Abstract

The antiphase dynamics of Q-switched orthogonally polarized emissions have been thoroughly investigated. A Nd:YLF crystal with the anisotropic thermal lensing effect is used as the gain medium for achieving dual polarized laser. By using the Cr4+:YAG saturable absorber, the passively Q-switched output shows intriguing switching dynamics, where the number of pulses for both polarized components within one switching period is directly determined by the power ratio between the orthogonally polarized emissions. Experimental results reveal that the pulse energies of every single pulse for both orthogonally polarized states are equal with the maximum value of 223 μJ. The pulse durations for π- and σ-polarization are measured to be 15 ns and 11 ns and the corresponding peak power levels are up to 15.0 kW and 20.3 kW, respectively.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Diode-pumped passively Q-switched self-frequency-doubled Nd:CNGS laser

Xuzhao Zhang, Ying Zhou, Anatol Yasukevich, Pavel Loiko, Xavier Mateos, Xinguang Xu, Shiyi Guo, and Zhengping Wang
Opt. Express 25(17) 19760-19766 (2017)

An energy adjustable linearly polarized passively Q-switched bulk laser with a wedged diffusion-bonded Nd:YAG/Cr4+:YAG crystal

C. Y. Cho, H. P. Cheng, Y. C. Chang, C. Y. Tang, and Y. F. Chen
Opt. Express 23(6) 8162-8169 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Zhang and T. Bosch, “Orthogonally polarized lasers and their applications,” Opt. Photonics News 18(5), 38–43 (2007).
    [Crossref]
  2. S. Zhang, Y. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
    [Crossref]
  3. G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
    [Crossref] [PubMed]
  4. T. Tahara, R. Mori, S. Kikunaga, Y. Arai, and Y. Takaki, “Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms,” Opt. Lett. 40(12), 2810–2813 (2015).
    [Crossref] [PubMed]
  5. Y. P. Huang, C. Y. Cho, Y. J. Huang, and Y. F. Chen, “Orthogonally polarized dual-wavelength Nd:LuVO4 laser at 1086 nm and 1089 nm,” Opt. Express 20(5), 5644–5651 (2012).
    [Crossref] [PubMed]
  6. S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
    [Crossref] [PubMed]
  7. A. Owyoung and P. Esherick, “Stress-induced tuning of a diode-laser-excited monolithic Nd:YAG laser,” Opt. Lett. 12(12), 999–1001 (1987).
    [Crossref] [PubMed]
  8. C. W. Xu, D. Y. Tang, H. Y. Zhu, and J. Zhang, “Mode locking of Yb:GdYAG ceramic lasers with an isotropic cavity,” Laser Phys. Lett. 10(9), 095702 (2013).
    [Crossref]
  9. H. P. Cheng, T. L. Huang, C. Y. Lee, C. L. Sung, C. Y. Cho, and Y. F. Chen, “Monolithic dual-polarization self-mode-locked Nd:YAG 946-nm lasers: controlling beat frequency and observation of temporal chaos,” Opt. Express 24(21), 23829–23837 (2016).
    [Crossref] [PubMed]
  10. H. Zhao and A. Major, “Orthogonally polarized dual-wavelength Yb:KGW laser induced by thermal lensing,” Appl. Phys. B 122(6), 163 (2016).
    [Crossref]
  11. P. Loiko, S. Manjooran, K. Yumashev, and A. Major, “Polarization anisotropy of thermal lens in Yb:KY(WO4)2 laser crystal under high-power diode pumping,” Appl. Opt. 56(10), 2937–2945 (2017).
    [Crossref] [PubMed]
  12. H. C. Liang and C. S. Wu, “Diode-pumped orthogonally polarized self-mode-locked Nd:YLF lasers subject to gain competition and thermal lensing effect,” Opt. Express 25(12), 13697–13704 (2017).
    [Crossref] [PubMed]
  13. P. A. Loiko, X. Mateos, N. V. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effect in Ng-cut Yb- and Tm-doped monoclinic KLu(WO4)2 crystals,” IEEE J. Quantum Electron. 50(8), 1–8 (2014).
    [Crossref]
  14. F. Druon, M. Olivier, A. Jaffrès, P. Loiseau, N. Aubry, J. DidierJean, F. Balembois, B. Viana, and P. Georges, “Magic mode switching in Yb:CaGdAlO4 laser under high pump power,” Opt. Lett. 38(20), 4138–4141 (2013).
    [Crossref] [PubMed]
  15. N. U. Wetter, E. C. Sousa, F. D. A. Camargo, I. M. Ranieri, and S. L. Baldochi, “Efficient and compact diode-side-pumped Nd:YLF laser operating at 1053 nm with high beam quality,” J. Opt. A 10(10), 104013 (2008).
    [Crossref]
  16. Y. J. Huang, C. Y. Tang, Y. P. Huang, S. C. Huang, K. W. Su, and Y. F. Chen, “Power scale-up of high-pulse-energy passively Q-switched nd:YLF laser: influence of negative thermal lens enhanced by upconversion,” Laser Phys. Lett. 9(9), 625–630 (2012).
    [Crossref]
  17. D. Li, Z. Ma, R. Haas, A. Schell, P. Zhu, P. Shi, and K. Du, “Diode-end-pumped double Nd:YLF slab laser with high energy, short pulse width, and diffraction-limited quality,” Opt. Lett. 33(15), 1708–1710 (2008).
    [Crossref] [PubMed]
  18. G. Xiao and M. Bass, “A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron. 33(1), 41–44 (1997).
    [Crossref]
  19. P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
    [Crossref]
  20. Z. Zhang, Q. Liu, M. Nie, E. Ji, and M. Gong, “Experimental and theoretical study of the weak and asymmetrical thermal lens effect of Nd:YLF crystal for σ and π polarizations,” Appl. Phys. B 120(4), 689–696 (2015).
    [Crossref]
  21. W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, Berlin, 2005), chapter 7.
  22. J. Dong, K. Ueda, H. Yagi, and A. A. Kaminskii, “Laser-diode pumped self-Q-switched microchip lasers,” Opt. Rev. 15(2), 57–74 (2008).
    [Crossref]
  23. J. Dong, A. Shirakawa, and K. Ueda, “Switchable pulses generation in passively Q-switched multilongitudinal-mode microchip laser,” Laser Phys. Lett. 4(2), 109–116 (2007).
    [Crossref]
  24. Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, “Antiphase state in passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs,” Phys. Rev. A 69(5), 053815 (2004).
    [Crossref]

