Abstract

We propose and experimentally demonstrate a method of polarization-sensitive quantitative phase imaging using two photodetectors and a digital micromirror device. Instead of recording wide-field interference patterns, finding the modulation patterns maximizing focused intensities in terms of the polarization states enables polarization-dependent quantitative phase imaging without the need for a reference beam and an image sensor. The feasibility of the present method is experimentally validated by reconstructing Jones matrices of several samples including a polystyrene microsphere, a maize starch granule, and a mouse retinal nerve fiber layer. Since the present method is simple and sufficiently general, we expect that it may offer solutions for quantitative phase imaging of birefringent materials.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Measurements of polarization-dependent angle-resolved light scattering from individual microscopic samples using Fourier transform light scattering

JaeHwang Jung, Jinhyung Kim, Min-Kyo Seo, and YongKeun Park
Opt. Express 26(6) 7701-7711 (2018)

Stokes vector based polarization resolved second harmonic microscopy of starch granules

Nirmal Mazumder, Jianjun Qiu, Matthew R. Foreman, Carlos Macías Romero, Peter Török, and Fu-Jen Kao
Biomed. Opt. Express 4(4) 538-547 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. Inoué, Video Microscopy (Springer Science & Business Media, 2013).
  2. S. A. Empedocles, R. Neuhauser, and M. G. Bawendi, “Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy,” Nature 399(6732), 126–130 (1999).
    [Crossref]
  3. P. Hariharan, Optical Holography: Principles, Techniques and Applications (Cambridge U. Press, 1996).
  4. G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw Hill Professional, 2011).
  5. K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
    [Crossref] [PubMed]
  6. T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41(1), 27–37 (2002).
    [Crossref] [PubMed]
  7. T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R.-P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44(21), 4461–4469 (2005).
    [Crossref] [PubMed]
  8. Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20(9), 9948–9955 (2012).
    [Crossref] [PubMed]
  9. J. Park, H. Yu, J. H. Park, and Y. Park, “LCD panel characterization by measuring full Jones matrix of individual pixels using polarization-sensitive digital holographic microscopy,” Opt. Express 22(20), 24304–24311 (2014).
    [Crossref] [PubMed]
  10. T. D. Yang, K. Park, Y. G. Kang, K. J. Lee, B.-M. Kim, and Y. Choi, “Single-shot digital holographic microscopy for quantifying a spatially-resolved Jones matrix of biological specimens,” Opt. Express 24(25), 29302–29311 (2016).
    [Crossref] [PubMed]
  11. Z. Wang, L. J. Millet, M. U. Gillette, and G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33(11), 1270–1272 (2008).
    [Crossref] [PubMed]
  12. J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography - a review [Invited],” Biomed. Opt. Express 8(3), 1838–1873 (2017).
    [Crossref] [PubMed]
  13. S. Aknoun, M. Aurrand-Lions, B. Wattellier, and S. Monneret, “Quantitative retardance imaging by means of quadri-wave lateral shearing interferometry for label-free fiber imaging in tissues,” Opt. Commun. 422, 17–27 (2018).
    [Crossref]
  14. J.-H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. 85(21), 10519–10525 (2013).
    [Crossref] [PubMed]
  15. K. Kim, S. Lee, J. Yoon, J. Heo, C. Choi, and Y. Park, “Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes,” Sci. Rep. 6(1), 36815 (2016).
    [Crossref] [PubMed]
  16. J. Jung, S.-J. Hong, H.-B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D.-J. Kim, C.-G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8(1), 6524 (2018).
    [Crossref] [PubMed]
  17. K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
    [Crossref]
  18. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [Crossref]
  19. N. Sreerama and R. W. Woody, “Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set,” Anal. Biochem. 287(2), 252–260 (2000).
    [Crossref] [PubMed]
  20. P. Stephens, F. Devlin, C. Chabalowski, and M. J. Frisch, “Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields,” J. Phys. Chem. 98(45), 11623–11627 (1994).
    [Crossref]
  21. P. Clemente, V. Durán, E. Tajahuerce, P. Andrés, V. Climent, and J. Lancis, “Compressive holography with a single-pixel detector,” Opt. Lett. 38(14), 2524–2527 (2013).
    [Crossref] [PubMed]
  22. R. K. Singh, “Hybrid correlation holography with a single pixel detector,” Opt. Lett. 42(13), 2515–2518 (2017).
    [Crossref] [PubMed]
  23. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
    [Crossref]
  24. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
    [Crossref] [PubMed]
  25. S. Shin, K. Lee, Y. Baek, and Y. Park, “Reference-Free Single-Point Holographic Imaging and Realization of an Optical Bidirectional Transducer,” Phys. Rev. Appl. 9(4), 044042 (2018).
    [Crossref]
  26. K. Lee, J. Lee, J.-H. Park, J.-H. Park, and Y. Park, “One-wave optical phase conjugation mirror by actively coupling arbitrary light fields into a single-mode reflector,” Phys. Rev. Lett. 115(15), 153902 (2015).
    [Crossref] [PubMed]
  27. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
    [Crossref] [PubMed]
  28. S. A. Goorden, J. Bertolotti, and A. P. Mosk, “Superpixel-based spatial amplitude and phase modulation using a digital micromirror device,” Opt. Express 22(15), 17999–18009 (2014).
    [Crossref] [PubMed]
  29. J. Park, H. Yu, J.-H. Park, and Y. Park, “LCD panel characterization by measuring full Jones matrix of individual pixels using polarization-sensitive digital holographic microscopy,” Opt. Express 22(20), 24304–24311 (2014).
    [Crossref] [PubMed]
  30. P. Ferrand, A. Baroni, M. Allain, and V. Chamard, “Quantitative imaging of anisotropic material properties with vectorial ptychography,” Opt. Lett. 43(4), 763–766 (2018).
    [Crossref] [PubMed]
  31. T. Nalin, F. Sperb-Ludwig, K. Venema, T. G. Derks, and I. V. D. Schwartz, “Determination of amylose/amylopectin ratio of starches,” J. Inherit. Metab. Dis. 38(5), 985–986 (2015).
    [Crossref] [PubMed]
  32. F. Baker and W. J. Whelan, “Birefringence of amylose and amylopectin in whole structural starches,” Nature 166(4209), 34 (1950).
    [Crossref] [PubMed]
  33. D. J. Gallant, B. Bouchet, and P. M. Baldwin, “Microscopy of starch: evidence of a new level of granule organization,” Carbohydr. Polym. 32(3-4), 177–191 (1997).
    [Crossref]
  34. H. Tang, T. Mitsunaga, and Y. Kawamura, “Molecular arrangement in blocklets and starch granule architecture,” Carbohydr. Polym. 63(4), 555–560 (2006).
    [Crossref]
  35. G. Cox, N. Moreno, and J. Feijó, “Second-harmonic imaging of plant polysaccharides,” J. Biomed. Opt. 10(2), 024013 (2005).
    [Crossref] [PubMed]
  36. Z.-Y. Zhuo, C.-S. Liao, C.-H. Huang, J.-Y. Yu, Y.-Y. Tzeng, W. Lo, C.-Y. Dong, H.-C. Chui, Y.-C. Huang, H.-M. Lai, and S. W. Chu, “Second harmonic generation imaging - a new method for unraveling molecular information of starch,” J. Struct. Biol. 171(1), 88–94 (2010).
    [Crossref] [PubMed]
  37. G. Y. Zhuo, H. Lee, K. J. Hsu, M. J. Huttunen, M. Kauranen, Y. Y. Lin, and S. W. Chu, “Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism,” J. Microsc. 253(3), 183–190 (2014).
    [Crossref] [PubMed]
  38. R. Shogren, R. Greene, and Y. Wu, “Complexes of starch polysaccharides and poly (ethylene co‐acrylic acid): Structure and stability in solution,” J. Appl. Polym. Sci. 42(6), 1701–1709 (1991).
    [Crossref]
  39. B. E. Saleh, M. C. Teich, and B. E. Saleh, Fundamentals of photonics (Wiley New York, 1991).
  40. A. W. Dreher, K. Reiter, and R. N. Weinreb, “Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer,” Appl. Opt. 31(19), 3730–3735 (1992).
    [Crossref] [PubMed]
  41. D. S. Greenfield, R. W. Knighton, and X.-R. Huang, “Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry,” Am. J. Ophthalmol. 129(6), 715–722 (2000).
    [Crossref] [PubMed]
  42. J. Jung, K. Kim, H. Yu, K. Lee, S. Lee, S. Nahm, H. Park, and Y. Park, “Biomedical applications of holographic microspectroscopy,” Appl. Opt. 53, G111–G122 (2014).

