Abstract

Double-end polarized pumping scheme combined with off-axis pumping technique has been first introduced to generate vortex beams in a z-type cavity. By employing double-end pumping, two different transverse modes can be excited simultaneously. The phase delay between these two modes can be finely tuned by manipulating the cavity structure. Direct emission of a chirality controllable Laguerre Gaussian LG01 vortex beam with slope efficiency of more than 40% has been realized by a double-end polarized pumped Yb:KYW laser. Other modes, such as dual-LG01 mode, cross-shaped mode, and LG10 mode, have also been demonstrated from our laser setup.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Direct generation of femtosecond vortex beam from a Yb:KYW oscillator featuring a defect-spot mirror

Sha Wang, Zhigang Zhao, Isao Ito, and Yohei Kobayashi
OSA Continuum 2(3) 523-530 (2019)

Generation of wavelength- and OAM-tunable vortex beam at low threshold

Sha Wang, Shu-lin Zhang, Ping Li, Mei-hui Hao, Huo-mu Yang, Jian Xie, Guo-ying Feng, and Shou-huan Zhou
Opt. Express 26(14) 18164-18170 (2018)

Direct generation of a first-Stokes vortex laser beam from a self-Raman laser

Andrew J. Lee, Takashige Omatsu, and Helen. M. Pask
Opt. Express 21(10) 12401-12409 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
    [Crossref]
  2. Z. Wang, N. Zhang, and X. C. Yuan, “High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication,” Opt. Express 19(2), 482–492 (2011).
    [Crossref] [PubMed]
  3. K. T. Gahagan and G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21(11), 827–829 (1996).
    [Crossref] [PubMed]
  4. P. Török and P. Munro, “The use of Gauss-Laguerre vector beams in STED microscopy,” Opt. Express 12(15), 3605–3617 (2004).
    [Crossref] [PubMed]
  5. P. Dedecker, B. Muls, J. Hofkens, J. Enderlein, and J. Hotta, “Orientational effects in the excitation and de-excitation of single molecules interacting with donut-mode laser beams,” Opt. Express 15(6), 3372–3383 (2007).
    [Crossref] [PubMed]
  6. D. P. Rhodes, D. M. Gherardi, J. Livesey, D. McGloin, H. Melville, T. Freegarde, and K. Dholakia, “Atom guiding along high order Laguerre–Gaussian light beams formed by spatial light modulation,” J. Mod. Opt. 53(4), 547–556 (2006).
    [Crossref]
  7. C. Hnatovsky, V. G. Shvedov, W. Krolikowski, and A. V. Rode, “Materials processing with a tightly focused femtosecond laser vortex pulse,” Opt. Lett. 35(20), 3417–3419 (2010).
    [Crossref] [PubMed]
  8. K. K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
    [Crossref]
  9. J. J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate,” Sci. Rep. 5(1), 17929 (2016).
    [Crossref] [PubMed]
  10. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20(11), 1968–1975 (2002).
    [Crossref]
  11. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
    [Crossref] [PubMed]
  12. M. T. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
    [Crossref] [PubMed]
  13. T. Fujii, “PDMS-based microfluidic devices for biomedical applications,” Microelectron. Eng. 61–62, 907–914 (2002).
    [Crossref]
  14. Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215, 480–488 (2015).
    [Crossref]
  15. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
    [Crossref]
  16. V. V. Kotlyar, H. Elfstrom, J. Turunen, A. A. Almazov, S. N. Khonina, and V. A. Soifer, “Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate,” J. Opt. Soc. Am. A 22(5), 849–861 (2005).
    [Crossref] [PubMed]
  17. N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, and T. Hara, “Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators,” J. Opt. Soc. Am. A 25(7), 1642–1651 (2008).
