Abstract

The aim of this paper is to develop a new composite structure of catadioptric optical system containing both freeform refractive surface and freeform total internal reflective (TIR) surface for LED road illumination applications. The role of freeform refractive part is to generate the shifted general rectangular illumination pattern to optimally match the shape of the road surface. The application of TIR mechanism is aimed to control the stray light in the sidewalk direction of the road luminaire and maximize the efficient energy efficiency. In this paper, we use the “double pole” ray mapping technique to design the refractive optical surface and the θ-φ coordinate ray mapping technique to derive the freeform TIR surface. The simulation shows that the novel catadioptric design has relatively high collection efficiency, thus high average illuminance level inside the effective illumination area. This lens also has good control of stray light on the backside of the road luminaire.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multi-surface catadioptric freeform lens design for ultra-efficient off-axis road illumination

Shi Li Wei, Zheng Bo Zhu, Zi Chao Fan, Yi Ming Yan, and Dong Lin Ma
Opt. Express 27(12) A779-A789 (2019)

Free-form surface generation in a double pole coordinate system for off-axis illumination application

Zhengbo Zhu, Xiuhua Yuan, Rongguang Liang, and Donglin Ma
Appl. Opt. 56(4) 771-776 (2017)

Design of LED freeform optical system for road lighting with high luminance/illuminance ratio

Zexin Feng, Yi Luo, and Yanjun Han
Opt. Express 18(21) 22020-22031 (2010)