2017 (2)

2016 (2)

2015 (3)

2014 (1)

P. A. Loiko, X. Mateos, N. V. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effect in Ng-cut Yb- and Tm-doped monoclinic KLu(WO4)2 crystals,” IEEE J. Quantum Electron. 50(8), 1–8 (2014).
[Crossref]

2013 (2)

2012 (2)

Y. J. Huang, C. Y. Tang, Y. P. Huang, S. C. Huang, K. W. Su, and Y. F. Chen, “Power scale-up of high-pulse-energy passively Q-switched nd:YLF laser: influence of negative thermal lens enhanced by upconversion,” Laser Phys. Lett. 9(9), 625–630 (2012).
[Crossref]

Y. P. Huang, C. Y. Cho, Y. J. Huang, and Y. F. Chen, “Orthogonally polarized dual-wavelength Nd:LuVO4 laser at 1086 nm and 1089 nm,” Opt. Express 20(5), 5644–5651 (2012).
[Crossref] [PubMed]

2010 (1)

S. Zhang, Y. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[Crossref]

2008 (3)

J. Dong, K. Ueda, H. Yagi, and A. A. Kaminskii, “Laser-diode pumped self-Q-switched microchip lasers,” Opt. Rev. 15(2), 57–74 (2008).
[Crossref]

D. Li, Z. Ma, R. Haas, A. Schell, P. Zhu, P. Shi, and K. Du, “Diode-end-pumped double Nd:YLF slab laser with high energy, short pulse width, and diffraction-limited quality,” Opt. Lett. 33(15), 1708–1710 (2008).
[Crossref] [PubMed]