    [Crossref] [PubMed]
  18. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17(3), 221–223 (1992).
    [Crossref] [PubMed]
  19. X. Yi, X. Ling, Z. Zhang, Y. Li, X. Zhou, Y. Liu, S. Chen, H. Luo, and S. Wen, “Generation of cylindrical vector vortex beams by two cascaded metasurfaces,” Opt. Express 22(14), 17207–17215 (2014).
    [Crossref] [PubMed]
  20. Ya. Izdebskaya, V. Shvedov, and A. Volyar, “Generation of higher-order optical vortices by a dielectric wedge,” Opt. Lett. 30(18), 2472–2474 (2005).
    [Crossref] [PubMed]
  21. M. W. Beijersbergen, L. Allen, H. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
    [Crossref]
  22. A. Ito, Y. Kozawa, and S. Sato, “Generation of hollow scalar and vector beams using a spot-defect mirror,” J. Opt. Soc. Am. A 27(9), 2072–2077 (2010).
    [Crossref] [PubMed]
  23. X. Huang, B. Xu, S. Cui, H. Xu, Z. Cai, and L. Chen, “Direct generation of vortex laser by rotating induced off-axis pumping,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
    [Crossref]
  24. S. P. Chard, P. C. Shardlow, and M. J. Damzen, “High-power non-astigmatic TEM00 and vortex mode generation in a compact bounce laser design,” Appl. Phys. B 97(2), 275–280 (2009).
    [Crossref]
  25. D. J. Kim and J. W. Kim, “Direct generation of an optical vortex beam in a single-frequency Nd:YVO4 laser,” Opt. Lett. 40(3), 399–402 (2015).
    [Crossref] [PubMed]
  26. Q. Liu, Y. Zhao, M. Ding, W. Yao, X. Fan, and D. Shen, “Wavelength- and OAM-tunable vortex laser with a reflective volume Bragg grating,” Opt. Express 25(19), 23312–23319 (2017).
    [Crossref] [PubMed]
  27. M. Harris, C. A. Hill, and J. M. Vaughan, “Optical helices and spiral interference fringes,” Opt. Commun. 106(4-6), 161–166 (1994).
    [Crossref]
  28. R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, “Laser mode discrimination with intra-cavity spiral phase elements,” Opt. Commun. 169(1-6), 115–121 (1999).
    [Crossref]
  29. S. Tan, C. Zhou, A. Shirakakwa, K. I. Ueda, and J. Li, “Vortex Ti:Sapphire laser by using an intracavity spot-defect spatial filter,” Opt. Laser Technol. 96, 76–80 (2017).
    [Crossref]
  30. T. Wang, F. Wang, F. Shi, F. Pang, S. Huang, T. Wang, and X. Zeng, “Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler,” J. Lightwave Technol. 35(11), 2161–2166 (2017).
    [Crossref]
  31. X. Huang, S. Cui, X. Guan, B. Xu, H. Xu, and Z. Cai, “Direct generation of eye-safe single-and dual-vortex lasers via off-axis pumping of the active medium,” arXiv preprint 1708.03745, (2017).
  32. Y. Wang, Y. Shen, Y. Meng, and M. Gong, “Generation of 1535 nm pulsed vortex beam in a diode-pumped Er,Yb:glass microchip laser,” IEEE Photonics Technol. Lett. 30(10), 891–894 (2018).
    [Crossref]
  33. S. Wang, S. Zhang, H. Yang, J. Xie, S. Jiang, G. Feng, and S. Zhou, “Direct emission of chirality controllable femtosecond LG01 vortex beam,” Appl. Phys. Lett. 112(20), 201110 (2018).
    [Crossref]
  34. J. Lin and H. M. Pask, “Nd:GdVO4 self-Raman laser using double-end polarised pumping at 880 nm for high power infrared and visible output,” Appl. Phys. B 108(1), 17–24 (2012).
    [Crossref]
  35. S. Wang, Y. B. Wang, G. Y. Feng, and S. H. Zhou, “Pump polarization insensitive and efficient laser-diode pumped Yb:KYW ultrafast oscillator,” Appl. Opt. 55(4), 929–934 (2016).
    [Crossref] [PubMed]
  36. S. Wang, S. L. Zhang, P. Li, M. H. Hao, H. M. Yang, J. Xie, G. Y. Feng, and S. H. Zhou, “Generation of wavelength- and OAM-tunable vortex beam at low threshold,” Opt. Express 26(14), 18164–18170 (2018).
    [Crossref] [PubMed]

2018 (4)