References

  • View by:
  • |
  • |
  • |

  1. G. B. Nair and S. J. Dhoble, “A perspective perception on the applications of light-emitting diodes,” Luminescence 30(8), 1167–1175 (2015).
    [PubMed]
  2. N. Narendran and Y. Gu, “Life of LED-based white light sources,” J. Disp. Technol. 1(1), 167–171 (2005).
  3. W. A. Parkyn, “Illumination lenses designed by extrinsic differential geometry,” Proc. SPIE 3482, 389–396 (1998).
  4. H. Ries and J. Muschaweck, “Tailored freeform optical surfaces,” J. Opt. Soc. Am. A 19(3), 590–595 (2002).
    [PubMed]
  5. J. Chaves, Introduction to Nonimaging Optics (CRC Press, 2008).
  6. R. Winston, J. C. Miñano, P. Benítez, N. Shatz, and J. C. Bortz, Nonimaging Optics (Elsevier, 2005).
  7. Z. Li, S. Yu, L. Lin, Y. Tang, X. Ding, W. Yuan, and B. Yu, “Energy feedback freeform lenses for uniform illumination of extended light source LEDs,” Appl. Opt. 55(36), 10375–10381 (2016).
    [PubMed]
  8. C. Sun, X. Lee, I. Moreno, C. Lee, Y. Yu, T. Yang, and T. Chung, “Design of LED street lighting adapted for free-form roads,” IEEE Photonics J. 9(1), 8200213 (2017).
  9. R. Wu, C. Y. Huang, X. Zhu, H. Cheng, and R. Liang, “Direct three-dimensional design of compact and ultra-efficient freeform lenses for extended light sources,” Optica 3, 840–843 (2016).
  10. M. A. Moiseev, L. L. Doskolovich, and N. L. Kazanskiy, “Design of high-efficient freeform LED lens for illumination of elongated rectangular regions,” Opt. Express 19(Suppl 3), A225–A233 (2011).
    [PubMed]
  11. Z. Feng, Y. Luo, and Y. Han, “Design of LED freeform optical system for road lighting with high luminance/illuminance ratio,” Opt. Express 18(21), 22020–22031 (2010).
    [PubMed]
  12. I. Moreno, M. Avendaño-Alejo, T. Saucedo-A, and A. Bugarin, “Modeling LED street lighting,” Appl. Opt. 53(20), 4420–4430 (2014).
    [PubMed]
  13. X. H. Lee, I. Moreno, and C. C. Sun, “High-performance LED street lighting using microlens arrays,” Opt. Express 21(9), 10612–10621 (2013).
    [PubMed]
  14. X. Hu and K. Qian, “Optimal design of optical system for LED road lighting with high illuminance and luminance uniformity,” Appl. Opt. 52(24), 5888–5893 (2013).
    [PubMed]
  15. A. Ge, J. Cai, D. Chen, H. Shu, P. Qiu, J. Wang, and L. Zhu, “Optical design of a street lamp based on dual-module chip-on-board LED arrays,” Appl. Opt. 53(25), 5750–5754 (2014).
    [PubMed]
  16. S. Zalewski, “Design of optical systems for LED road luminaires,” Appl. Opt. 54(2), 163–170 (2015).
    [PubMed]
  17. S. V. Kravchenko, E. V. Byzov, M. A. Moiseev, and L. L. Doskolovich, “Development of multiple-surface optical elements for road lighting,” Opt. Express 25(4), A23–A35 (2017).
    [PubMed]
  18. S. Wang, K. Wang, F. Chen, and S. Liu, “Design of primary optics for LED chip array in road lighting application,” Opt. Express 19(Suppl 4), A716–A724 (2011).
    [PubMed]
  19. Z. Zhu, X. Yuan, R. Liang, and D. Ma, “Free-form surface generation in a double pole coordinate system for off-axis illumination application,” Appl. Opt. 56(4), 771–776 (2017).
    [PubMed]
  20. D. Ma, Z. Feng, and R. Liang, “Freeform illumination lens design using composite ray mapping,” Appl. Opt. 54(3), 498–503 (2015).
  21. D. Ma, Z. Feng, and R. Liang, “Tailoring freeform illumination optics in a double-pole coordinate system,” Appl. Opt. 54(9), 2395–2399 (2015).
    [PubMed]
  22. City of Los Angeles Department of Public Works, “Design Standards and Guidelines”, 2007–03.
  23. D. Ma, S. Pacheco, C. Wang, and R. Liang, “Freeform optics construction with nonuniformly sampled grids in modified double-pole coordinate system,” Opt. Eng. 54(12), 125102 (2015).
  24. F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation usingsource-target maps,” Opt. Express 18(5), 5295–5304 (2010).
    [PubMed]
  25. R. Zhu, Q. Hong, H. Zhang, and S. T. Wu, “Freeform reflectors for architectural lighting,” Opt. Express 23(25), 31828–31837 (2015).
    [PubMed]
  26. G. Yu, S. Ding, J. Ji, and T. Guo, “A Free-form Total Internal Reflection (TIR) Lens for Illumination,” Proc. SPIE 8321, 832110 (2016).
  27. Z. Zhenrong, H. Xiang, and L. Xu, “Freeform surface lens for LED uniform illumination,” Appl. Opt. 48(35), 6627–6634 (2009).
    [PubMed]
  28. L. Piegl and W. Tiller, The NURBS Book, 2nd ed. (Springer-Verlag, 1997).
  29. http://www.cree.com

2017 (3)

2016 (3)

2015 (6)

2014 (2)

2013 (2)

2011 (2)

2010 (2)

2009 (1)

2005 (1)

N. Narendran and Y. Gu, “Life of LED-based white light sources,” J. Disp. Technol. 1(1), 167–171 (2005).

2002 (1)

1998 (1)

W. A. Parkyn, “Illumination lenses designed by extrinsic differential geometry,” Proc. SPIE 3482, 389–396 (1998).

Avendaño-Alejo, M.

Bugarin, A.

Byzov, E. V.

Cai, J.

Cassarly, W. J.

Chen, D.

Chen, F.

Cheng, H.

Chung, T.

C. Sun, X. Lee, I. Moreno, C. Lee, Y. Yu, T. Yang, and T. Chung, “Design of LED street lighting adapted for free-form roads,” IEEE Photonics J. 9(1), 8200213 (2017).

Dhoble, S. J.

G. B. Nair and S. J. Dhoble, “A perspective perception on the applications of light-emitting diodes,” Luminescence 30(8), 1167–1175 (2015).
[PubMed]

Ding, S.

G. Yu, S. Ding, J. Ji, and T. Guo, “A Free-form Total Internal Reflection (TIR) Lens for Illumination,” Proc. SPIE 8321, 832110 (2016).

Ding, X.