2018 (4)

S. Aknoun, M. Aurrand-Lions, B. Wattellier, and S. Monneret, “Quantitative retardance imaging by means of quadri-wave lateral shearing interferometry for label-free fiber imaging in tissues,” Opt. Commun. 422, 17–27 (2018).
[Crossref]

J. Jung, S.-J. Hong, H.-B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D.-J. Kim, C.-G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8(1), 6524 (2018).
[Crossref] [PubMed]

S. Shin, K. Lee, Y. Baek, and Y. Park, “Reference-Free Single-Point Holographic Imaging and Realization of an Optical Bidirectional Transducer,” Phys. Rev. Appl. 9(4), 044042 (2018).
[Crossref]

P. Ferrand, A. Baroni, M. Allain, and V. Chamard, “Quantitative imaging of anisotropic material properties with vectorial ptychography,” Opt. Lett. 43(4), 763–766 (2018).
[Crossref] [PubMed]

2017 (2)

2016 (3)

K. Kim, S. Lee, J. Yoon, J. Heo, C. Choi, and Y. Park, “Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes,” Sci. Rep. 6(1), 36815 (2016).
[Crossref] [PubMed]

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
[Crossref]

T. D. Yang, K. Park, Y. G. Kang, K. J. Lee, B.-M. Kim, and Y. Choi, “Single-shot digital holographic microscopy for quantifying a spatially-resolved Jones matrix of biological specimens,” Opt. Express 24(25), 29302–29311 (2016).
[Crossref] [PubMed]

2015 (2)

K. Lee, J. Lee, J.-H. Park, J.-H. Park, and Y. Park, “One-wave optical phase conjugation mirror by actively coupling arbitrary light fields into a single-mode reflector,” Phys. Rev. Lett. 115(15), 153902 (2015).
[Crossref] [PubMed]

T. Nalin, F. Sperb-Ludwig, K. Venema, T. G. Derks, and I. V. D. Schwartz, “Determination of amylose/amylopectin ratio of starches,” J. Inherit. Metab. Dis. 38(5), 985–986 (2015).
[Crossref] [PubMed]

2014 (5)

2013 (4)

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

J.-H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. 85(21), 10519–10525 (2013).
[Crossref] [PubMed]

P. Clemente, V. Durán, E. Tajahuerce, P. Andrés, V. Climent, and J. Lancis, “Compressive holography with a single-pixel detector,” Opt. Lett. 38(14), 2524–2527 (2013).
[Crossref] [PubMed]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

2012 (1)

2010 (1)

Z.-Y. Zhuo, C.-S. Liao, C.-H. Huang, J.-Y. Yu, Y.-Y. Tzeng, W. Lo, C.-Y. Dong, H.-C. Chui, Y.-C. Huang, H.-M. Lai, and S. W. Chu, “Second harmonic generation imaging - a new method for unraveling molecular information of starch,” J. Struct. Biol. 171(1), 88–94 (2010).
[Crossref] [PubMed]

