Abstract

A broadband lower- intermediate-frequency (IF) radio frequency (RF) receiver with low cost and complexity based on a microwave photonic mixer and Kramers-Kronig (KK) detection is proposed and experimentally demonstrated. The feasibility of the proposed RF receiver is verified by comparing the error vector magnitude (EVM) performance of a down-converted IF signal with and without KK detection. EVM is measured as a function of IF carrier frequency, input local oscillator (LO) power, input RF power, and the coupling ratio between RF and LO paths. With KK detection, EVM can be improved by more than 9.5% when the IF carrier frequency is close to half of the signal bandwidth. This implies that a lower IF frequency can be down-converted with good EVM and that a low-speed photodetector and a low sampling rate analog to digital converter can be used for wideband RF signal reception.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Bidirectional long-reach PON using Kramers-Kronig-based receiver for Rayleigh Backscattering noise and SSBI interference elimination

Di Li, Quan Yu, Lei Deng, Liang Huo, Songnian Fu, Ming Tang, Mengfan Cheng, Minming Zhang, and Deming Liu
Opt. Express 26(15) 19020-19036 (2018)

Tunable OEO-based photonic RF receiver with image frequency rejection

Kang Xiao, Xiaofeng Jin, Xiangdong Jin, Xianbin Yu, Qinggui Tan, and Guoyong Wang
Appl. Opt. 58(8) 2127-2131 (2019)