N. U. Wetter, E. C. Sousa, F. D. A. Camargo, I. M. Ranieri, and S. L. Baldochi, “Efficient and compact diode-side-pumped Nd:YLF laser operating at 1053 nm with high beam quality,” J. Opt. A 10(10), 104013 (2008).
[Crossref]

2007 (2)

J. Dong, A. Shirakawa, and K. Ueda, “Switchable pulses generation in passively Q-switched multilongitudinal-mode microchip laser,” Laser Phys. Lett. 4(2), 109–116 (2007).
[Crossref]

S. Zhang and T. Bosch, “Orthogonally polarized lasers and their applications,” Opt. Photonics News 18(5), 38–43 (2007).
[Crossref]

2004 (1)

Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, “Antiphase state in passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs,” Phys. Rev. A 69(5), 053815 (2004).
[Crossref]

2002 (1)

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
[Crossref] [PubMed]

1999 (1)

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
[Crossref]

1997 (1)

G. Xiao and M. Bass, “A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron. 33(1), 41–44 (1997).
[Crossref]

1987 (1)

Aguiló, M.

P. A. Loiko, X. Mateos, N. V. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effect in Ng-cut Yb- and Tm-doped monoclinic KLu(WO4)2 crystals,” IEEE J. Quantum Electron. 50(8), 1–8 (2014).
[Crossref]

Arai, Y.

Aubry, N.

Baldochi, S. L.

N. U. Wetter, E. C. Sousa, F. D. A. Camargo, I. M. Ranieri, and S. L. Baldochi, “Efficient and compact diode-side-pumped Nd:YLF laser operating at 1053 nm with high beam quality,” J. Opt. A 10(10), 104013 (2008).
[Crossref]

Balembois, F.

Bass, M.

G. Xiao and M. Bass, “A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron. 33(1), 41–44 (1997).
[Crossref]

Bosch, T.

S. Zhang and T. Bosch, “Orthogonally polarized lasers and their applications,” Opt. Photonics News 18(5), 38–43 (2007).
[Crossref]

Camargo, F. D. A.

N. U. Wetter, E. C. Sousa, F. D. A. Camargo, I. M. Ranieri, and S. L. Baldochi, “Efficient and compact diode-side-pumped Nd:YLF laser operating at 1053 nm with high beam quality,” J. Opt. A 10(10), 104013 (2008).
[Crossref]

Chen, Y. F.

Cheng, H. P.

Cho, C. Y.

Clarkson, W. A.

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
[Crossref]

Deng, P.

Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, “Antiphase state in passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs,” Phys. Rev. A 69(5), 053815 (2004).
[Crossref]

Díaz, F.

P. A. Loiko, X. Mateos, N. V. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effect in Ng-cut Yb- and Tm-doped monoclinic KLu(WO4)2 crystals,” IEEE J. Quantum Electron. 50(8), 1–8 (2014).
[Crossref]

DidierJean, J.

Dong, J.

J. Dong, K. Ueda, H. Yagi, and A. A. Kaminskii, “Laser-diode pumped self-Q-switched microchip lasers,” Opt. Rev. 15(2), 57–74 (2008).
[Crossref]

J. Dong, A. Shirakawa, and K. Ueda, “Switchable pulses generation in passively Q-switched multilongitudinal-mode microchip laser,” Laser Phys. Lett. 4(2), 109–116 (2007).
[Crossref]

Druon, F.

Du, K.

Esherick, P.

Feng, B.

Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, “Antiphase state in passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs,” Phys. Rev. A 69(5), 053815 (2004).
[Crossref]

Friel, G. J.

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
[Crossref]

Fu, P.

Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, “Antiphase state in passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs,” Phys. Rev. A 69(5), 053815 (2004).
[Crossref]

Georges, P.

Golling, M.

Gong, M.

Z. Zhang, Q. Liu, M. Nie, E. Ji, and M. Gong, “Experimental and theoretical study of the weak and asymmetrical thermal lens effect of Nd:YLF crystal for σ and π polarizations,” Appl. Phys. B 120(4), 689–696 (2015).
[Crossref]

Griebner, U.