2008 (3)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Z. Wang, L. J. Millet, M. U. Gillette, and G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33(11), 1270–1272 (2008).
[Crossref] [PubMed]

2006 (1)

H. Tang, T. Mitsunaga, and Y. Kawamura, “Molecular arrangement in blocklets and starch granule architecture,” Carbohydr. Polym. 63(4), 555–560 (2006).
[Crossref]

2005 (2)

2002 (1)

2000 (2)

N. Sreerama and R. W. Woody, “Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set,” Anal. Biochem. 287(2), 252–260 (2000).
[Crossref] [PubMed]

D. S. Greenfield, R. W. Knighton, and X.-R. Huang, “Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry,” Am. J. Ophthalmol. 129(6), 715–722 (2000).
[Crossref] [PubMed]

1999 (2)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

S. A. Empedocles, R. Neuhauser, and M. G. Bawendi, “Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy,” Nature 399(6732), 126–130 (1999).
[Crossref]

1997 (1)

D. J. Gallant, B. Bouchet, and P. M. Baldwin, “Microscopy of starch: evidence of a new level of granule organization,” Carbohydr. Polym. 32(3-4), 177–191 (1997).
[Crossref]

1994 (1)

P. Stephens, F. Devlin, C. Chabalowski, and M. J. Frisch, “Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields,” J. Phys. Chem. 98(45), 11623–11627 (1994).
[Crossref]

1992 (1)

1991 (1)

R. Shogren, R. Greene, and Y. Wu, “Complexes of starch polysaccharides and poly (ethylene co‐acrylic acid): Structure and stability in solution,” J. Appl. Polym. Sci. 42(6), 1701–1709 (1991).
[Crossref]

1950 (1)

F. Baker and W. J. Whelan, “Birefringence of amylose and amylopectin in whole structural starches,” Nature 166(4209), 34 (1950).
[Crossref] [PubMed]

Aknoun, S.

S. Aknoun, M. Aurrand-Lions, B. Wattellier, and S. Monneret, “Quantitative retardance imaging by means of quadri-wave lateral shearing interferometry for label-free fiber imaging in tissues,” Opt. Commun. 422, 17–27 (2018).
[Crossref]

Allain, M.

Andrés, P.

Aurrand-Lions, M.

S. Aknoun, M. Aurrand-Lions, B. Wattellier, and S. Monneret, “Quantitative retardance imaging by means of quadri-wave lateral shearing interferometry for label-free fiber imaging in tissues,” Opt. Commun. 422, 17–27 (2018).
[Crossref]

Baek, Y.

S. Shin, K. Lee, Y. Baek, and Y. Park, “Reference-Free Single-Point Holographic Imaging and Realization of an Optical Bidirectional Transducer,” Phys. Rev. Appl. 9(4), 044042 (2018).
[Crossref]

Baker, F.

F. Baker and W. J. Whelan, “Birefringence of amylose and amylopectin in whole structural starches,” Nature 166(4209), 34 (1950).
[Crossref] [PubMed]

Baldwin, P. M.

D. J. Gallant, B. Bouchet, and P. M. Baldwin, “Microscopy of starch: evidence of a new level of granule organization,” Carbohydr. Polym. 32(3-4), 177–191 (1997).
[Crossref]

Baraniuk, R. G.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Baroni, A.

Bawendi, M. G.

S. A. Empedocles, R. Neuhauser, and M. G. Bawendi, “Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy,” Nature 399(6732), 126–130 (1999).
[Crossref]

Beghuin, D.

Bertolotti, J.

Bouchet, B.

D. J. Gallant, B. Bouchet, and P. M. Baldwin, “Microscopy of starch: evidence of a new level of granule organization,” Carbohydr. Polym. 32(3-4), 177–191 (1997).
[Crossref]

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Bowman, R.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Chabalowski, C.

P. Stephens, F. Devlin, C. Chabalowski, and M. J. Frisch, “Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields,” J. Phys. Chem. 98(45), 11623–11627 (1994).
[Crossref]

Chamard, V.

Chang, G.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Cho, S.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Choi, C.

K. Kim, S. Lee, J. Yoon, J. Heo, C. Choi, and Y. Park, “Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes,” Sci. Rep. 6(1), 36815 (2016).
[Crossref] [PubMed]

Choi, Y.

Chu, S. W.

G. Y. Zhuo, H. Lee, K. J. Hsu, M. J. Huttunen, M. Kauranen, Y. Y. Lin, and S. W. Chu, “Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism,” J. Microsc. 253(3), 183–190 (2014).
[Crossref] [PubMed]

Z.-Y. Zhuo, C.-S. Liao, C.-H. Huang, J.-Y. Yu, Y.-Y. Tzeng, W. Lo, C.-Y. Dong, H.-C. Chui, Y.-C. Huang, H.-M. Lai, and S. W. Chu, “Second harmonic generation imaging - a new method for unraveling molecular information of starch,” J. Struct. Biol. 171(1), 88–94 (2010).
[Crossref] [PubMed]

Chui, H.-C.

Z.-Y. Zhuo, C.-S. Liao, C.-H. Huang, J.-Y. Yu, Y.-Y. Tzeng, W. Lo, C.-Y. Dong, H.-C. Chui, Y.-C. Huang, H.-M. Lai, and S. W. Chu, “Second harmonic generation imaging - a new method for unraveling molecular information of starch,” J. Struct. Biol. 171(1), 88–94 (2010).
[Crossref] [PubMed]

Clemente, P.

Climent, V.

Colomb, T.

Cox, G.