Microwave photonic phase-tunable mixer

Tianwei Jiang, Ruihuan Wu, Song Yu, Dongsheng Wang, and Wanyi Gu
Opt. Express 25(4) 4519-4527 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  2. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
    [Crossref]
  3. V. J. Urick, K. J. Williams, and J. D. McKinney, Fundamentals of microwave photonics (John Wiley & Sons, 2015).
  4. J. Yao, “A tutorial on microwave photonics,” IEEE Photon. Soc. Newslett. 26(2), 4–12 (2012).
  5. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  6. S. Iezekiel, ed., Microwave Photonics: Devices and Applications (John Wiley & Sons, 2009).
  7. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
    [Crossref] [PubMed]
  8. M. Sotom, B. Benazet, A. Le Kernec, and M. Maignan, “Microwave photonic technologies for flexible satellite telecom payloads,” in Proceedings of the 35th European Conference on Optical Communication, 2009 (IEEE, 2009), pp. 20–24.
  9. S. Pan, D. Zhu, S. Liu, K. Xu, Y. Dai, T. Wang, J. Liu, N. Zhu, Y. Xue, and N. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
    [Crossref]
  10. T. R. Clark and R. Waterhouse, “Photonics for RF front ends,” IEEE Microw. Mag. 12(3), 87–95 (2011).
    [Crossref]
  11. J. Li, J. Xiao, X. Song, Y. Zheng, C. Yin, Q. Lv, Y. Fan, F. Yin, Y. Dai, and K. Xu, “Full-band direct-conversion receiver with enhanced port isolation and I/Q phase balance using microwave photonic I/Q mixer (invited paper),” Chin. Opt. Lett. 15(1), 010014 (2017).
  12. D. B. Hunter, L. G. Edvell, and M. A. Englund, “Wideband microwave photonic channelised receiver,” Microwave Photonics,2005. MWP 2005. International Topical Meeting on. (IEEE, 2005), pp. 249–252.
    [Crossref]
  13. W. Hao, Y. Dai, Y. Zhou, F. Yin, J. Dai, J. Li, and K. Xu, “Coherent wideband microwave channelizer based on dual optical frequency combs,” Avionics and Vehicle Fiber-Optics and Photonics Conference (AVFOP), 2016 (IEEE, 2016), pp. 183–184.
  14. Z. Li, X. Zhang, H. Chi, S. Zheng, X. Jin, and J. Yao, “A reconfigurable microwave photonic channelized receiver based on dense wavelength division multiplexing using an optical comb,” Opt. Commun. 285(9), 2311–2315 (2012).
    [Crossref]
  15. Z. Meng, J. Li, C. Yin, Y. Fan, F. Yin, Y. Zhou, Y. Dai, and K. Xu, “Dual-band dechirping LFMCW radar receiver with high image rejection using microwave photonic I/Q mixer,” Opt. Express 25(18), 22055–22065 (2017).
    [Crossref] [PubMed]
  16. H. Yu, M. Chen, Q. Guo, M. Hoekman, H. Chen, A. Leinse, R. G. Heideman, R. Mateman, S. Yang, and S. Xie, “All-optical full-band RF receiver based on an integrated ultra-high-Q bandpass filter,” J. Lightwave Technol. 34(2), 701–706 (2016).
    [Crossref]
  17. P. T. Callahan, M. L. Dennis, and T. R. Clark, “Photonic analog-to-digital conversion,” Johns Hopkins APL Tech. Dig. 30(4), 280–286 (2012).
  18. P. Li, W. Pan, X. Zou, S. Pan, B. Luo, and L. Yan, “High-efficiency photonic microwave downconversion with full-frequency-range coverage,” IEEE Photonics J. 7(4), 1–7 (2015).
    [Crossref]
  19. E. H. W. Chan and R. A. Minasian, “Microwave photonic downconverter with high conversion efficiency,” J. Lightwave Technol. 30(23), 3580–3585 (2012).
    [Crossref]
  20. E. H. W. Chan and R. A. Minasian, “High conversion efficiency microwave photonic mixer based on stimulated Brillouin scattering carrier suppression technique,” Opt. Lett. 38(24), 5292–5295 (2013).
    [Crossref] [PubMed]
  21. Z. Tang and S. Pan, “A reconfigurable photonic microwave mixer using a 90-degree optical hybrid,” IEEE Trans. Microw. Theory Tech. 64(9), 3017–3025 (2016).
    [Crossref]
  22. C. Middleton, S. Meredith, R. Peach, and R. DeSalvo, “Photonic frequency conversion for wideband RF-to-IF down-conversion and digitization,” in Avionics,Fiber-Optics and Photonics Technology Conference (AVFOP) (IEEE, 2011), pp. 115–116.
  23. A. Mast, C. Middleton, S. Meredith, and R. DeSalvo, “Extending frequency and bandwidth through the use of agile high dynamic range photonic converters,” IEEE Aerospace Conference, (IEEE, 2012), pp. 1–5.
  24. A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers–Kronig coherent receiver,” Optica 3(11), 1220–1227 (2016).
    [Crossref]
  25. L. Shu, J. Li, Z. Wan, F. Gao, S. Fu, X. Li, Q. Yang, and K. Xu, “Single-lane 112-Gbit/s SSB-PAM4 transmission with dual-drive MZM and Kramers–Kronig detection over 80-km SSMF,” IEEE Photonics J. 9(6), 1–9 (2017).
    [Crossref]
  26. Z. Li, M. S. Erkılınç, K. Shi, E. Sillekens, L. Galdino, B. C. Thomsen, P. Bayvel, and R. I. Killey, “SSBI mitigation and the Kramers-Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation,” J. Lightwave Technol. 35(10), 1887–1893 (2017).
    [Crossref]
  27. Y. Gao, A. Wen, Z. Tu, W. Zhang, and L. Lin, “Simultaneously photonic frequency downconversion, multichannel phase shifting, and IQ demodulation for wideband microwave signals,” Opt. Lett. 41(19), 4484–4487 (2016).
    [Crossref] [PubMed]
  28. Y. Wang, J. Li, T. Zhou, D. Wang, J. Xu, X. Zhong, D. Yang, and L. Rong, “All-optical microwave photonic downconverter with tunable phase shift,” IEEE Photonics J. 9(6), 1–8 (2017).
    [Crossref]
  29. T. Jiang, S. Yu, R. Wu, D. Wang, and W. Gu, “Photonic downconversion with tunable wideband phase shift,” Opt. Lett. 41(11), 2640–2643 (2016).
    [Crossref] [PubMed]
  30. C. Antonelli, M. Shtaif, and A. Mecozzi, “Kramers-Kronig PAM transceiver,” in Proceedings of Optical Fiber Communication Conference (OFC 2017), paper Tu3I.5.
  31. A. Mecozzi, “A necessary and sufficient condition for minimum phase and implications for phase retrieval,” arXiv:1606.04861 (2016).
  32. T. Bo and H. Kim, “Kramers-Kronig receiver without digital upsampling,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper W4E.2.
    [Crossref]
  33. T. Bo and H. Kim, “Kramers-Kronig receiver operable without digital upsampling,” Opt. Express 26(11), 13810–13818 (2018).
    [Crossref] [PubMed]