P. A. Loiko, X. Mateos, N. V. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effect in Ng-cut Yb- and Tm-doped monoclinic KLu(WO4)2 crystals,” IEEE J. Quantum Electron. 50(8), 1–8 (2014).
[Crossref]

Haas, R.

Hanna, D. C.

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
[Crossref]

Hardman, P. J.

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
[Crossref]

Huang, S. C.

Y. J. Huang, C. Y. Tang, Y. P. Huang, S. C. Huang, K. W. Su, and Y. F. Chen, “Power scale-up of high-pulse-energy passively Q-switched nd:YLF laser: influence of negative thermal lens enhanced by upconversion,” Laser Phys. Lett. 9(9), 625–630 (2012).
[Crossref]

Huang, T. L.

Huang, Y. J.

Y. P. Huang, C. Y. Cho, Y. J. Huang, and Y. F. Chen, “Orthogonally polarized dual-wavelength Nd:LuVO4 laser at 1086 nm and 1089 nm,” Opt. Express 20(5), 5644–5651 (2012).
[Crossref] [PubMed]

Y. J. Huang, C. Y. Tang, Y. P. Huang, S. C. Huang, K. W. Su, and Y. F. Chen, “Power scale-up of high-pulse-energy passively Q-switched nd:YLF laser: influence of negative thermal lens enhanced by upconversion,” Laser Phys. Lett. 9(9), 625–630 (2012).
[Crossref]

Huang, Y. P.

Y. J. Huang, C. Y. Tang, Y. P. Huang, S. C. Huang, K. W. Su, and Y. F. Chen, “Power scale-up of high-pulse-energy passively Q-switched nd:YLF laser: influence of negative thermal lens enhanced by upconversion,” Laser Phys. Lett. 9(9), 625–630 (2012).
[Crossref]

Y. P. Huang, C. Y. Cho, Y. J. Huang, and Y. F. Chen, “Orthogonally polarized dual-wavelength Nd:LuVO4 laser at 1086 nm and 1089 nm,” Opt. Express 20(5), 5644–5651 (2012).
[Crossref] [PubMed]

Jaffrès, A.

Ji, E.

Z. Zhang, Q. Liu, M. Nie, E. Ji, and M. Gong, “Experimental and theoretical study of the weak and asymmetrical thermal lens effect of Nd:YLF crystal for σ and π polarizations,” Appl. Phys. B 120(4), 689–696 (2015).
[Crossref]

Kaminskii, A. A.

J. Dong, K. Ueda, H. Yagi, and A. A. Kaminskii, “Laser-diode pumped self-Q-switched microchip lasers,” Opt. Rev. 15(2), 57–74 (2008).
[Crossref]

Keller, U.

Kikunaga, S.

Klenner, A.

Kuleshov, N. V.

P. A. Loiko, X. Mateos, N. V. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effect in Ng-cut Yb- and Tm-doped monoclinic KLu(WO4)2 crystals,” IEEE J. Quantum Electron. 50(8), 1–8 (2014).
[Crossref]

Lee, C. Y.

Li, D.

Li, Y.

S. Zhang, Y. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[Crossref]

Liang, H. C.

Link, S. M.

Liu, Q.

Z. Zhang, Q. Liu, M. Nie, E. Ji, and M. Gong, “Experimental and theoretical study of the weak and asymmetrical thermal lens effect of Nd:YLF crystal for σ and π polarizations,” Appl. Phys. B 120(4), 689–696 (2015).
[Crossref]

Loiko, P.

Loiko, P. A.

P. A. Loiko, X. Mateos, N. V. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effect in Ng-cut Yb- and Tm-doped monoclinic KLu(WO4)2 crystals,” IEEE J. Quantum Electron. 50(8), 1–8 (2014).
[Crossref]

Loiseau, P.

Ma, X.

Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, “Antiphase state in passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs,” Phys. Rev. A 69(5), 053815 (2004).
[Crossref]

Ma, Z.

Major, A.

Mangold, M.

Manjooran, S.

Mateos, X.

P. A. Loiko, X. Mateos, N. V. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effect in Ng-cut Yb- and Tm-doped monoclinic KLu(WO4)2 crystals,” IEEE J. Quantum Electron. 50(8), 1–8 (2014).
[Crossref]

Mori, R.