X. Huang, B. Xu, S. Cui, H. Xu, Z. Cai, and L. Chen, “Direct generation of vortex laser by rotating induced off-axis pumping,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

Y. Wang, Y. Shen, Y. Meng, and M. Gong, “Generation of 1535 nm pulsed vortex beam in a diode-pumped Er,Yb:glass microchip laser,” IEEE Photonics Technol. Lett. 30(10), 891–894 (2018).
[Crossref]

S. Wang, S. Zhang, H. Yang, J. Xie, S. Jiang, G. Feng, and S. Zhou, “Direct emission of chirality controllable femtosecond LG01 vortex beam,” Appl. Phys. Lett. 112(20), 201110 (2018).
[Crossref]

S. Wang, S. L. Zhang, P. Li, M. H. Hao, H. M. Yang, J. Xie, G. Y. Feng, and S. H. Zhou, “Generation of wavelength- and OAM-tunable vortex beam at low threshold,” Opt. Express 26(14), 18164–18170 (2018).
[Crossref] [PubMed]

2017 (3)

2016 (2)

J. J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate,” Sci. Rep. 5(1), 17929 (2016).
[Crossref] [PubMed]

S. Wang, Y. B. Wang, G. Y. Feng, and S. H. Zhou, “Pump polarization insensitive and efficient laser-diode pumped Yb:KYW ultrafast oscillator,” Appl. Opt. 55(4), 929–934 (2016).
[Crossref] [PubMed]

2015 (3)

D. J. Kim and J. W. Kim, “Direct generation of an optical vortex beam in a single-frequency Nd:YVO4 laser,” Opt. Lett. 40(3), 399–402 (2015).
[Crossref] [PubMed]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215, 480–488 (2015).
[Crossref]

2014 (2)

K. K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

X. Yi, X. Ling, Z. Zhang, Y. Li, X. Zhou, Y. Liu, S. Chen, H. Luo, and S. Wen, “Generation of cylindrical vector vortex beams by two cascaded metasurfaces,” Opt. Express 22(14), 17207–17215 (2014).
[Crossref] [PubMed]

2012 (1)

J. Lin and H. M. Pask, “Nd:GdVO4 self-Raman laser using double-end polarised pumping at 880 nm for high power infrared and visible output,” Appl. Phys. B 108(1), 17–24 (2012).
[Crossref]

2011 (1)

2010 (2)

2009 (2)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

S. P. Chard, P. C. Shardlow, and M. J. Damzen, “High-power non-astigmatic TEM00 and vortex mode generation in a compact bounce laser design,” Appl. Phys. B 97(2), 275–280 (2009).
[Crossref]

2008 (1)

2007 (2)

2006 (1)

D. P. Rhodes, D. M. Gherardi, J. Livesey, D. McGloin, H. Melville, T. Freegarde, and K. Dholakia, “Atom guiding along high order Laguerre–Gaussian light beams formed by spatial light modulation,” J. Mod. Opt. 53(4), 547–556 (2006).
[Crossref]

2005 (2)

2004 (2)

P. Török and P. Munro, “The use of Gauss-Laguerre vector beams in STED microscopy,” Opt. Express 12(15), 3605–3617 (2004).
[Crossref] [PubMed]

M. T. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

2002 (2)

T. Fujii, “PDMS-based microfluidic devices for biomedical applications,” Microelectron. Eng. 61–62, 907–914 (2002).
[Crossref]

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20(11), 1968–1975 (2002).
[Crossref]

1999 (1)

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, “Laser mode discrimination with intra-cavity spiral phase elements,” Opt. Commun. 169(1-6), 115–121 (1999).
[Crossref]

1996 (1)

1994 (1)

M. Harris, C. A. Hill, and J. M. Vaughan, “Optical helices and spiral interference fringes,” Opt. Commun. 106(4-6), 161–166 (1994).
[Crossref]

1993 (1)

M. W. Beijersbergen, L. Allen, H. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

1992 (1)

Ahmed, N.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Allen, L.

M. W. Beijersbergen, L. Allen, H. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

Almazov, A. A.

Amoruso, S.