Doskolovich, L. L.

Feng, Z.

Fournier, F. R.

Ge, A.

Gu, Y.

N. Narendran and Y. Gu, “Life of LED-based white light sources,” J. Disp. Technol. 1(1), 167–171 (2005).

Guo, T.

G. Yu, S. Ding, J. Ji, and T. Guo, “A Free-form Total Internal Reflection (TIR) Lens for Illumination,” Proc. SPIE 8321, 832110 (2016).

Han, Y.

Hong, Q.

Hu, X.

Huang, C. Y.

Ji, J.

G. Yu, S. Ding, J. Ji, and T. Guo, “A Free-form Total Internal Reflection (TIR) Lens for Illumination,” Proc. SPIE 8321, 832110 (2016).

Kazanskiy, N. L.

Kravchenko, S. V.

Lee, C.

C. Sun, X. Lee, I. Moreno, C. Lee, Y. Yu, T. Yang, and T. Chung, “Design of LED street lighting adapted for free-form roads,” IEEE Photonics J. 9(1), 8200213 (2017).

Lee, X.

C. Sun, X. Lee, I. Moreno, C. Lee, Y. Yu, T. Yang, and T. Chung, “Design of LED street lighting adapted for free-form roads,” IEEE Photonics J. 9(1), 8200213 (2017).

Lee, X. H.

Li, Z.

Liang, R.

Lin, L.

Liu, S.

Luo, Y.

Ma, D.

Moiseev, M. A.

Moreno, I.

Muschaweck, J.

Nair, G. B.

G. B. Nair and S. J. Dhoble, “A perspective perception on the applications of light-emitting diodes,” Luminescence 30(8), 1167–1175 (2015).
[PubMed]

Narendran, N.

N. Narendran and Y. Gu, “Life of LED-based white light sources,” J. Disp. Technol. 1(1), 167–171 (2005).

Pacheco, S.

D. Ma, S. Pacheco, C. Wang, and R. Liang, “Freeform optics construction with nonuniformly sampled grids in modified double-pole coordinate system,” Opt. Eng. 54(12), 125102 (2015).

Parkyn, W. A.

W. A. Parkyn, “Illumination lenses designed by extrinsic differential geometry,” Proc. SPIE 3482, 389–396 (1998).

Qian, K.

Qiu, P.

Ries, H.

Rolland, J. P.

Saucedo-A, T.

Shu, H.

Sun, C.

C. Sun, X. Lee, I. Moreno, C. Lee, Y. Yu, T. Yang, and T. Chung, “Design of LED street lighting adapted for free-form roads,” IEEE Photonics J. 9(1), 8200213 (2017).

Sun, C. C.

Tang, Y.

Wang, C.

D. Ma, S. Pacheco, C. Wang, and R. Liang, “Freeform optics construction with nonuniformly sampled grids in modified double-pole coordinate system,” Opt. Eng. 54(12), 125102 (2015).

Wang, J.

Wang, K.

Wang, S.

Wu, R.

Wu, S. T.

Xiang, H.

Xu, L.

Yang, T.

C. Sun, X. Lee, I. Moreno, C. Lee, Y. Yu, T. Yang, and T. Chung, “Design of LED street lighting adapted for free-form roads,” IEEE Photonics J. 9(1), 8200213 (2017).

Yu, B.

Yu, G.

G. Yu, S. Ding, J. Ji, and T. Guo, “A Free-form Total Internal Reflection (TIR) Lens for Illumination,” Proc. SPIE 8321, 832110 (2016).

Yu, S.

Yu, Y.

C. Sun, X. Lee, I. Moreno, C. Lee, Y. Yu, T. Yang, and T. Chung, “Design of LED street lighting adapted for free-form roads,” IEEE Photonics J. 9(1), 8200213 (2017).

Yuan, W.

Yuan, X.

Zalewski, S.

Zhang, H.

Zhenrong, Z.

Zhu, L.

Zhu, R.

Zhu, X.

Zhu, Z.

Appl. Opt. (9)

IEEE Photonics J. (1)

C. Sun, X. Lee, I. Moreno, C. Lee, Y. Yu, T. Yang, and T. Chung, “Design of LED street lighting adapted for free-form roads,” IEEE Photonics J. 9(1), 8200213 (2017).