Nie, M.

Z. Zhang, Q. Liu, M. Nie, E. Ji, and M. Gong, “Experimental and theoretical study of the weak and asymmetrical thermal lens effect of Nd:YLF crystal for σ and π polarizations,” Appl. Phys. B 120(4), 689–696 (2015).
[Crossref]

Olivier, M.

Owyoung, A.

Pavlyuk, A. A.

P. A. Loiko, X. Mateos, N. V. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effect in Ng-cut Yb- and Tm-doped monoclinic KLu(WO4)2 crystals,” IEEE J. Quantum Electron. 50(8), 1–8 (2014).
[Crossref]

Petrov, V.

P. A. Loiko, X. Mateos, N. V. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effect in Ng-cut Yb- and Tm-doped monoclinic KLu(WO4)2 crystals,” IEEE J. Quantum Electron. 50(8), 1–8 (2014).
[Crossref]

Pollnau, M.

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
[Crossref]

Ranieri, I. M.

N. U. Wetter, E. C. Sousa, F. D. A. Camargo, I. M. Ranieri, and S. L. Baldochi, “Efficient and compact diode-side-pumped Nd:YLF laser operating at 1053 nm with high beam quality,” J. Opt. A 10(10), 104013 (2008).
[Crossref]

Roy, R.

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
[Crossref] [PubMed]

Schell, A.

Shi, P.

Shirakawa, A.

J. Dong, A. Shirakawa, and K. Ueda, “Switchable pulses generation in passively Q-switched multilongitudinal-mode microchip laser,” Laser Phys. Lett. 4(2), 109–116 (2007).
[Crossref]

Sousa, E. C.

N. U. Wetter, E. C. Sousa, F. D. A. Camargo, I. M. Ranieri, and S. L. Baldochi, “Efficient and compact diode-side-pumped Nd:YLF laser operating at 1053 nm with high beam quality,” J. Opt. A 10(10), 104013 (2008).
[Crossref]

Su, K. W.

Y. J. Huang, C. Y. Tang, Y. P. Huang, S. C. Huang, K. W. Su, and Y. F. Chen, “Power scale-up of high-pulse-energy passively Q-switched nd:YLF laser: influence of negative thermal lens enhanced by upconversion,” Laser Phys. Lett. 9(9), 625–630 (2012).
[Crossref]

Sung, C. L.

Tahara, T.

Takaki, Y.

Tan, Y.

S. Zhang, Y. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[Crossref]

Tang, C. Y.

Y. J. Huang, C. Y. Tang, Y. P. Huang, S. C. Huang, K. W. Su, and Y. F. Chen, “Power scale-up of high-pulse-energy passively Q-switched nd:YLF laser: influence of negative thermal lens enhanced by upconversion,” Laser Phys. Lett. 9(9), 625–630 (2012).
[Crossref]

Tang, D. Y.

C. W. Xu, D. Y. Tang, H. Y. Zhu, and J. Zhang, “Mode locking of Yb:GdYAG ceramic lasers with an isotropic cavity,” Laser Phys. Lett. 10(9), 095702 (2013).
[Crossref]

Tilma, B. W.

Ueda, K.

J. Dong, K. Ueda, H. Yagi, and A. A. Kaminskii, “Laser-diode pumped self-Q-switched microchip lasers,” Opt. Rev. 15(2), 57–74 (2008).
[Crossref]

J. Dong, A. Shirakawa, and K. Ueda, “Switchable pulses generation in passively Q-switched multilongitudinal-mode microchip laser,” Laser Phys. Lett. 4(2), 109–116 (2007).
[Crossref]

VanWiggeren, G. D.

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
[Crossref] [PubMed]

Viana, B.

Wang, Y.

Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, “Antiphase state in passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs,” Phys. Rev. A 69(5), 053815 (2004).
[Crossref]

Wetter, N. U.

N. U. Wetter, E. C. Sousa, F. D. A. Camargo, I. M. Ranieri, and S. L. Baldochi, “Efficient and compact diode-side-pumped Nd:YLF laser operating at 1053 nm with high beam quality,” J. Opt. A 10(10), 104013 (2008).
[Crossref]

Wu, C. S.