J. J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate,” Sci. Rep. 5(1), 17929 (2016).
[Crossref] [PubMed]

K. K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

Ando, T.

Anoop, K. K.

K. K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

Ashrafi, N.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Ashrafi, S.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Bao, C.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Beijersbergen, M. W.

M. W. Beijersbergen, L. Allen, H. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

Binsma, H.

M. T. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Bruzzese, R.

J. J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate,” Sci. Rep. 5(1), 17929 (2016).
[Crossref] [PubMed]

K. K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

Cai, Z.

X. Huang, B. Xu, S. Cui, H. Xu, Z. Cai, and L. Chen, “Direct generation of vortex laser by rotating induced off-axis pumping,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

Cao, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Chard, S. P.

S. P. Chard, P. C. Shardlow, and M. J. Damzen, “High-power non-astigmatic TEM00 and vortex mode generation in a compact bounce laser design,” Appl. Phys. B 97(2), 275–280 (2009).
[Crossref]

Chen, L.

X. Huang, B. Xu, S. Cui, H. Xu, Z. Cai, and L. Chen, “Direct generation of vortex laser by rotating induced off-axis pumping,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

Chen, S.

Cui, S.

X. Huang, B. Xu, S. Cui, H. Xu, Z. Cai, and L. Chen, “Direct generation of vortex laser by rotating induced off-axis pumping,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

Dalton, L. R.

Damzen, M. J.

S. P. Chard, P. C. Shardlow, and M. J. Damzen, “High-power non-astigmatic TEM00 and vortex mode generation in a compact bounce laser design,” Appl. Phys. B 97(2), 275–280 (2009).
[Crossref]

Danziger, Y.

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, “Laser mode discrimination with intra-cavity spiral phase elements,” Opt. Commun. 169(1-6), 115–121 (1999).
[Crossref]

Davidson, N.

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, “Laser mode discrimination with intra-cavity spiral phase elements,” Opt. Commun. 169(1-6), 115–121 (1999).
[Crossref]

De Vries, T.

M. T. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Dedecker, P.

Den Besten, J. H.

M. T. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Dholakia, K.

D. P. Rhodes, D. M. Gherardi, J. Livesey, D. McGloin, H. Melville, T. Freegarde, and K. Dholakia, “Atom guiding along high order Laguerre–Gaussian light beams formed by spatial light modulation,” J. Mod. Opt. 53(4), 547–556 (2006).
[Crossref]

Ding, M.

Dorren, H. J.

M. T. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Elfstrom, H.

Enderlein, J.

Fan, X.

Feng, G.

S. Wang, S. Zhang, H. Yang, J. Xie, S. Jiang, G. Feng, and S. Zhou, “Direct emission of chirality controllable femtosecond LG01 vortex beam,” Appl. Phys. Lett. 112(20), 201110 (2018).
[Crossref]

Feng, G. Y.

Fittipaldi, R.

K. K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

Freegarde, T.

D. P. Rhodes, D. M. Gherardi, J. Livesey, D. McGloin, H. Melville, T. Freegarde, and K. Dholakia, “Atom guiding along high order Laguerre–Gaussian light beams formed by spatial light modulation,” J. Mod. Opt. 53(4), 547–556 (2006).
[Crossref]

Friesem, A. A.

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, “Laser mode discrimination with intra-cavity spiral phase elements,” Opt. Commun. 169(1-6), 115–121 (1999).
[Crossref]

Fujii, T.

T. Fujii, “PDMS-based microfluidic devices for biomedical applications,” Microelectron. Eng. 61–62, 907–914 (2002).
[Crossref]

Fukuchi, N.

Gahagan, K. T.

Gherardi, D. M.

D. P. Rhodes, D. M. Gherardi, J. Livesey, D. McGloin, H. Melville, T. Freegarde, and K. Dholakia, “Atom guiding along high order Laguerre–Gaussian light beams formed by spatial light modulation,” J. Mod. Opt. 53(4), 547–556 (2006).
[Crossref]

Gong, M.

Y. Wang, Y. Shen, Y. Meng, and M. Gong, “Generation of 1535 nm pulsed vortex beam in a diode-pumped Er,Yb:glass microchip laser,” IEEE Photonics Technol. Lett. 30(10), 891–894 (2018).
[Crossref]

Gu, G.

