process control for research and industrial environments,” Laser Tech. J. 10(1), 41–44 (2013).
    [Crossref]

2018 (2)

2017 (6)

2016 (3)

G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

E. Malmqvist, S. Jansson, S. Török, and M. Brydegaard, “Effective parameterization of laser radar observations of atmospheric fauna,” IEEE J. Sel. Top. Quant 22(3), 327–334 (2016).
[Crossref]

C. Kirkeby, M. Wellenreuther, and M. Brydegaard, “Observations of movement dynamics of flying insects using high resolution lidar,” Sci. Rep. 6(1), 29083 (2016).
[Crossref] [PubMed]

2015 (2)

L. Mei and M. Brydegaard, “Continuous-wave differential absorption lidar,” Laser Photonics Rev. 9(6), 629–636 (2015).
[Crossref]

L. Mei and M. Brydegaard, “Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system,” Opt. Express 23(24), A1613–A1628 (2015).
[Crossref] [PubMed]

2014 (1)

M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles—-application to interacting flying insects,” Prog. Electromagnetics Res. 147, 141–151 (2014).
[Crossref]

2013 (1)

A. Krischke, C. Knothe, P. Gips, and U. Oechsner, “Laser line generators for light-sectioning in rail inspection: 3D-measurement and process control for research and industrial environments,” Laser Tech. J. 10(1), 41–44 (2013).
[Crossref]

2012 (1)

G. Fu, A. Menciassi, and P. Dario, “Development of a low-cost active 3D triangulation laser scanner for indoor navigation of miniature mobile robots,” Robot. Auton. Syst. 60(10), 1317–1326 (2012).
[Crossref]

2009 (1)

T. Yoshizawa and T. Wakayama, “Compact camera system for 3D profile measurement,” Proc. SPIE 7513, 751304 (2009).
[Crossref]

2004 (1)

F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13(1), 231–244 (2004).
[Crossref]

2002 (1)

F. Bernardini and H. Rushmeier, “The 3D model acquisition pipeline,” Comput. Graph. Forum 21(2), 149–172 (2002).
[Crossref]

1988 (1)

1985 (1)

G. Bickel, G. Hausler, and M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24(6), 246975 (1985).
[Crossref]

Aldén, M.

Bernardini, F.

F. Bernardini and H. Rushmeier, “The 3D model acquisition pipeline,” Comput. Graph. Forum 21(2), 149–172 (2002).
[Crossref]

Bianco, G.

G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

Bickel, G.

G. Bickel, G. Hausler, and M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24(6), 246975 (1985).
[Crossref]

Blais, F.

F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13(1), 231–244 (2004).
[Crossref]

Bood, J.

Brydegaard, M.

E. Malmqvist, M. Brydegaard, M. Aldén, and J. Bood, “Scheimpflug Lidar for combustion diagnostics,” Opt. Express 26(12), 14842–14858 (2018).
[Crossref] [PubMed]

M. Brydegaard, E. Malmqvist, S. Jansson, J. Larsson, S. Torok, and G. Zhao, “The Scheimpflug lidar method,” Proc. SPIE 10406, 104060I (2017).

S. Zhu, E. Malmqvist, W. Li, S. Jansson, Y. Li, Z. Duan, K. Svanberg, H. Feng, Z. Song, G. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
[Crossref]

G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

E. Malmqvist, S. Jansson, S. Török, and M. Brydegaard, “Effective parameterization of laser radar observations of atmospheric fauna,” IEEE J. Sel. Top. Quant 22(3), 327–334 (2016).
[Crossref]

C. Kirkeby, M. Wellenreuther, and M. Brydegaard, “Observations of movement dynamics of flying insects using high resolution lidar,” Sci. Rep. 6(1), 29083 (2016).
[Crossref] [PubMed]

L. Mei and M. Brydegaard, “Continuous-wave differential absorption lidar,” Laser Photonics Rev. 9(6), 629–636 (2015).
[Crossref]

L. Mei and M. Brydegaard, “Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system,” Opt. Express 23(24), A1613–A1628 (2015).
[Crossref] [PubMed]

M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles—-application to interacting flying insects,” Prog. Electromagnetics Res. 147, 141–151 (2014).
[Crossref]

Christie, I.