Xiao, G.

G. Xiao and M. Bass, “A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron. 33(1), 41–44 (1997).
[Crossref]

Xu, C. W.

C. W. Xu, D. Y. Tang, H. Y. Zhu, and J. Zhang, “Mode locking of Yb:GdYAG ceramic lasers with an isotropic cavity,” Laser Phys. Lett. 10(9), 095702 (2013).
[Crossref]

Xu, J.

Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, “Antiphase state in passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs,” Phys. Rev. A 69(5), 053815 (2004).
[Crossref]

Xu, X.

Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, “Antiphase state in passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs,” Phys. Rev. A 69(5), 053815 (2004).
[Crossref]

Yagi, H.

J. Dong, K. Ueda, H. Yagi, and A. A. Kaminskii, “Laser-diode pumped self-Q-switched microchip lasers,” Opt. Rev. 15(2), 57–74 (2008).
[Crossref]

Yumashev, K.

Yumashev, K. V.

P. A. Loiko, X. Mateos, N. V. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effect in Ng-cut Yb- and Tm-doped monoclinic KLu(WO4)2 crystals,” IEEE J. Quantum Electron. 50(8), 1–8 (2014).
[Crossref]

Zaugg, C. A.

Zhang, D.

Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, “Antiphase state in passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs,” Phys. Rev. A 69(5), 053815 (2004).
[Crossref]

Zhang, J.

C. W. Xu, D. Y. Tang, H. Y. Zhu, and J. Zhang, “Mode locking of Yb:GdYAG ceramic lasers with an isotropic cavity,” Laser Phys. Lett. 10(9), 095702 (2013).
[Crossref]

Zhang, Q.

Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, “Antiphase state in passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs,” Phys. Rev. A 69(5), 053815 (2004).
[Crossref]

Zhang, S.

S. Zhang, Y. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[Crossref]

S. Zhang and T. Bosch, “Orthogonally polarized lasers and their applications,” Opt. Photonics News 18(5), 38–43 (2007).
[Crossref]

Zhang, Z.

Z. Zhang, Q. Liu, M. Nie, E. Ji, and M. Gong, “Experimental and theoretical study of the weak and asymmetrical thermal lens effect of Nd:YLF crystal for σ and π polarizations,” Appl. Phys. B 120(4), 689–696 (2015).
[Crossref]

Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, “Antiphase state in passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs,” Phys. Rev. A 69(5), 053815 (2004).
[Crossref]

Zhao, H.

H. Zhao and A. Major, “Orthogonally polarized dual-wavelength Yb:KGW laser induced by thermal lensing,” Appl. Phys. B 122(6), 163 (2016).
[Crossref]

Zhao, Z.

Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, “Antiphase state in passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs,” Phys. Rev. A 69(5), 053815 (2004).
[Crossref]

Zhu, H. Y.

C. W. Xu, D. Y. Tang, H. Y. Zhu, and J. Zhang, “Mode locking of Yb:GdYAG ceramic lasers with an isotropic cavity,” Laser Phys. Lett. 10(9), 095702 (2013).
[Crossref]

Zhu, P.

Appl. Opt. (1)

Appl. Phys. B (2)

Z. Zhang, Q. Liu, M. Nie, E. Ji, and M. Gong, “Experimental and theoretical study of the weak and asymmetrical thermal lens effect of Nd:YLF crystal for σ and π polarizations,” Appl. Phys. B 120(4), 689–696 (2015).
[Crossref]

H. Zhao and A. Major, “Orthogonally polarized dual-wavelength Yb:KGW laser induced by thermal lensing,” Appl. Phys. B 122(6), 163 (2016).
[Crossref]

IEEE J. Quantum Electron. (3)

P. A. Loiko, X. Mateos, N. V. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effect in Ng-cut Yb- and Tm-doped monoclinic KLu(WO4)2 crystals,” IEEE J. Quantum Electron. 50(8), 1–8 (2014).
[Crossref]

G. Xiao and M. Bass, “A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron. 33(1), 41–44 (1997).
[Crossref]

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
[Crossref]