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215, 480–488 (2015).
[Crossref]

Hao, M. H.

Hara, T.

Harris, M.

M. Harris, C. A. Hill, and J. M. Vaughan, “Optical helices and spiral interference fringes,” Opt. Commun. 106(4-6), 161–166 (1994).
[Crossref]

Hasman, E.

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, “Laser mode discrimination with intra-cavity spiral phase elements,” Opt. Commun. 169(1-6), 115–121 (1999).
[Crossref]

He, S.

J. J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate,” Sci. Rep. 5(1), 17929 (2016).
[Crossref] [PubMed]

Heckenberg, N. R.

Hill, C. A.

M. Harris, C. A. Hill, and J. M. Vaughan, “Optical helices and spiral interference fringes,” Opt. Commun. 106(4-6), 161–166 (1994).
[Crossref]

Hill, M. T.

M. T. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Hnatovsky, C.

Hofkens, J.

Hotta, J.

Huang, H.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Huang, S.

T. Wang, F. Wang, F. Shi, F. Pang, S. Huang, T. Wang, and X. Zeng, “Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler,” J. Lightwave Technol. 35(11), 2161–2166 (2017).
[Crossref]

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215, 480–488 (2015).
[Crossref]

Huang, X.

X. Huang, B. Xu, S. Cui, H. Xu, Z. Cai, and L. Chen, “Direct generation of vortex laser by rotating induced off-axis pumping,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

Inoue, T.

Ito, A.

Izdebskaya, Ya.

Jiang, S.

S. Wang, S. Zhang, H. Yang, J. Xie, S. Jiang, G. Feng, and S. Zhou, “Direct emission of chirality controllable femtosecond LG01 vortex beam,” Appl. Phys. Lett. 112(20), 201110 (2018).
[Crossref]

Khoe, G. D.

M. T. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Khonina, S. N.

Kim, D. J.

Kim, J. W.

Kotlyar, V. V.

Kozawa, Y.

Krolikowski, W.

Lavery, M. P. J.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Leijtens, X. J.

M. T. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Li, J.

S. Tan, C. Zhou, A. Shirakakwa, K. I. Ueda, and J. Li, “Vortex Ti:Sapphire laser by using an intracavity spot-defect spatial filter,” Opt. Laser Technol. 96, 76–80 (2017).
[Crossref]

Li, L.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Li, P.

Li, Y.

Lin, J.

J. Lin and H. M. Pask, “Nd:GdVO4 self-Raman laser using double-end polarised pumping at 880 nm for high power infrared and visible output,” Appl. Phys. B 108(1), 17–24 (2012).
[Crossref]

Ling, X.

Lipson, M.

Liu, G.

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215, 480–488 (2015).
[Crossref]

Liu, Q.

Liu, X.

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215, 480–488 (2015).
[Crossref]

Liu, Y.

Liu, Z.

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215, 480–488 (2015).
[Crossref]

Livesey, J.

D. P. Rhodes, D. M. Gherardi, J. Livesey, D. McGloin, H. Melville, T. Freegarde, and K. Dholakia, “Atom guiding along high order Laguerre–Gaussian light beams formed by spatial light modulation,” J. Mod. Opt. 53(4), 547–556 (2006).
[Crossref]

Luo, H.

Manipatruni, S.

Marrucci, L.

J. J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate,” Sci. Rep. 5(1), 17929 (2016).
[Crossref] [PubMed]

K. K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

Matsumoto, N.

McDuff, R.

McGloin, D.

D. P. Rhodes, D. M. Gherardi, J. Livesey, D. McGloin, H. Melville, T. Freegarde, and K. Dholakia, “Atom guiding along high order Laguerre–Gaussian light beams formed by spatial light modulation,” J. Mod. Opt. 53(4), 547–556 (2006).
[Crossref]

Melville, H.

D. P. Rhodes, D. M. Gherardi, J. Livesey, D. McGloin, H. Melville, T. Freegarde, and K. Dholakia, “Atom guiding along high order Laguerre–Gaussian light beams formed by spatial light modulation,” J. Mod. Opt. 53(4), 547–556 (2006).
[Crossref]

Meng, Y.