2018 (1)

2017 (5)

2016 (5)

2015 (2)

S. Pan, D. Zhu, S. Liu, K. Xu, Y. Dai, T. Wang, J. Liu, N. Zhu, Y. Xue, and N. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

P. Li, W. Pan, X. Zou, S. Pan, B. Luo, and L. Yan, “High-efficiency photonic microwave downconversion with full-frequency-range coverage,” IEEE Photonics J. 7(4), 1–7 (2015).
[Crossref]

2014 (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (4)

E. H. W. Chan and R. A. Minasian, “Microwave photonic downconverter with high conversion efficiency,” J. Lightwave Technol. 30(23), 3580–3585 (2012).
[Crossref]

P. T. Callahan, M. L. Dennis, and T. R. Clark, “Photonic analog-to-digital conversion,” Johns Hopkins APL Tech. Dig. 30(4), 280–286 (2012).

Z. Li, X. Zhang, H. Chi, S. Zheng, X. Jin, and J. Yao, “A reconfigurable microwave photonic channelized receiver based on dense wavelength division multiplexing using an optical comb,” Opt. Commun. 285(9), 2311–2315 (2012).
[Crossref]

J. Yao, “A tutorial on microwave photonics,” IEEE Photon. Soc. Newslett. 26(2), 4–12 (2012).

2011 (1)

T. R. Clark and R. Waterhouse, “Photonics for RF front ends,” IEEE Microw. Mag. 12(3), 87–95 (2011).
[Crossref]

2009 (1)

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2006 (1)

Antonelli, C.

Bayvel, P.

Berizzi, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Bo, T.

Bogoni, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Callahan, P. T.

P. T. Callahan, M. L. Dennis, and T. R. Clark, “Photonic analog-to-digital conversion,” Johns Hopkins APL Tech. Dig. 30(4), 280–286 (2012).

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Capria, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Chan, E. H. W.

Chen, H.

Chen, M.

Chi, H.

Z. Li, X. Zhang, H. Chi, S. Zheng, X. Jin, and J. Yao, “A reconfigurable microwave photonic channelized receiver based on dense wavelength division multiplexing using an optical comb,” Opt. Commun. 285(9), 2311–2315 (2012).
[Crossref]

Clark, T. R.

P. T. Callahan, M. L. Dennis, and T. R. Clark, “Photonic analog-to-digital conversion,” Johns Hopkins APL Tech. Dig. 30(4), 280–286 (2012).

T. R. Clark and R. Waterhouse, “Photonics for RF front ends,” IEEE Microw. Mag. 12(3), 87–95 (2011).
[Crossref]

Dai, Y.

Dennis, M. L.

P. T. Callahan, M. L. Dennis, and T. R. Clark, “Photonic analog-to-digital conversion,” Johns Hopkins APL Tech. Dig. 30(4), 280–286 (2012).

DeSalvo, R.

A. Mast, C. Middleton, S. Meredith, and R. DeSalvo, “Extending frequency and bandwidth through the use of agile high dynamic range photonic converters,” IEEE Aerospace Conference, (IEEE, 2012), pp. 1–5.