G. Cox, N. Moreno, and J. Feijó, “Second-harmonic imaging of plant polysaccharides,” J. Biomed. Opt. 10(2), 024013 (2005).
[Crossref] [PubMed]

Cuche, E.

Dahlgren, P.

Davenport, M. A.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

de Boer, J. F.

Depeursinge, C.

Derks, T. G.

T. Nalin, F. Sperb-Ludwig, K. Venema, T. G. Derks, and I. V. D. Schwartz, “Determination of amylose/amylopectin ratio of starches,” J. Inherit. Metab. Dis. 38(5), 985–986 (2015).
[Crossref] [PubMed]

Devlin, F.

P. Stephens, F. Devlin, C. Chabalowski, and M. J. Frisch, “Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields,” J. Phys. Chem. 98(45), 11623–11627 (1994).
[Crossref]

Dong, C.-Y.

Z.-Y. Zhuo, C.-S. Liao, C.-H. Huang, J.-Y. Yu, Y.-Y. Tzeng, W. Lo, C.-Y. Dong, H.-C. Chui, Y.-C. Huang, H.-M. Lai, and S. W. Chu, “Second harmonic generation imaging - a new method for unraveling molecular information of starch,” J. Struct. Biol. 171(1), 88–94 (2010).
[Crossref] [PubMed]

Dreher, A. W.

Duarte, M. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Durán, V.

Dürr, F.

Edgar, M. P.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Empedocles, S. A.

S. A. Empedocles, R. Neuhauser, and M. G. Bawendi, “Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy,” Nature 399(6732), 126–130 (1999).
[Crossref]

Feijó, J.

G. Cox, N. Moreno, and J. Feijó, “Second-harmonic imaging of plant polysaccharides,” J. Biomed. Opt. 10(2), 024013 (2005).
[Crossref] [PubMed]

Feld, M. S.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Ferrand, P.

Frisch, M. J.

P. Stephens, F. Devlin, C. Chabalowski, and M. J. Frisch, “Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields,” J. Phys. Chem. 98(45), 11623–11627 (1994).
[Crossref]

Gallant, D. J.

D. J. Gallant, B. Bouchet, and P. M. Baldwin, “Microscopy of starch: evidence of a new level of granule organization,” Carbohydr. Polym. 32(3-4), 177–191 (1997).
[Crossref]

Gillette, M. U.

Goorden, S. A.

Greene, R.

R. Shogren, R. Greene, and Y. Wu, “Complexes of starch polysaccharides and poly (ethylene co‐acrylic acid): Structure and stability in solution,” J. Appl. Polym. Sci. 42(6), 1701–1709 (1991).
[Crossref]

Greenfield, D. S.

D. S. Greenfield, R. W. Knighton, and X.-R. Huang, “Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry,” Am. J. Ophthalmol. 129(6), 715–722 (2000).
[Crossref] [PubMed]

Heo, J.

K. Kim, S. Lee, J. Yoon, J. Heo, C. Choi, and Y. Park, “Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes,” Sci. Rep. 6(1), 36815 (2016).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Hitzenberger, C. K.

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Hong, S.-J.

J. Jung, S.-J. Hong, H.-B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D.-J. Kim, C.-G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8(1), 6524 (2018).
[Crossref] [PubMed]

Hsu, K. J.

G. Y. Zhuo, H. Lee, K. J. Hsu, M. J. Huttunen, M. Kauranen, Y. Y. Lin, and S. W. Chu, “Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism,” J. Microsc. 253(3), 183–190 (2014).
[Crossref] [PubMed]

Huang, C.-H.

Z.-Y. Zhuo, C.-S. Liao, C.-H. Huang, J.-Y. Yu, Y.-Y. Tzeng, W. Lo, C.-Y. Dong, H.-C. Chui, Y.-C. Huang, H.-M. Lai, and S. W. Chu, “Second harmonic generation imaging - a new method for unraveling molecular information of starch,” J. Struct. Biol. 171(1), 88–94 (2010).
[Crossref] [PubMed]

Huang, X.-R.

D. S. Greenfield, R. W. Knighton, and X.-R. Huang, “Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry,” Am. J. Ophthalmol. 129(6), 715–722 (2000).
[Crossref] [PubMed]

Huang, Y.-C.

Z.-Y. Zhuo, C.-S. Liao, C.-H. Huang, J.-Y. Yu, Y.-Y. Tzeng, W. Lo, C.-Y. Dong, H.-C. Chui, Y.-C. Huang, H.-M. Lai, and S. W. Chu, “Second harmonic generation imaging - a new method for unraveling molecular information of starch,” J. Struct. Biol. 171(1), 88–94 (2010).
[Crossref] [PubMed]

Huttunen, M. J.

G. Y. Zhuo, H. Lee, K. J. Hsu, M. J. Huttunen, M. Kauranen, Y. Y. Lin, and S. W. Chu, “Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism,” J. Microsc. 253(3), 183–190 (2014).
[Crossref] [PubMed]

Jang, J.

J.-H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. 85(21), 10519–10525 (2013).
[Crossref] [PubMed]

Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20(9), 9948–9955 (2012).
[Crossref] [PubMed]

Jeong, J.

Jo, Y.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Jung, J.

J. Jung, S.-J. Hong, H.-B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D.-J. Kim, C.-G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8(1), 6524 (2018).
[Crossref] [PubMed]

J. Jung, K. Kim, H. Yu, K. Lee, S. Lee, S. Nahm, H. Park, and Y. Park, “Biomedical applications of holographic microspectroscopy,” Appl. Opt. 53, G111–G122 (2014).

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Jung, J.-H.

J.-H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. 85(21), 10519–10525 (2013).
[Crossref] [PubMed]

Kang, Y. G.

Kauranen, M.