C. English, S. Zhu, C. Smith, S. Ruel, and I. Christie, “Tridar: A hybrid sensor for exploiting the complimentary nature of triangulation and LIDAR technologies,” In Proceedings of the ISAIRAS, Munich, Germany, (2005).

Dario, P.

G. Fu, A. Menciassi, and P. Dario, “Development of a low-cost active 3D triangulation laser scanner for indoor navigation of miniature mobile robots,” Robot. Auton. Syst. 60(10), 1317–1326 (2012).
[Crossref]

Duan, Z.

S. Zhu, E. Malmqvist, W. Li, S. Jansson, Y. Li, Z. Duan, K. Svanberg, H. Feng, Z. Song, G. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
[Crossref]

English, C.

C. English, S. Zhu, C. Smith, S. Ruel, and I. Christie, “Tridar: A hybrid sensor for exploiting the complimentary nature of triangulation and LIDAR technologies,” In Proceedings of the ISAIRAS, Munich, Germany, (2005).

Feng, H.

S. Zhu, E. Malmqvist, W. Li, S. Jansson, Y. Li, Z. Duan, K. Svanberg, H. Feng, Z. Song, G. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
[Crossref]

Fu, G.

G. Fu, A. Menciassi, and P. Dario, “Development of a low-cost active 3D triangulation laser scanner for indoor navigation of miniature mobile robots,” Robot. Auton. Syst. 60(10), 1317–1326 (2012).
[Crossref]

Gao, F.

Gebru, A.

M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles—-application to interacting flying insects,” Prog. Electromagnetics Res. 147, 141–151 (2014).
[Crossref]

Gips, P.

A. Krischke, C. Knothe, P. Gips, and U. Oechsner, “Laser line generators for light-sectioning in rail inspection: 3D-measurement and process control for research and industrial environments,” Laser Tech. J. 10(1), 41–44 (2013).
[Crossref]

Guan, P.

Hansson, L. A.

G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

Hausler, G.

G. Bickel, G. Hausler, and M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24(6), 246975 (1985).
[Crossref]

Häusler, G.

He, S.

Heckel, W.

Jansson, S.

M. Brydegaard, E. Malmqvist, S. Jansson, J. Larsson, S. Torok, and G. Zhao, “The Scheimpflug lidar method,” Proc. SPIE 10406, 104060I (2017).

S. Zhu, E. Malmqvist, W. Li, S. Jansson, Y. Li, Z. Duan, K. Svanberg, H. Feng, Z. Song, G. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
[Crossref]

E. Malmqvist, S. Jansson, S. Török, and M. Brydegaard, “Effective parameterization of laser radar observations of atmospheric fauna,” IEEE J. Sel. Top. Quant 22(3), 327–334 (2016).
[Crossref]

Kirkeby, C.

C. Kirkeby, M. Wellenreuther, and M. Brydegaard, “Observations of movement dynamics of flying insects using high resolution lidar,” Sci. Rep. 6(1), 29083 (2016).
[Crossref] [PubMed]

Knothe, C.

A. Krischke, C. Knothe, P. Gips, and U. Oechsner, “Laser line generators for light-sectioning in rail inspection: 3D-measurement and process control for research and industrial environments,” Laser Tech. J. 10(1), 41–44 (2013).
[Crossref]

Kong, Z.

Krischke, A.

A. Krischke, C. Knothe, P. Gips, and U. Oechsner, “Laser line generators for light-sectioning in rail inspection: 3D-measurement and process control for research and industrial environments,” Laser Tech. J. 10(1), 41–44 (2013).
[Crossref]

Larsson, J.

M. Brydegaard, E. Malmqvist, S. Jansson, J. Larsson, S. Torok, and G. Zhao, “The Scheimpflug lidar method,” Proc. SPIE 10406, 104060I (2017).

Li, J.

Li, W.

S. Zhu, E. Malmqvist, W. Li, S. Jansson, Y. Li, Z. Duan, K. Svanberg, H. Feng, Z. Song, G. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
[Crossref]

Li, Y.