Erkilinç, M. S.

Fan, Y.

Fu, S.

L. Shu, J. Li, Z. Wan, F. Gao, S. Fu, X. Li, Q. Yang, and K. Xu, “Single-lane 112-Gbit/s SSB-PAM4 transmission with dual-drive MZM and Kramers–Kronig detection over 80-km SSMF,” IEEE Photonics J. 9(6), 1–9 (2017).
[Crossref]

Galdino, L.

Gao, F.

L. Shu, J. Li, Z. Wan, F. Gao, S. Fu, X. Li, Q. Yang, and K. Xu, “Single-lane 112-Gbit/s SSB-PAM4 transmission with dual-drive MZM and Kramers–Kronig detection over 80-km SSMF,” IEEE Photonics J. 9(6), 1–9 (2017).
[Crossref]

Gao, Y.

Ghelfi, P.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Gu, W.

Guo, Q.

Heideman, R. G.

Hoekman, M.

Jiang, T.

Jin, X.

Z. Li, X. Zhang, H. Chi, S. Zheng, X. Jin, and J. Yao, “A reconfigurable microwave photonic channelized receiver based on dense wavelength division multiplexing using an optical comb,” Opt. Commun. 285(9), 2311–2315 (2012).
[Crossref]

Killey, R. I.

Kim, H.

Laghezza, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Lazzeri, E.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Leinse, A.

Li, J.

J. Li, J. Xiao, X. Song, Y. Zheng, C. Yin, Q. Lv, Y. Fan, F. Yin, Y. Dai, and K. Xu, “Full-band direct-conversion receiver with enhanced port isolation and I/Q phase balance using microwave photonic I/Q mixer (invited paper),” Chin. Opt. Lett. 15(1), 010014 (2017).

Z. Meng, J. Li, C. Yin, Y. Fan, F. Yin, Y. Zhou, Y. Dai, and K. Xu, “Dual-band dechirping LFMCW radar receiver with high image rejection using microwave photonic I/Q mixer,” Opt. Express 25(18), 22055–22065 (2017).
[Crossref] [PubMed]

Y. Wang, J. Li, T. Zhou, D. Wang, J. Xu, X. Zhong, D. Yang, and L. Rong, “All-optical microwave photonic downconverter with tunable phase shift,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

L. Shu, J. Li, Z. Wan, F. Gao, S. Fu, X. Li, Q. Yang, and K. Xu, “Single-lane 112-Gbit/s SSB-PAM4 transmission with dual-drive MZM and Kramers–Kronig detection over 80-km SSMF,” IEEE Photonics J. 9(6), 1–9 (2017).
[Crossref]

Li, P.

P. Li, W. Pan, X. Zou, S. Pan, B. Luo, and L. Yan, “High-efficiency photonic microwave downconversion with full-frequency-range coverage,” IEEE Photonics J. 7(4), 1–7 (2015).
[Crossref]

Li, X.

L. Shu, J. Li, Z. Wan, F. Gao, S. Fu, X. Li, Q. Yang, and K. Xu, “Single-lane 112-Gbit/s SSB-PAM4 transmission with dual-drive MZM and Kramers–Kronig detection over 80-km SSMF,” IEEE Photonics J. 9(6), 1–9 (2017).
[Crossref]

Li, Z.

Z. Li, M. S. Erkılınç, K. Shi, E. Sillekens, L. Galdino, B. C. Thomsen, P. Bayvel, and R. I. Killey, “SSBI mitigation and the Kramers-Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation,” J. Lightwave Technol. 35(10), 1887–1893 (2017).
[Crossref]

Z. Li, X. Zhang, H. Chi, S. Zheng, X. Jin, and J. Yao, “A reconfigurable microwave photonic channelized receiver based on dense wavelength division multiplexing using an optical comb,” Opt. Commun. 285(9), 2311–2315 (2012).
[Crossref]

Lin, L.