G. Y. Zhuo, H. Lee, K. J. Hsu, M. J. Huttunen, M. Kauranen, Y. Y. Lin, and S. W. Chu, “Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism,” J. Microsc. 253(3), 183–190 (2014).
[Crossref] [PubMed]

Kawamura, Y.

H. Tang, T. Mitsunaga, and Y. Kawamura, “Molecular arrangement in blocklets and starch granule architecture,” Carbohydr. Polym. 63(4), 555–560 (2006).
[Crossref]

Kelly, K. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Kim, B.-M.

Kim, D.-J.

J. Jung, S.-J. Hong, H.-B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D.-J. Kim, C.-G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8(1), 6524 (2018).
[Crossref] [PubMed]

Kim, G.

J. Jung, S.-J. Hong, H.-B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D.-J. Kim, C.-G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8(1), 6524 (2018).
[Crossref] [PubMed]

Kim, H.-B.

J. Jung, S.-J. Hong, H.-B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D.-J. Kim, C.-G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8(1), 6524 (2018).
[Crossref] [PubMed]

Kim, K.

K. Kim, S. Lee, J. Yoon, J. Heo, C. Choi, and Y. Park, “Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes,” Sci. Rep. 6(1), 36815 (2016).
[Crossref] [PubMed]

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
[Crossref]

J. Jung, K. Kim, H. Yu, K. Lee, S. Lee, S. Nahm, H. Park, and Y. Park, “Biomedical applications of holographic microspectroscopy,” Appl. Opt. 53, G111–G122 (2014).

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Kim, M. W.

Kim, Y.

Knighton, R. W.

D. S. Greenfield, R. W. Knighton, and X.-R. Huang, “Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry,” Am. J. Ophthalmol. 129(6), 715–722 (2000).
[Crossref] [PubMed]

Lai, H.-M.

Z.-Y. Zhuo, C.-S. Liao, C.-H. Huang, J.-Y. Yu, Y.-Y. Tzeng, W. Lo, C.-Y. Dong, H.-C. Chui, Y.-C. Huang, H.-M. Lai, and S. W. Chu, “Second harmonic generation imaging - a new method for unraveling molecular information of starch,” J. Struct. Biol. 171(1), 88–94 (2010).
[Crossref] [PubMed]

Lancis, J.

Laska, J. N.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Lee, C.-G.

J. Jung, S.-J. Hong, H.-B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D.-J. Kim, C.-G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8(1), 6524 (2018).
[Crossref] [PubMed]

Lee, H.

G. Y. Zhuo, H. Lee, K. J. Hsu, M. J. Huttunen, M. Kauranen, Y. Y. Lin, and S. W. Chu, “Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism,” J. Microsc. 253(3), 183–190 (2014).
[Crossref] [PubMed]

Lee, J.

K. Lee, J. Lee, J.-H. Park, J.-H. Park, and Y. Park, “One-wave optical phase conjugation mirror by actively coupling arbitrary light fields into a single-mode reflector,” Phys. Rev. Lett. 115(15), 153902 (2015).
[Crossref] [PubMed]

Lee, K.

S. Shin, K. Lee, Y. Baek, and Y. Park, “Reference-Free Single-Point Holographic Imaging and Realization of an Optical Bidirectional Transducer,” Phys. Rev. Appl. 9(4), 044042 (2018).
[Crossref]

K. Lee, J. Lee, J.-H. Park, J.-H. Park, and Y. Park, “One-wave optical phase conjugation mirror by actively coupling arbitrary light fields into a single-mode reflector,” Phys. Rev. Lett. 115(15), 153902 (2015).
[Crossref] [PubMed]

J. Jung, K. Kim, H. Yu, K. Lee, S. Lee, S. Nahm, H. Park, and Y. Park, “Biomedical applications of holographic microspectroscopy,” Appl. Opt. 53, G111–G122 (2014).

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Lee, K. J.

Lee, M.

J. Jung, S.-J. Hong, H.-B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D.-J. Kim, C.-G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8(1), 6524 (2018).
[Crossref] [PubMed]

Lee, S.

J. Jung, S.-J. Hong, H.-B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D.-J. Kim, C.-G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8(1), 6524 (2018).
[Crossref] [PubMed]

K. Kim, S. Lee, J. Yoon, J. Heo, C. Choi, and Y. Park, “Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes,” Sci. Rep. 6(1), 36815 (2016).
[Crossref] [PubMed]

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
[Crossref]

J. Jung, K. Kim, H. Yu, K. Lee, S. Lee, S. Nahm, H. Park, and Y. Park, “Biomedical applications of holographic microspectroscopy,” Appl. Opt. 53, G111–G122 (2014).

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Liao, C.-S.

Z.-Y. Zhuo, C.-S. Liao, C.-H. Huang, J.-Y. Yu, Y.-Y. Tzeng, W. Lo, C.-Y. Dong, H.-C. Chui, Y.-C. Huang, H.-M. Lai, and S. W. Chu, “Second harmonic generation imaging - a new method for unraveling molecular information of starch,” J. Struct. Biol. 171(1), 88–94 (2010).
[Crossref] [PubMed]

Limberger, H. G.

Lin, Y. Y.

G. Y. Zhuo, H. Lee, K. J. Hsu, M. J. Huttunen, M. Kauranen, Y. Y. Lin, and S. W. Chu, “Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism,” J. Microsc. 253(3), 183–190 (2014).
[Crossref] [PubMed]

Lo, W.

Z.-Y. Zhuo, C.-S. Liao, C.-H. Huang, J.-Y. Yu, Y.-Y. Tzeng, W. Lo, C.-Y. Dong, H.-C. Chui, Y.-C. Huang, H.-M. Lai, and S. W. Chu, “Second harmonic generation imaging - a new method for unraveling molecular information of starch,” J. Struct. Biol. 171(1), 88–94 (2010).
[Crossref] [PubMed]

Marquet, P.