S. Zhu, E. Malmqvist, W. Li, S. Jansson, Y. Li, Z. Duan, K. Svanberg, H. Feng, Z. Song, G. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
[Crossref]

Lin, H.

Ljungholm, M.

G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

Malmqvist, E.

E. Malmqvist, M. Brydegaard, M. Aldén, and J. Bood, “Scheimpflug Lidar for combustion diagnostics,” Opt. Express 26(12), 14842–14858 (2018).
[Crossref] [PubMed]

M. Brydegaard, E. Malmqvist, S. Jansson, J. Larsson, S. Torok, and G. Zhao, “The Scheimpflug lidar method,” Proc. SPIE 10406, 104060I (2017).

S. Zhu, E. Malmqvist, W. Li, S. Jansson, Y. Li, Z. Duan, K. Svanberg, H. Feng, Z. Song, G. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
[Crossref]

E. Malmqvist, S. Jansson, S. Török, and M. Brydegaard, “Effective parameterization of laser radar observations of atmospheric fauna,” IEEE J. Sel. Top. Quant 22(3), 327–334 (2016).
[Crossref]

G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

Maul, M.

G. Bickel, G. Hausler, and M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24(6), 246975 (1985).
[Crossref]

Mei, L.

Menciassi, A.

G. Fu, A. Menciassi, and P. Dario, “Development of a low-cost active 3D triangulation laser scanner for indoor navigation of miniature mobile robots,” Robot. Auton. Syst. 60(10), 1317–1326 (2012).
[Crossref]

Oechsner, U.

A. Krischke, C. Knothe, P. Gips, and U. Oechsner, “Laser line generators for light-sectioning in rail inspection: 3D-measurement and process control for research and industrial environments,” Laser Tech. J. 10(1), 41–44 (2013).
[Crossref]

Ruel, S.

C. English, S. Zhu, C. Smith, S. Ruel, and I. Christie, “Tridar: A hybrid sensor for exploiting the complimentary nature of triangulation and LIDAR technologies,” In Proceedings of the ISAIRAS, Munich, Germany, (2005).

Rushmeier, H.

F. Bernardini and H. Rushmeier, “The 3D model acquisition pipeline,” Comput. Graph. Forum 21(2), 149–172 (2002).
[Crossref]

Smith, C.

C. English, S. Zhu, C. Smith, S. Ruel, and I. Christie, “Tridar: A hybrid sensor for exploiting the complimentary nature of triangulation and LIDAR technologies,” In Proceedings of the ISAIRAS, Munich, Germany, (2005).

Song, Z.

S. Zhu, E. Malmqvist, W. Li, S. Jansson, Y. Li, Z. Duan, K. Svanberg, H. Feng, Z. Song, G. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
[Crossref]

Svanberg, K.

S. Zhu, E. Malmqvist, W. Li, S. Jansson, Y. Li, Z. Duan, K. Svanberg, H. Feng, Z. Song, G. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
[Crossref]

Svanberg, S.

S. Zhu, E. Malmqvist, W. Li, S. Jansson, Y. Li, Z. Duan, K. Svanberg, H. Feng, Z. Song, G. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
[Crossref]

G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles—-application to interacting flying insects,” Prog. Electromagnetics Res. 147, 141–151 (2014).
[Crossref]

Torok, S.

M. Brydegaard, E. Malmqvist, S. Jansson, J. Larsson, S. Torok, and G. Zhao, “The Scheimpflug lidar method,” Proc. SPIE 10406, 104060I (2017).

Török, S.

E. Malmqvist, S. Jansson, S. Török, and M. Brydegaard, “Effective parameterization of laser radar observations of atmospheric fauna,” IEEE J. Sel. Top. Quant 22(3), 327–334 (2016).
[Crossref]

Wakayama, T.

T. Yoshizawa and T. Wakayama, “Compact camera system for 3D profile measurement,” Proc. SPIE 7513, 751304 (2009).
[Crossref]

Wellenreuther, M.