Liu, J.

S. Pan, D. Zhu, S. Liu, K. Xu, Y. Dai, T. Wang, J. Liu, N. Zhu, Y. Xue, and N. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Liu, N.

S. Pan, D. Zhu, S. Liu, K. Xu, Y. Dai, T. Wang, J. Liu, N. Zhu, Y. Xue, and N. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Liu, S.

S. Pan, D. Zhu, S. Liu, K. Xu, Y. Dai, T. Wang, J. Liu, N. Zhu, Y. Xue, and N. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Luo, B.

P. Li, W. Pan, X. Zou, S. Pan, B. Luo, and L. Yan, “High-efficiency photonic microwave downconversion with full-frequency-range coverage,” IEEE Photonics J. 7(4), 1–7 (2015).
[Crossref]

Lv, Q.

Malacarne, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Mast, A.

A. Mast, C. Middleton, S. Meredith, and R. DeSalvo, “Extending frequency and bandwidth through the use of agile high dynamic range photonic converters,” IEEE Aerospace Conference, (IEEE, 2012), pp. 1–5.

Mateman, R.

Mecozzi, A.

Meng, Z.

Meredith, S.

A. Mast, C. Middleton, S. Meredith, and R. DeSalvo, “Extending frequency and bandwidth through the use of agile high dynamic range photonic converters,” IEEE Aerospace Conference, (IEEE, 2012), pp. 1–5.

Middleton, C.

A. Mast, C. Middleton, S. Meredith, and R. DeSalvo, “Extending frequency and bandwidth through the use of agile high dynamic range photonic converters,” IEEE Aerospace Conference, (IEEE, 2012), pp. 1–5.

Minasian, R. A.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Onori, D.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Pan, S.

Z. Tang and S. Pan, “A reconfigurable photonic microwave mixer using a 90-degree optical hybrid,” IEEE Trans. Microw. Theory Tech. 64(9), 3017–3025 (2016).
[Crossref]

P. Li, W. Pan, X. Zou, S. Pan, B. Luo, and L. Yan, “High-efficiency photonic microwave downconversion with full-frequency-range coverage,” IEEE Photonics J. 7(4), 1–7 (2015).
[Crossref]

S. Pan, D. Zhu, S. Liu, K. Xu, Y. Dai, T. Wang, J. Liu, N. Zhu, Y. Xue, and N. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Pan, W.

P. Li, W. Pan, X. Zou, S. Pan, B. Luo, and L. Yan, “High-efficiency photonic microwave downconversion with full-frequency-range coverage,” IEEE Photonics J. 7(4), 1–7 (2015).
[Crossref]

Pinna, S.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Porzi, C.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Rong, L.

Y. Wang, J. Li, T. Zhou, D. Wang, J. Xu, X. Zhong, D. Yang, and L. Rong, “All-optical microwave photonic downconverter with tunable phase shift,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

Scaffardi, M.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Scotti, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Seeds, A. J.

Serafino, G.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Shi, K.

Shtaif, M.

Shu, L.

L. Shu, J. Li, Z. Wan, F. Gao, S. Fu, X. Li, Q. Yang, and K. Xu, “Single-lane 112-Gbit/s SSB-PAM4 transmission with dual-drive MZM and Kramers–Kronig detection over 80-km SSMF,” IEEE Photonics J. 9(6), 1–9 (2017).
[Crossref]

Sillekens, E.

Song, X.

Tang, Z.

Z. Tang and S. Pan, “A reconfigurable photonic microwave mixer using a 90-degree optical hybrid,” IEEE Trans. Microw. Theory Tech. 64(9), 3017–3025 (2016).
[Crossref]

Thomsen, B. C.

Tu, Z.

Vercesi, V.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Wan, Z.

L. Shu, J. Li, Z. Wan, F. Gao, S. Fu, X. Li, Q. Yang, and K. Xu, “Single-lane 112-Gbit/s SSB-PAM4 transmission with dual-drive MZM and Kramers–Kronig detection over 80-km SSMF,” IEEE Photonics J. 9(6), 1–9 (2017).
[Crossref]

Wang, D.