Millet, L. J.

Mitsunaga, T.

H. Tang, T. Mitsunaga, and Y. Kawamura, “Molecular arrangement in blocklets and starch granule architecture,” Carbohydr. Polym. 63(4), 555–560 (2006).
[Crossref]

Monneret, S.

S. Aknoun, M. Aurrand-Lions, B. Wattellier, and S. Monneret, “Quantitative retardance imaging by means of quadri-wave lateral shearing interferometry for label-free fiber imaging in tissues,” Opt. Commun. 422, 17–27 (2018).
[Crossref]

Moreno, N.

G. Cox, N. Moreno, and J. Feijó, “Second-harmonic imaging of plant polysaccharides,” J. Biomed. Opt. 10(2), 024013 (2005).
[Crossref] [PubMed]

Mosk, A. P.

Nahm, S.

Nalin, T.

T. Nalin, F. Sperb-Ludwig, K. Venema, T. G. Derks, and I. V. D. Schwartz, “Determination of amylose/amylopectin ratio of starches,” J. Inherit. Metab. Dis. 38(5), 985–986 (2015).
[Crossref] [PubMed]

Neuhauser, R.

S. A. Empedocles, R. Neuhauser, and M. G. Bawendi, “Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy,” Nature 399(6732), 126–130 (1999).
[Crossref]

Padgett, M. J.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Park, H.

J. Jung, K. Kim, H. Yu, K. Lee, S. Lee, S. Nahm, H. Park, and Y. Park, “Biomedical applications of holographic microspectroscopy,” Appl. Opt. 53, G111–G122 (2014).

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Park, J.

Park, J. H.

Park, J.-H.

K. Lee, J. Lee, J.-H. Park, J.-H. Park, and Y. Park, “One-wave optical phase conjugation mirror by actively coupling arbitrary light fields into a single-mode reflector,” Phys. Rev. Lett. 115(15), 153902 (2015).
[Crossref] [PubMed]

K. Lee, J. Lee, J.-H. Park, J.-H. Park, and Y. Park, “One-wave optical phase conjugation mirror by actively coupling arbitrary light fields into a single-mode reflector,” Phys. Rev. Lett. 115(15), 153902 (2015).
[Crossref] [PubMed]

J. Park, H. Yu, J.-H. Park, and Y. Park, “LCD panel characterization by measuring full Jones matrix of individual pixels using polarization-sensitive digital holographic microscopy,” Opt. Express 22(20), 24304–24311 (2014).
[Crossref] [PubMed]

Park, K.

Park, Y.

J. Jung, S.-J. Hong, H.-B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D.-J. Kim, C.-G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8(1), 6524 (2018).
[Crossref] [PubMed]

S. Shin, K. Lee, Y. Baek, and Y. Park, “Reference-Free Single-Point Holographic Imaging and Realization of an Optical Bidirectional Transducer,” Phys. Rev. Appl. 9(4), 044042 (2018).
[Crossref]

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
[Crossref]

K. Kim, S. Lee, J. Yoon, J. Heo, C. Choi, and Y. Park, “Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes,” Sci. Rep. 6(1), 36815 (2016).
[Crossref] [PubMed]

K. Lee, J. Lee, J.-H. Park, J.-H. Park, and Y. Park, “One-wave optical phase conjugation mirror by actively coupling arbitrary light fields into a single-mode reflector,” Phys. Rev. Lett. 115(15), 153902 (2015).
[Crossref] [PubMed]

J. Park, H. Yu, J.-H. Park, and Y. Park, “LCD panel characterization by measuring full Jones matrix of individual pixels using polarization-sensitive digital holographic microscopy,” Opt. Express 22(20), 24304–24311 (2014).
[Crossref] [PubMed]

J. Park, H. Yu, J. H. Park, and Y. Park, “LCD panel characterization by measuring full Jones matrix of individual pixels using polarization-sensitive digital holographic microscopy,” Opt. Express 22(20), 24304–24311 (2014).
[Crossref] [PubMed]

J. Jung, K. Kim, H. Yu, K. Lee, S. Lee, S. Nahm, H. Park, and Y. Park, “Biomedical applications of holographic microspectroscopy,” Appl. Opt. 53, G111–G122 (2014).

J.-H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. 85(21), 10519–10525 (2013).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20(9), 9948–9955 (2012).
[Crossref] [PubMed]

Popescu, G.

Psaltis, D.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Reiter, K.

Salathé, R.-P.

Schwartz, I. V. D.

T. Nalin, F. Sperb-Ludwig, K. Venema, T. G. Derks, and I. V. D. Schwartz, “Determination of amylose/amylopectin ratio of starches,” J. Inherit. Metab. Dis. 38(5), 985–986 (2015).
[Crossref] [PubMed]

Shin, S.

J. Jung, S.-J. Hong, H.-B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D.-J. Kim, C.-G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8(1), 6524 (2018).
[Crossref] [PubMed]

S. Shin, K. Lee, Y. Baek, and Y. Park, “Reference-Free Single-Point Holographic Imaging and Realization of an Optical Bidirectional Transducer,” Phys. Rev. Appl. 9(4), 044042 (2018).
[Crossref]

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
[Crossref]

Shogren, R.

R. Shogren, R. Greene, and Y. Wu, “Complexes of starch polysaccharides and poly (ethylene co‐acrylic acid): Structure and stability in solution,” J. Appl. Polym. Sci. 42(6), 1701–1709 (1991).
[Crossref]

Singh, R. K.

Sperb-Ludwig, F.

T. Nalin, F. Sperb-Ludwig, K. Venema, T. G. Derks, and I. V. D. Schwartz, “Determination of amylose/amylopectin ratio of starches,” J. Inherit. Metab. Dis. 38(5), 985–986 (2015).
[Crossref] [PubMed]

Sreerama, N.