Y. Wang, Y. Shen, Y. Meng, and M. Gong, “Generation of 1535 nm pulsed vortex beam in a diode-pumped Er,Yb:glass microchip laser,” IEEE Photonics Technol. Lett. 30(10), 891–894 (2018).
[Crossref]

Molisch, A. F.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Muls, B.

Munro, P.

Nivas, J. J. J.

J. J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate,” Sci. Rep. 5(1), 17929 (2016).
[Crossref] [PubMed]

Oei, Y. S.

M. T. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Ohtake, Y.

Oron, R.

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, “Laser mode discrimination with intra-cavity spiral phase elements,” Opt. Commun. 169(1-6), 115–121 (1999).
[Crossref]

Pan, P.

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215, 480–488 (2015).
[Crossref]

Pang, F.

Paparo, D.

J. J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate,” Sci. Rep. 5(1), 17929 (2016).
[Crossref] [PubMed]

K. K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

Pask, H. M.

J. Lin and H. M. Pask, “Nd:GdVO4 self-Raman laser using double-end polarised pumping at 880 nm for high power infrared and visible output,” Appl. Phys. B 108(1), 17–24 (2012).
[Crossref]

Rabiei, P.

Ramachandran, S.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Ren, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Rhodes, D. P.

D. P. Rhodes, D. M. Gherardi, J. Livesey, D. McGloin, H. Melville, T. Freegarde, and K. Dholakia, “Atom guiding along high order Laguerre–Gaussian light beams formed by spatial light modulation,” J. Mod. Opt. 53(4), 547–556 (2006).
[Crossref]

Rode, A. V.

Rubano, A.

J. J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate,” Sci. Rep. 5(1), 17929 (2016).
[Crossref] [PubMed]

K. K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

Sato, S.

Schmidt, B.

Shakya, J.

Shardlow, P. C.

S. P. Chard, P. C. Shardlow, and M. J. Damzen, “High-power non-astigmatic TEM00 and vortex mode generation in a compact bounce laser design,” Appl. Phys. B 97(2), 275–280 (2009).
[Crossref]

Shen, D.

Shen, Y.

Y. Wang, Y. Shen, Y. Meng, and M. Gong, “Generation of 1535 nm pulsed vortex beam in a diode-pumped Er,Yb:glass microchip laser,” IEEE Photonics Technol. Lett. 30(10), 891–894 (2018).
[Crossref]

Shi, F.

Shirakakwa, A.

S. Tan, C. Zhou, A. Shirakakwa, K. I. Ueda, and J. Li, “Vortex Ti:Sapphire laser by using an intracavity spot-defect spatial filter,” Opt. Laser Technol. 96, 76–80 (2017).
[Crossref]

Shvedov, V.

Shvedov, V. G.

Smalbrugge, B.

M. T. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Smit, M. K.

M. T. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Smith, C. P.

Soifer, V. A.

Steier, W. H.

Swartzlander, G. A.

Tan, S.

S. Tan, C. Zhou, A. Shirakakwa, K. I. Ueda, and J. Li, “Vortex Ti:Sapphire laser by using an intracavity spot-defect spatial filter,” Opt. Laser Technol. 96, 76–80 (2017).
[Crossref]

Török, P.

Tur, M.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Turunen, J.

Ueda, K. I.

S. Tan, C. Zhou, A. Shirakakwa, K. I. Ueda, and J. Li, “Vortex Ti:Sapphire laser by using an intracavity spot-defect spatial filter,” Opt. Laser Technol. 96, 76–80 (2017).
[Crossref]

van der Veen, H.

M. W. Beijersbergen, L. Allen, H. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

Vaughan, J. M.

M. Harris, C. A. Hill, and J. M. Vaughan, “Optical helices and spiral interference fringes,” Opt. Commun. 106(4-6), 161–166 (1994).
[Crossref]

Vecchione, A.

J. J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate,” Sci. Rep. 5(1), 17929 (2016).
[Crossref] [PubMed]

K. K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

Volyar, A.