Y. Wang, J. Li, T. Zhou, D. Wang, J. Xu, X. Zhong, D. Yang, and L. Rong, “All-optical microwave photonic downconverter with tunable phase shift,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

T. Jiang, S. Yu, R. Wu, D. Wang, and W. Gu, “Photonic downconversion with tunable wideband phase shift,” Opt. Lett. 41(11), 2640–2643 (2016).
[Crossref] [PubMed]

Wang, T.

S. Pan, D. Zhu, S. Liu, K. Xu, Y. Dai, T. Wang, J. Liu, N. Zhu, Y. Xue, and N. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Wang, Y.

Y. Wang, J. Li, T. Zhou, D. Wang, J. Xu, X. Zhong, D. Yang, and L. Rong, “All-optical microwave photonic downconverter with tunable phase shift,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

Waterhouse, R.

T. R. Clark and R. Waterhouse, “Photonics for RF front ends,” IEEE Microw. Mag. 12(3), 87–95 (2011).
[Crossref]

Wen, A.

Williams, K. J.

Wu, R.

Xiao, J.

Xie, S.

Xu, J.

Y. Wang, J. Li, T. Zhou, D. Wang, J. Xu, X. Zhong, D. Yang, and L. Rong, “All-optical microwave photonic downconverter with tunable phase shift,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

Xu, K.

L. Shu, J. Li, Z. Wan, F. Gao, S. Fu, X. Li, Q. Yang, and K. Xu, “Single-lane 112-Gbit/s SSB-PAM4 transmission with dual-drive MZM and Kramers–Kronig detection over 80-km SSMF,” IEEE Photonics J. 9(6), 1–9 (2017).
[Crossref]

J. Li, J. Xiao, X. Song, Y. Zheng, C. Yin, Q. Lv, Y. Fan, F. Yin, Y. Dai, and K. Xu, “Full-band direct-conversion receiver with enhanced port isolation and I/Q phase balance using microwave photonic I/Q mixer (invited paper),” Chin. Opt. Lett. 15(1), 010014 (2017).

Z. Meng, J. Li, C. Yin, Y. Fan, F. Yin, Y. Zhou, Y. Dai, and K. Xu, “Dual-band dechirping LFMCW radar receiver with high image rejection using microwave photonic I/Q mixer,” Opt. Express 25(18), 22055–22065 (2017).
[Crossref] [PubMed]

S. Pan, D. Zhu, S. Liu, K. Xu, Y. Dai, T. Wang, J. Liu, N. Zhu, Y. Xue, and N. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Xue, Y.

S. Pan, D. Zhu, S. Liu, K. Xu, Y. Dai, T. Wang, J. Liu, N. Zhu, Y. Xue, and N. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Yan, L.

P. Li, W. Pan, X. Zou, S. Pan, B. Luo, and L. Yan, “High-efficiency photonic microwave downconversion with full-frequency-range coverage,” IEEE Photonics J. 7(4), 1–7 (2015).
[Crossref]

Yang, D.

Y. Wang, J. Li, T. Zhou, D. Wang, J. Xu, X. Zhong, D. Yang, and L. Rong, “All-optical microwave photonic downconverter with tunable phase shift,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

Yang, Q.

L. Shu, J. Li, Z. Wan, F. Gao, S. Fu, X. Li, Q. Yang, and K. Xu, “Single-lane 112-Gbit/s SSB-PAM4 transmission with dual-drive MZM and Kramers–Kronig detection over 80-km SSMF,” IEEE Photonics J. 9(6), 1–9 (2017).
[Crossref]

Yang, S.

Yao, J.