J. Opt. A (1)

N. U. Wetter, E. C. Sousa, F. D. A. Camargo, I. M. Ranieri, and S. L. Baldochi, “Efficient and compact diode-side-pumped Nd:YLF laser operating at 1053 nm with high beam quality,” J. Opt. A 10(10), 104013 (2008).
[Crossref]

Laser Phys. Lett. (3)

Y. J. Huang, C. Y. Tang, Y. P. Huang, S. C. Huang, K. W. Su, and Y. F. Chen, “Power scale-up of high-pulse-energy passively Q-switched nd:YLF laser: influence of negative thermal lens enhanced by upconversion,” Laser Phys. Lett. 9(9), 625–630 (2012).
[Crossref]

C. W. Xu, D. Y. Tang, H. Y. Zhu, and J. Zhang, “Mode locking of Yb:GdYAG ceramic lasers with an isotropic cavity,” Laser Phys. Lett. 10(9), 095702 (2013).
[Crossref]

J. Dong, A. Shirakawa, and K. Ueda, “Switchable pulses generation in passively Q-switched multilongitudinal-mode microchip laser,” Laser Phys. Lett. 4(2), 109–116 (2007).
[Crossref]

Meas. Sci. Technol. (1)

S. Zhang, Y. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Opt. Photonics News (1)

S. Zhang and T. Bosch, “Orthogonally polarized lasers and their applications,” Opt. Photonics News 18(5), 38–43 (2007).
[Crossref]

Opt. Rev. (1)

J. Dong, K. Ueda, H. Yagi, and A. A. Kaminskii, “Laser-diode pumped self-Q-switched microchip lasers,” Opt. Rev. 15(2), 57–74 (2008).
[Crossref]

Phys. Rev. A (1)

Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, “Antiphase state in passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs,” Phys. Rev. A 69(5), 053815 (2004).
[Crossref]

Phys. Rev. Lett. (1)

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
[Crossref] [PubMed]

Other (1)

W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, Berlin, 2005), chapter 7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic setup of an orthogonally polarized passively Q-switched Nd:YLF lasers.
Fig. 2
Fig. 2 Average output powers versus the pump power in continuous-wave and passively Q-switched operations.
Fig. 3
Fig. 3 (a) Experimental results for pulse energy and pulse repetition rate versus pump power; (b) typical oscilloscope trace of the output pulse train with a time span of 8 ms at pump power of 7.5 W.
Fig. 4
Fig. 4 (a) Average output power for total output power at π- and σ-polarization states versus pump power; (b) optical spectra for the dual-wavelength PQS laser at a pump power of 7.5 W.
Fig. 5
Fig. 5 Oscilloscope traces of the polarization-resolved output intensity at different pump powers: (a) Pin = 6.0 W, (b) Pin = 7.0 W, (c) Pin = 7.5 W, (d) Pin = 8.5 W, (e) Pin = 9.0 W, (f) Pin = 10.0 W.
Fig. 6
Fig. 6 Oscilloscope traces of the polarization-resolved output intensity for optimizing operation at different pump powers: (a) Pin = 7.5 W, (b) Pin = 8.0 W, (c) Pin = 8.5 W, (d) Pin = 9.0 W, (e) Pin = 10.0 W.
Fig. 7
Fig. 7 Oscilloscope traces of a single pulse for π- and σ-polarization

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ln( 1 T 0 2 ) ln( 1 T 0 2 )+ln( 1 R )+L σ gs σ A A s 3γ 1β
1 ρ d 1 D 1 d 2 1 ρ d 1 ,
1 f th =D= ξ P in π K c 0 l cry α e αz 1 e α l cry 1 ω p 2 ( z ) [ 1 2 dn dT +( n1 ) α T ω p ( z ) l cry ] dz,
ω p ( z )= ω 0 1+ [ M 2 λ p nπ ω 0 2 ( z z 0 ) ] 2 ,
P cri = π K c ξρ [ 0 l cry α e αz 1 e α l cry 1 ω p 2 ( z ) ( 1 2 dn dT +( n1 ) α T ω p ( z ) l cry ) dz ] 1 ,

Metrics