Wang, F.

Wang, J.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Wang, S.

Wang, T.

Wang, X.

K. K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

Wang, Y.

Y. Wang, Y. Shen, Y. Meng, and M. Gong, “Generation of 1535 nm pulsed vortex beam in a diode-pumped Er,Yb:glass microchip laser,” IEEE Photonics Technol. Lett. 30(10), 891–894 (2018).
[Crossref]

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215, 480–488 (2015).
[Crossref]

Wang, Y. B.

Wang, Z.

Wen, S.

White, A. G.

Willner, A. E.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Woerdman, J. P.

M. W. Beijersbergen, L. Allen, H. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

Xie, G.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Xie, J.

S. Wang, S. Zhang, H. Yang, J. Xie, S. Jiang, G. Feng, and S. Zhou, “Direct emission of chirality controllable femtosecond LG01 vortex beam,” Appl. Phys. Lett. 112(20), 201110 (2018).
[Crossref]

S. Wang, S. L. Zhang, P. Li, M. H. Hao, H. M. Yang, J. Xie, G. Y. Feng, and S. H. Zhou, “Generation of wavelength- and OAM-tunable vortex beam at low threshold,” Opt. Express 26(14), 18164–18170 (2018).
[Crossref] [PubMed]

Xu, B.

X. Huang, B. Xu, S. Cui, H. Xu, Z. Cai, and L. Chen, “Direct generation of vortex laser by rotating induced off-axis pumping,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

Xu, H.

X. Huang, B. Xu, S. Cui, H. Xu, Z. Cai, and L. Chen, “Direct generation of vortex laser by rotating induced off-axis pumping,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

Xu, Q.

Yan, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Yang, H.

S. Wang, S. Zhang, H. Yang, J. Xie, S. Jiang, G. Feng, and S. Zhou, “Direct emission of chirality controllable femtosecond LG01 vortex beam,” Appl. Phys. Lett. 112(20), 201110 (2018).
[Crossref]

Yang, H. M.

Yao, W.

Yi, X.

Yuan, X. C.

Zeng, X.

Zhan, Q.

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Zhang, C.

Zhang, N.

Zhang, S.

S. Wang, S. Zhang, H. Yang, J. Xie, S. Jiang, G. Feng, and S. Zhou, “Direct emission of chirality controllable femtosecond LG01 vortex beam,” Appl. Phys. Lett. 112(20), 201110 (2018).
[Crossref]

Zhang, S. L.

Zhang, Z.

Zhao, Y.

Zhao, Z.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Zhou, C.

S. Tan, C. Zhou, A. Shirakakwa, K. I. Ueda, and J. Li, “Vortex Ti:Sapphire laser by using an intracavity spot-defect spatial filter,” Opt. Laser Technol. 96, 76–80 (2017).
[Crossref]

Zhou, S.

S. Wang, S. Zhang, H. Yang, J. Xie, S. Jiang, G. Feng, and S. Zhou, “Direct emission of chirality controllable femtosecond LG01 vortex beam,” Appl. Phys. Lett. 112(20), 201110 (2018).
[Crossref]

Zhou, S. H.

Zhou, X.

Adv. Opt. Photonics (2)

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

S. P. Chard, P. C. Shardlow, and M. J. Damzen, “High-power non-astigmatic TEM00 and vortex mode generation in a compact bounce laser design,” Appl. Phys. B 97(2), 275–280 (2009).
[Crossref]

J. Lin and H. M. Pask, “Nd:GdVO4 self-Raman laser using double-end polarised pumping at 880 nm for high power infrared and visible output,” Appl. Phys. B 108(1), 17–24 (2012).
[Crossref]

Appl. Phys. Lett. (2)

K. K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

S. Wang, S. Zhang, H. Yang, J. Xie, S. Jiang, G. Feng, and S. Zhou, “Direct emission of chirality controllable femtosecond LG01 vortex beam,” Appl. Phys. Lett. 112(20), 201110 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