C. Kirkeby, M. Wellenreuther, and M. Brydegaard, “Observations of movement dynamics of flying insects using high resolution lidar,” Sci. Rep. 6(1), 29083 (2016).
[Crossref] [PubMed]

Yang, Y.

Yoshizawa, T.

T. Yoshizawa and T. Wakayama, “Compact camera system for 3D profile measurement,” Proc. SPIE 7513, 751304 (2009).
[Crossref]

Zhao, G.

S. Zhu, E. Malmqvist, W. Li, S. Jansson, Y. Li, Z. Duan, K. Svanberg, H. Feng, Z. Song, G. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
[Crossref]

M. Brydegaard, E. Malmqvist, S. Jansson, J. Larsson, S. Torok, and G. Zhao, “The Scheimpflug lidar method,” Proc. SPIE 10406, 104060I (2017).

G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

Zhu, S.

S. Zhu, E. Malmqvist, W. Li, S. Jansson, Y. Li, Z. Duan, K. Svanberg, H. Feng, Z. Song, G. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
[Crossref]

C. English, S. Zhu, C. Smith, S. Ruel, and I. Christie, “Tridar: A hybrid sensor for exploiting the complimentary nature of triangulation and LIDAR technologies,” In Proceedings of the ISAIRAS, Munich, Germany, (2005).

Appl. Opt. (1)

Appl. Phys. B (1)

S. Zhu, E. Malmqvist, W. Li, S. Jansson, Y. Li, Z. Duan, K. Svanberg, H. Feng, Z. Song, G. Zhao, M. Brydegaard, and S. Svanberg, “Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system,” Appl. Phys. B 123(7), 211 (2017).
[Crossref]

Comput. Graph. Forum (1)

F. Bernardini and H. Rushmeier, “The 3D model acquisition pipeline,” Comput. Graph. Forum 21(2), 149–172 (2002).
[Crossref]

IEEE J. Sel. Top. Quant (1)

E. Malmqvist, S. Jansson, S. Török, and M. Brydegaard, “Effective parameterization of laser radar observations of atmospheric fauna,” IEEE J. Sel. Top. Quant 22(3), 327–334 (2016).
[Crossref]

J. Electron. Imaging (1)

F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13(1), 231–244 (2004).
[Crossref]

Laser Photonics Rev. (2)

L. Mei and M. Brydegaard, “Continuous-wave differential absorption lidar,” Laser Photonics Rev. 9(6), 629–636 (2015).
[Crossref]

G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

Laser Tech. J. (1)

A. Krischke, C. Knothe, P. Gips, and U. Oechsner, “Laser line generators for light-sectioning in rail inspection: 3D-measurement and process control for research and industrial environments,” Laser Tech. J. 10(1), 41–44 (2013).
[Crossref]

Opt. Eng. (1)

G. Bickel, G. Hausler, and M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24(6), 246975 (1985).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Proc. SPIE (2)

T. Yoshizawa and T. Wakayama, “Compact camera system for 3D profile measurement,” Proc. SPIE 7513, 751304 (2009).
[Crossref]

M. Brydegaard, E. Malmqvist, S. Jansson, J. Larsson, S. Torok, and G. Zhao, “The Scheimpflug lidar method,” Proc. SPIE 10406, 104060I (2017).

Prog. Electromagnetics Res. (1)

M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles—-application to interacting flying insects,” Prog. Electromagnetics Res. 147, 141–151 (2014).
[Crossref]

Robot. Auton. Syst. (1)

G. Fu, A. Menciassi, and P. Dario, “Development of a low-cost active 3D triangulation laser scanner for indoor navigation of miniature mobile robots,” Robot. Auton. Syst. 60(10), 1317–1326 (2012).
[Crossref]

Sci. Rep. (1)

C. Kirkeby, M. Wellenreuther, and M. Brydegaard, “Observations of movement dynamics of flying insects using high resolution lidar,” Sci. Rep. 6(1), 29083 (2016).
[Crossref] [PubMed]

Other (5)

M. Brydegaard, J. Larsson, S. Török, E. Malmqvist, G. Zhao, S. Jansson, M. Andersson, S. Svanberg, S. Åkesson, F. Laurell, and J. Bood, “Short-wave infrared atmospheric Scheimpflug lidar,” presented at the 28th International Laser Radar Conference, Bucharest, Romania, (2017).