N. Sreerama and R. W. Woody, “Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set,” Anal. Biochem. 287(2), 252–260 (2000).
[Crossref] [PubMed]

Stephens, P.

P. Stephens, F. Devlin, C. Chabalowski, and M. J. Frisch, “Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields,” J. Phys. Chem. 98(45), 11623–11627 (1994).
[Crossref]

Sun, B.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Sun, T.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Tajahuerce, E.

Takhar, D.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Tang, H.

H. Tang, T. Mitsunaga, and Y. Kawamura, “Molecular arrangement in blocklets and starch granule architecture,” Carbohydr. Polym. 63(4), 555–560 (2006).
[Crossref]

Tzeng, Y.-Y.

Z.-Y. Zhuo, C.-S. Liao, C.-H. Huang, J.-Y. Yu, Y.-Y. Tzeng, W. Lo, C.-Y. Dong, H.-C. Chui, Y.-C. Huang, H.-M. Lai, and S. W. Chu, “Second harmonic generation imaging - a new method for unraveling molecular information of starch,” J. Struct. Biol. 171(1), 88–94 (2010).
[Crossref] [PubMed]

Venema, K.

T. Nalin, F. Sperb-Ludwig, K. Venema, T. G. Derks, and I. V. D. Schwartz, “Determination of amylose/amylopectin ratio of starches,” J. Inherit. Metab. Dis. 38(5), 985–986 (2015).
[Crossref] [PubMed]

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Wang, Z.

Wattellier, B.

S. Aknoun, M. Aurrand-Lions, B. Wattellier, and S. Monneret, “Quantitative retardance imaging by means of quadri-wave lateral shearing interferometry for label-free fiber imaging in tissues,” Opt. Commun. 422, 17–27 (2018).
[Crossref]

Weinreb, R. N.

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Whelan, W. J.

F. Baker and W. J. Whelan, “Birefringence of amylose and amylopectin in whole structural starches,” Nature 166(4209), 34 (1950).
[Crossref] [PubMed]

Woody, R. W.

N. Sreerama and R. W. Woody, “Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set,” Anal. Biochem. 287(2), 252–260 (2000).
[Crossref] [PubMed]

Wu, Y.

R. Shogren, R. Greene, and Y. Wu, “Complexes of starch polysaccharides and poly (ethylene co‐acrylic acid): Structure and stability in solution,” J. Appl. Polym. Sci. 42(6), 1701–1709 (1991).
[Crossref]

Xie, X. S.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Yang, C.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Yang, S.-A.

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
[Crossref]

Yang, T. D.

Yaqoob, Z.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Yasuno, Y.

Yoon, J.

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
[Crossref]

K. Kim, S. Lee, J. Yoon, J. Heo, C. Choi, and Y. Park, “Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes,” Sci. Rep. 6(1), 36815 (2016).
[Crossref] [PubMed]

Yu, H.

Yu, J.-Y.

Z.-Y. Zhuo, C.-S. Liao, C.-H. Huang, J.-Y. Yu, Y.-Y. Tzeng, W. Lo, C.-Y. Dong, H.-C. Chui, Y.-C. Huang, H.-M. Lai, and S. W. Chu, “Second harmonic generation imaging - a new method for unraveling molecular information of starch,” J. Struct. Biol. 171(1), 88–94 (2010).
[Crossref] [PubMed]

Zhuo, G. Y.

G. Y. Zhuo, H. Lee, K. J. Hsu, M. J. Huttunen, M. Kauranen, Y. Y. Lin, and S. W. Chu, “Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism,” J. Microsc. 253(3), 183–190 (2014).
[Crossref] [PubMed]

Zhuo, Z.-Y.

Z.-Y. Zhuo, C.-S. Liao, C.-H. Huang, J.-Y. Yu, Y.-Y. Tzeng, W. Lo, C.-Y. Dong, H.-C. Chui, Y.-C. Huang, H.-M. Lai, and S. W. Chu, “Second harmonic generation imaging - a new method for unraveling molecular information of starch,” J. Struct. Biol. 171(1), 88–94 (2010).
[Crossref] [PubMed]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Am. J. Ophthalmol. (1)

D. S. Greenfield, R. W. Knighton, and X.-R. Huang, “Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry,” Am. J. Ophthalmol. 129(6), 715–722 (2000).
[Crossref] [PubMed]

Anal. Biochem. (1)

N. Sreerama and R. W. Woody, “Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set,” Anal. Biochem. 287(2), 252–260 (2000).
[Crossref] [PubMed]

Anal. Chem. (1)

J.-H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. 85(21), 10519–10525 (2013).
[Crossref] [PubMed]

Appl. Opt. (4)

Biomed. Opt. Express (1)

Carbohydr. Polym. (2)

D. J. Gallant, B. Bouchet, and P. M. Baldwin, “Microscopy of starch: evidence of a new level of granule organization,” Carbohydr. Polym. 32(3-4), 177–191 (1997).
[Crossref]

H. Tang, T. Mitsunaga, and Y. Kawamura, “Molecular arrangement in blocklets and starch granule architecture,” Carbohydr. Polym. 63(4), 555–560 (2006).
[Crossref]

IEEE Signal Process. Mag. (1)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

J. Appl. Polym. Sci. (1)

R. Shogren, R. Greene, and Y. Wu, “Complexes of starch polysaccharides and poly (ethylene co‐acrylic acid): Structure and stability in solution,” J. Appl. Polym. Sci. 42(6), 1701–1709 (1991).
[Crossref]

J. Biomed. Opt. (1)

G. Cox, N. Moreno, and J. Feijó, “Second-harmonic imaging of plant polysaccharides,” J. Biomed. Opt. 10(2), 024013 (2005).
[Crossref] [PubMed]