X. Huang, B. Xu, S. Cui, H. Xu, Z. Cai, and L. Chen, “Direct generation of vortex laser by rotating induced off-axis pumping,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Wang, Y. Shen, Y. Meng, and M. Gong, “Generation of 1535 nm pulsed vortex beam in a diode-pumped Er,Yb:glass microchip laser,” IEEE Photonics Technol. Lett. 30(10), 891–894 (2018).
[Crossref]

J. Lightwave Technol. (2)

J. Mod. Opt. (1)

D. P. Rhodes, D. M. Gherardi, J. Livesey, D. McGloin, H. Melville, T. Freegarde, and K. Dholakia, “Atom guiding along high order Laguerre–Gaussian light beams formed by spatial light modulation,” J. Mod. Opt. 53(4), 547–556 (2006).
[Crossref]

J. Opt. Soc. Am. A (3)

Microelectron. Eng. (1)

T. Fujii, “PDMS-based microfluidic devices for biomedical applications,” Microelectron. Eng. 61–62, 907–914 (2002).
[Crossref]

Nature (1)

M. T. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Opt. Commun. (3)

M. W. Beijersbergen, L. Allen, H. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

M. Harris, C. A. Hill, and J. M. Vaughan, “Optical helices and spiral interference fringes,” Opt. Commun. 106(4-6), 161–166 (1994).
[Crossref]

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, “Laser mode discrimination with intra-cavity spiral phase elements,” Opt. Commun. 169(1-6), 115–121 (1999).
[Crossref]

Opt. Express (7)

Opt. Laser Technol. (1)

S. Tan, C. Zhou, A. Shirakakwa, K. I. Ueda, and J. Li, “Vortex Ti:Sapphire laser by using an intracavity spot-defect spatial filter,” Opt. Laser Technol. 96, 76–80 (2017).
[Crossref]

Opt. Lett. (5)

Sci. Rep. (1)

J. J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate,” Sci. Rep. 5(1), 17929 (2016).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215, 480–488 (2015).
[Crossref]

Other (1)

X. Huang, S. Cui, X. Guan, B. Xu, H. Xu, and Z. Cai, “Direct generation of eye-safe single-and dual-vortex lasers via off-axis pumping of the active medium,” arXiv preprint 1708.03745, (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Sketch of (a) experimental setup; (b) double-end pumping scheme combined with off-axis pumping technique.
Fig. 2
Fig. 2 Simulation results of (a) coherent superposition of HG10 and HG01 modes with π/2 phase difference to form LG0, + 1 mode. The simulated interference pattern with plane wave has been shown to indicate the positive spiral phase; (b) coherent superposition of HG10 and HG01 modes with -π/2 phase difference to form LG0,-1 mode. The simulated interference pattern with plane wave has been shown to indicate the negative spiral phase; (c) coherent superposition of HG10 and HG02 modes with π/2 phase difference to form dual-LG0,1 mode; The simulated interference pattern with plane wave contains two forks with opposite fork directions in each of the LG01 mode. (d) Gouy Phase difference between HG10 mode and HG01 mode dependent on arm length between M2 and Yb:KYW.
Fig. 3
Fig. 3 Simulation results of (a) coherent superposition of fundamental Gaussian mode and HG11 modes with π/2 phase delay to form cross-shaped mode; (b) coherent superposition of HG02 mode and HG20 modes to form LG10 mode.
Fig. 4
Fig. 4 Experimental results of (a) HG10 mode emission by left-end pumping; (b) HG01 mode emission by right-end pumping; (c) Doughnut mode emission by double-end pumping; (d) Interferograms measured for LG0, + 1 mode; (e) Interferograms measured for LG0,-1 mode.
Fig. 5
Fig. 5 The absorbed pump power dependent output power function of both LG0, ± 1 modes.
Fig. 6
Fig. 6 Experimental results of (a) Dual-LG01 mode emission obtained by double-end pumping; (b) Interferograms measured for dual-LG01 mode.
Fig. 7
Fig. 7 Experimental results of (a) Cross-shaped mode emission obtained by double-end pumping; (b) LG10 mode emission obtained by double-end pumping; (c) The absorbed pump power dependent output power function of cross-shaped mode and LG10 mode.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

φ=(1+n+m)sgnB cos 1 ( A+D 2 )

Metrics