J. Yao, “A tutorial on microwave photonics,” IEEE Photon. Soc. Newslett. 26(2), 4–12 (2012).

Z. Li, X. Zhang, H. Chi, S. Zheng, X. Jin, and J. Yao, “A reconfigurable microwave photonic channelized receiver based on dense wavelength division multiplexing using an optical comb,” Opt. Commun. 285(9), 2311–2315 (2012).
[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

Yin, C.

Yin, F.

Yu, H.

Yu, S.

Zhang, W.

Zhang, X.

Z. Li, X. Zhang, H. Chi, S. Zheng, X. Jin, and J. Yao, “A reconfigurable microwave photonic channelized receiver based on dense wavelength division multiplexing using an optical comb,” Opt. Commun. 285(9), 2311–2315 (2012).
[Crossref]

Zheng, S.

Z. Li, X. Zhang, H. Chi, S. Zheng, X. Jin, and J. Yao, “A reconfigurable microwave photonic channelized receiver based on dense wavelength division multiplexing using an optical comb,” Opt. Commun. 285(9), 2311–2315 (2012).
[Crossref]

Zheng, Y.

Zhong, X.

Y. Wang, J. Li, T. Zhou, D. Wang, J. Xu, X. Zhong, D. Yang, and L. Rong, “All-optical microwave photonic downconverter with tunable phase shift,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

Zhou, T.

Y. Wang, J. Li, T. Zhou, D. Wang, J. Xu, X. Zhong, D. Yang, and L. Rong, “All-optical microwave photonic downconverter with tunable phase shift,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

Zhou, Y.

Zhu, D.

S. Pan, D. Zhu, S. Liu, K. Xu, Y. Dai, T. Wang, J. Liu, N. Zhu, Y. Xue, and N. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Zhu, N.

S. Pan, D. Zhu, S. Liu, K. Xu, Y. Dai, T. Wang, J. Liu, N. Zhu, Y. Xue, and N. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Zou, X.

P. Li, W. Pan, X. Zou, S. Pan, B. Luo, and L. Yan, “High-efficiency photonic microwave downconversion with full-frequency-range coverage,” IEEE Photonics J. 7(4), 1–7 (2015).
[Crossref]

Chin. Opt. Lett. (1)

IEEE Microw. Mag. (2)

S. Pan, D. Zhu, S. Liu, K. Xu, Y. Dai, T. Wang, J. Liu, N. Zhu, Y. Xue, and N. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

T. R. Clark and R. Waterhouse, “Photonics for RF front ends,” IEEE Microw. Mag. 12(3), 87–95 (2011).
[Crossref]

IEEE Photon. Soc. Newslett. (1)

J. Yao, “A tutorial on microwave photonics,” IEEE Photon. Soc. Newslett. 26(2), 4–12 (2012).

IEEE Photonics J. (3)

P. Li, W. Pan, X. Zou, S. Pan, B. Luo, and L. Yan, “High-efficiency photonic microwave downconversion with full-frequency-range coverage,” IEEE Photonics J. 7(4), 1–7 (2015).
[Crossref]

Y. Wang, J. Li, T. Zhou, D. Wang, J. Xu, X. Zhong, D. Yang, and L. Rong, “All-optical microwave photonic downconverter with tunable phase shift,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

L. Shu, J. Li, Z. Wan, F. Gao, S. Fu, X. Li, Q. Yang, and K. Xu, “Single-lane 112-Gbit/s SSB-PAM4 transmission with dual-drive MZM and Kramers–Kronig detection over 80-km SSMF,” IEEE Photonics J. 9(6), 1–9 (2017).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

Z. Tang and S. Pan, “A reconfigurable photonic microwave mixer using a 90-degree optical hybrid,” IEEE Trans. Microw. Theory Tech. 64(9), 3017–3025 (2016).
[Crossref]

J. Lightwave Technol. (5)

Johns Hopkins APL Tech. Dig. (1)

P. T. Callahan, M. L. Dennis, and T. R. Clark, “Photonic analog-to-digital conversion,” Johns Hopkins APL Tech. Dig. 30(4), 280–286 (2012).