J. Disp. Technol. (1)

N. Narendran and Y. Gu, “Life of LED-based white light sources,” J. Disp. Technol. 1(1), 167–171 (2005).

J. Opt. Soc. Am. A (1)

Luminescence (1)

G. B. Nair and S. J. Dhoble, “A perspective perception on the applications of light-emitting diodes,” Luminescence 30(8), 1167–1175 (2015).
[PubMed]

Opt. Eng. (1)

D. Ma, S. Pacheco, C. Wang, and R. Liang, “Freeform optics construction with nonuniformly sampled grids in modified double-pole coordinate system,” Opt. Eng. 54(12), 125102 (2015).

Opt. Express (7)

Optica (1)

Proc. SPIE (2)

G. Yu, S. Ding, J. Ji, and T. Guo, “A Free-form Total Internal Reflection (TIR) Lens for Illumination,” Proc. SPIE 8321, 832110 (2016).

W. A. Parkyn, “Illumination lenses designed by extrinsic differential geometry,” Proc. SPIE 3482, 389–396 (1998).

Other (5)

J. Chaves, Introduction to Nonimaging Optics (CRC Press, 2008).

R. Winston, J. C. Miñano, P. Benítez, N. Shatz, and J. C. Bortz, Nonimaging Optics (Elsevier, 2005).

L. Piegl and W. Tiller, The NURBS Book, 2nd ed. (Springer-Verlag, 1997).

http://www.cree.com

City of Los Angeles Department of Public Works, “Design Standards and Guidelines”, 2007–03.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Illustration of road lighting system.
Fig. 2
Fig. 2 The configuration of the street lighting system.
Fig. 3
Fig. 3 Geometry of the catadioptric lens system.
Fig. 4
Fig. 4 General ray mapping mechanism: (a) one-to-one mapping mechanism, (b) one-to-multiple (or composite) mapping mechanism.
Fig. 5
Fig. 5 Composite ray mapping mechanism between source to target.
Fig. 6
Fig. 6 The cross-section profile of catadioptric optical system.
Fig. 7
Fig. 7 Mechanical structure of the lens displayed in three views:(a) Bottom view; (b) cross-section view along vertical direction; (c) perspective view; (d) cross-section view along lateral view; (e) above view.
Fig. 8
Fig. 8 Simulation results of the catadioptric optical systems: (a) irradiance distribution (b) illuminance of checking points and iso-illuminance contour of single luminaire.
Fig. 9
Fig. 9 Simulation results of the refractive optical systems: (a) irradiance distribution (b) illuminance of checking points and iso-illuminance contour of single luminaire.

Tables (4)

Tables Icon

Table 1 Some requirements for the street luminaire performance

Tables Icon

Table 2 Parameters of the designed catadioptric lens model.

Tables Icon

Table 3 Overall comparison of catadioptric and refractive road luminaire systems for effective illumination area (y: 0-10m).

Tables Icon

Table 4 Comparison of refractive and catadioptric road luminaire’s illumination performance.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

i = 1 n I ( i ) d Ω i = j = 1 n E ( r ) d S i ,
Ω 1 I 1 ( α , β ) | J ( α , β ) | d α d β = D E 1 ( x , y ) | J ( x , y ) | d x d y ,
{ Ω 1 : | α | α max ; β min β β max D : | x t | X max ; Y min y t Y max .
Ω 2 I 2 ( θ , φ ) | J ( θ , φ ) | d θ d φ = D E 2 ( x , y ) | J ( x , y ) | d x d y ,
Ω 2 : θ min θ θ max ; φ min φ φ max .
T i , j , H = f ( P i , j ) ,
[ n i 2 + n o 2 2 n i n o ( O u t i I n i ) ] 1 / 2 N i = n o O u t 1 n i I n i ,
N 4 = O u t 4 I n 4 | O u t 4 I n 4 | .
R S D = 1 N p i = 1 N p [ E s ( i ) E 0 ( i ) E 0 ( i ) ] 2 ,
η = E e f f E t o t a l ,

Metrics