J. Biomed. Photon. Eng. (1)

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
[Crossref]

J. Inherit. Metab. Dis. (1)

T. Nalin, F. Sperb-Ludwig, K. Venema, T. G. Derks, and I. V. D. Schwartz, “Determination of amylose/amylopectin ratio of starches,” J. Inherit. Metab. Dis. 38(5), 985–986 (2015).
[Crossref] [PubMed]

J. Microsc. (1)

G. Y. Zhuo, H. Lee, K. J. Hsu, M. J. Huttunen, M. Kauranen, Y. Y. Lin, and S. W. Chu, “Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism,” J. Microsc. 253(3), 183–190 (2014).
[Crossref] [PubMed]

J. Phys. Chem. (1)

P. Stephens, F. Devlin, C. Chabalowski, and M. J. Frisch, “Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields,” J. Phys. Chem. 98(45), 11623–11627 (1994).
[Crossref]

J. Struct. Biol. (1)

Z.-Y. Zhuo, C.-S. Liao, C.-H. Huang, J.-Y. Yu, Y.-Y. Tzeng, W. Lo, C.-Y. Dong, H.-C. Chui, Y.-C. Huang, H.-M. Lai, and S. W. Chu, “Second harmonic generation imaging - a new method for unraveling molecular information of starch,” J. Struct. Biol. 171(1), 88–94 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Nature (2)

S. A. Empedocles, R. Neuhauser, and M. G. Bawendi, “Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy,” Nature 399(6732), 126–130 (1999).
[Crossref]

F. Baker and W. J. Whelan, “Birefringence of amylose and amylopectin in whole structural starches,” Nature 166(4209), 34 (1950).
[Crossref] [PubMed]

Opt. Commun. (1)

S. Aknoun, M. Aurrand-Lions, B. Wattellier, and S. Monneret, “Quantitative retardance imaging by means of quadri-wave lateral shearing interferometry for label-free fiber imaging in tissues,” Opt. Commun. 422, 17–27 (2018).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. Appl. (1)

S. Shin, K. Lee, Y. Baek, and Y. Park, “Reference-Free Single-Point Holographic Imaging and Realization of an Optical Bidirectional Transducer,” Phys. Rev. Appl. 9(4), 044042 (2018).
[Crossref]

Phys. Rev. Lett. (2)

K. Lee, J. Lee, J.-H. Park, J.-H. Park, and Y. Park, “One-wave optical phase conjugation mirror by actively coupling arbitrary light fields into a single-mode reflector,” Phys. Rev. Lett. 115(15), 153902 (2015).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Sci. Rep. (2)

K. Kim, S. Lee, J. Yoon, J. Heo, C. Choi, and Y. Park, “Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes,” Sci. Rep. 6(1), 36815 (2016).
[Crossref] [PubMed]

J. Jung, S.-J. Hong, H.-B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D.-J. Kim, C.-G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8(1), 6524 (2018).
[Crossref] [PubMed]

Science (1)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Sensors (Basel) (1)

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Other (4)

S. Inoué, Video Microscopy (Springer Science & Business Media, 2013).

P. Hariharan, Optical Holography: Principles, Techniques and Applications (Cambridge U. Press, 1996).

G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw Hill Professional, 2011).

B. E. Saleh, M. C. Teich, and B. E. Saleh, Fundamentals of photonics (Wiley New York, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic illustration of the present method. Under a polarized plane-wave illumination, the diffracted light S from a sample is relayed onto a spatial light modulator (SLM) by imaging optics. When the SLM displays conjugated phase of the diffracted light S *, the focused light shows the maximum intensity at a point. Polarization- (Pol)-dependent point measurements find the optical phase conjugation patterns for both orthogonal polarization states.
Fig. 2
Fig. 2 (a) Experimental setup. p x ^ and p y ^ denote linear polarization states whose polarization directions are parallel to the x- and y-axes, respectively. Pol, polarizer; L1−L4, lenses (f1−3 = 200 mm; f4 = 25 mm); [DMD, digital micromirror device; PMSM fiber, polarization-maintaining single mode fiber; Col, collimation lens (f = 15 mm); PBS, polarizing beamsplitter; APD, avalanche photodiode]. (b) Sequentially displayed binary patterns on the DMD and (c) polarization-dependent measured intensities using the APDs.
Fig. 3
Fig. 3 Reconstructed Jones matrices of (a) a 10−μm−diameter polystyrene microsphere immersed in oil and (b) a maize starch granule immersed in oil. The subscript mn in (J) mn indicates the corresponding matrix component of the spatially resolved Jones matrix (m, n∈{1, 2}). In the color circle, overlaid at the lower right, the symbols A and φ denote the normalized amplitude and phase, respectively.
Fig. 4
Fig. 4 (a) Schematic illustration of a helical molecular structure and a supramolecular crystallite structure of amylopectin inside a maize starch granule. Various anisotropic optical properties of the starch granule can be investigated using its reconstructed Jones matrix. (b) Spatially resolved retardance and (c) polarization orientations of a polarization eigenstate with respect to the x-axis. The color scale represents the various polarization orientations. (d) The ellipticity of polarization eigenstates, and (e) linear and (f) circular dichroism. [OPD, optical path difference; LD, linear dichroism; CD, circular dichroism].
Fig. 5
Fig. 5 Applications to a birefringent tissue sample. (a) Bright-field and (b) cross-polarized light microscopic images which show the entire sliced mouse retinal nerve fiber tissue and its birefringence. (c) Spatially resolved Jones matrix, (d) retardance, and (e) polarization ellipticity of an eigenstate of the region of the retinal nerve fiber layer indicated by red arrows in (a) and (b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J q i ^ = μ i q i ^ , i { 1 , 2 } ,

Metrics