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Nature (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Opt. Commun. (1)

Z. Li, X. Zhang, H. Chi, S. Zheng, X. Jin, and J. Yao, “A reconfigurable microwave photonic channelized receiver based on dense wavelength division multiplexing using an optical comb,” Opt. Commun. 285(9), 2311–2315 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Optica (1)

Other (10)

C. Middleton, S. Meredith, R. Peach, and R. DeSalvo, “Photonic frequency conversion for wideband RF-to-IF down-conversion and digitization,” in Avionics,Fiber-Optics and Photonics Technology Conference (AVFOP) (IEEE, 2011), pp. 115–116.

A. Mast, C. Middleton, S. Meredith, and R. DeSalvo, “Extending frequency and bandwidth through the use of agile high dynamic range photonic converters,” IEEE Aerospace Conference, (IEEE, 2012), pp. 1–5.

C. Antonelli, M. Shtaif, and A. Mecozzi, “Kramers-Kronig PAM transceiver,” in Proceedings of Optical Fiber Communication Conference (OFC 2017), paper Tu3I.5.

A. Mecozzi, “A necessary and sufficient condition for minimum phase and implications for phase retrieval,” arXiv:1606.04861 (2016).

T. Bo and H. Kim, “Kramers-Kronig receiver without digital upsampling,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper W4E.2.
[Crossref]

D. B. Hunter, L. G. Edvell, and M. A. Englund, “Wideband microwave photonic channelised receiver,” Microwave Photonics,2005. MWP 2005. International Topical Meeting on. (IEEE, 2005), pp. 249–252.
[Crossref]

W. Hao, Y. Dai, Y. Zhou, F. Yin, J. Dai, J. Li, and K. Xu, “Coherent wideband microwave channelizer based on dual optical frequency combs,” Avionics and Vehicle Fiber-Optics and Photonics Conference (AVFOP), 2016 (IEEE, 2016), pp. 183–184.

M. Sotom, B. Benazet, A. Le Kernec, and M. Maignan, “Microwave photonic technologies for flexible satellite telecom payloads,” in Proceedings of the 35th European Conference on Optical Communication, 2009 (IEEE, 2009), pp. 20–24.

V. J. Urick, K. J. Williams, and J. D. McKinney, Fundamentals of microwave photonics (John Wiley & Sons, 2015).

S. Iezekiel, ed., Microwave Photonics: Devices and Applications (John Wiley & Sons, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Spectra (a) before and (b) after PD.
Fig. 2
Fig. 2 Schematic diagram of the proposed lower-IF RF receiver.
Fig. 3
Fig. 3 Experimental setup of the proposed lower-IF RF receiver.
Fig. 4
Fig. 4 SSB spectra of (a) RF and (b) LO signals.
Fig. 5
Fig. 5 EVM as a function of normalized IF frequency.
Fig. 6
Fig. 6 EVM as a function of input LO power.
Fig. 7
Fig. 7 EVM as a function of input RF power.
Fig. 8
Fig. 8 EVM as a function of input RF power for different coupling ratios of (a) 70:30, (b) 60:40, (c) 40:60, (d) 30:70 between RF and LO paths.
Fig. 9
Fig. 9 Measured fundamental and IMD3 powers as a function of RF input power.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E RF (t)=s(t) e j ω RF t e j ω c t =s(t) e j( ω RF + ω c )t
E LO (t)= E LO e j ω LO t e j ω c t = E LO e j( ω LO + ω c )t
E(t)= E LO e j( ω LO + ω c )t +s(t) e j( ω RF + ω c )t
I(t)= | E(t) | 2 = E LO 2 + | s(t) | 2 +2 E LO s(t)cos( ω RF ω LO )t
s(t) e j( ω RF ω LO )t = I(t) e jϕ(t) E LO
ϕ(t)= 1 2π p.v. d t ' log[ I( t ' ) ] t t '

Metrics