T. Scheimpflug, “Improved method and apparatus for the systematic alteration or distortion of plane pictures and images by means of lenses and mirrors for photography and for other purposes,” GB Pat. No.1196 (1904).

T. Yoshizawa, Handbook of optical metrology: Principles and Applications (Chemical Rubber Company, 2015).

C. English, S. Zhu, C. Smith, S. Ruel, and I. Christie, “Tridar: A hybrid sensor for exploiting the complimentary nature of triangulation and LIDAR technologies,” In Proceedings of the ISAIRAS, Munich, Germany, (2005).

G. Zhao, E. Malmqvist, K. Rydhmer, A. Strand, G. Bianco, L.-A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for aquatic ecosystems monitoring and landscape plant scanning test,” in ILRC28, Bucharest, (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Scheimpflug principle: the image plane intersects with both the lens and object planes on the same line when the object plane is nonparallel to the lens plane. O and Oʹ are the origins of the three-dimensional coordinate system and the lens plane, respectively; d - the distance to the lens from the object plane, α - the tilt angle of the lens plane to the object plane, β - the tilt angle of the image plane to the lens plane. MN is a line on the object plane and MʹNʹ is the image of the line on the image plane, which satisfies the lens equation, u is the corresponding object distance and f is the focal length of the lens.
Fig. 2
Fig. 2 The relationship between the image and the real-world coordinate system when α = 90°. MN is a line on the object plane in the real-world coordinate system and MʹNʹ is the image of the line in the image coordinate system. The center of the camera is placed along the line OOʹʹ. xim and zim are the pixel numbers along the row and column directions, respectively.
Fig. 3
Fig. 3 Schematic diagram of the light-sheet based 2D Scheimpflug lidar system. The lidar system incorporates a laser diode, a cylindrical lens, an imaging lens, an optical filter and a 2D-CMOS camera. The whole system is mounted on a scanning translation stage.
Fig. 4
Fig. 4 The relationship between pixel number and distance. (a) Range: 1.05 m–6.53 m. (b) Range: 1.5 m-20 m.
Fig. 5
Fig. 5 The 5×3 black and white checkerboard with 40mm×40mm block size in the real-world coordinate system. The center of the checkerboard is magnified and shown in the northeast corner.
Fig. 6
Fig. 6 The picture of real objects of the plastic bowl and the rhombic carton box. The sizes of the outer and inner edge for the bowl are 20cm×20cmand 8.5cm×8.5cmwith the depth of 8cm, and the size of the box is 25cm×25cm in the diagonal directions with a depth of 10cm.
Fig. 7
Fig. 7 (a) The 3D profile of the plastic bowl. The data aspect ratio is (0.112, 1, 0.36) along the z-axis, x-axis, and y-axis, making the equal unit lengths in all directions in real-world coordinate system. (b) The front view of the bowl. The measured sizes of the outer and inner edge for the bowl are 19.1cm×19.8cmand 8.4cm×8.2cm. (c) The top view of the bowl. The measured depth of the bowl is 8.6cm.
Fig. 8
Fig. 8 (a) The 3D profile of the rhombic carton box. The data aspect ratio is (0.112, 1, 0.32) along the z-axis, x-axis, and y-axis, making the equal unit lengths in all directions in real-world coordinate system. (b) The front view of the box. The measured size of the box is 25.2cm×24.8cmin the diagonal directions. (c) The top view of the box. The measured depth of the box is 10.3cm.
Fig. 9
Fig. 9 (a) The 3D profile of the manikin at 19.6 m. (b) The 3D profile of the manikin at 5.6 m.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

M y ' = d(dcosα+zsinα) dcosα+zsinαf
M z ' = zf dcosα+zsinαf
N x ' = xf dcosα+zsinαf
z=f(1+ f 2 + d 2 | M'O'' |( z im z im,M' ) w col )
x= fz f ( x im h row /2) w row

Metrics