Abstract

This paper presents fiber Bragg grating (FBG) inscription with a pulsed 248 nm UV KrF laser in polymer optical fibers (POFs) made of different polymers, namely polymethyl methacrylate (PMMA), cyclic-olefin polymer and co-polymer, and Polycarbonate. The inscribed gratings and the corresponding inscription parameters are compared with grating inscribed in POFs made of the aforementioned materials but with the hitherto most used laser for inscription, which is a continuous wave 325 nm UV HeCd laser. Results show a reduction of the inscription time of at least 16 times. The maximum time reduction is more than 130 times. In addition, a reflectivity and a bandwidth close to or higher than the ones with the 325 nm laser were obtained. The polymer optical fiber Bragg gratings (POFBGs) inscribed with the 248 nm laser setup present high stability with small variations in their central wavelength, bandwidth, and reflectivity after 40 days.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polymer optical fiber Bragg grating inscription with a single Nd:YAG laser pulse

Luis Pereira, Rui Min, Xuehao Hu, Christophe Caucheteur, Ole Bang, Beatriz Ortega, Carlos Marques, Paulo Antunes, and João L. Pinto
Opt. Express 26(14) 18096-18104 (2018)

Polymer optical fiber Bragg grating inscription with a single UV laser pulse

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André
Opt. Express 25(8) 9028-9038 (2017)

Dynamic mechanical characterization with respect to temperature, humidity, frequency and strain in mPOFs made of different materials

A. Leal-Junior, A. Frizera, M. J. Pontes, A. Fasano, G. Woyessa, O. Bang, and C. A. F. Marques
Opt. Mater. Express 8(4) 804-815 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Webb, “Fibre Bragg grating sensors in polymer optical fibres,” Meas. Sci. Technol. 26(9), 92004 (2015).
    [Crossref]
  2. A. R. Prado, A. G. Leal-Junior, C. Marques, S. Leite, G. L. de Sena, L. C. Machado, A. Frizera, M. R. N. Ribeiro, and M. J. Pontes, “Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems,” Opt. Express 25(24), 30051–30060 (2017).
    [Crossref] [PubMed]
  3. X. Hu, D. Saez-Rodriguez, C. Marques, O. Bang, D. J. Webb, P. Mégret, and C. Caucheteur, “Polarization effects in polymer FBGs: study and use for transverse force sensing,” Opt. Express 23(4), 4581–4590 (2015).
    [Crossref] [PubMed]
  4. A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
    [Crossref] [PubMed]
  5. C. A. F. Marques, D. J. Webb, and P. Andre, “Polymer optical fiber sensors in human life safety,” Opt. Fiber Technol. 36, 144–154 (2017).
    [Crossref]
  6. A. Fasano, G. Woyessa, J. Janting, H. K. Rasmussen, and O. Bang, “Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperature,” IEEE Photonics Technol. Lett. 29(8), 687–690 (2017).
    [Crossref]
  7. G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
    [Crossref] [PubMed]
  8. A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649 (2016).
    [Crossref]
  9. G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
    [Crossref] [PubMed]
  10. A. G. Leal-Junior, A. Frizera, and M. José Pontes, “Sensitive zone parameters and curvature radius evaluation for polymer optical fiber curvature sensors,” Opt. Laser Technol. 100, 272–281 (2018).
    [Crossref]
  11. A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
    [Crossref]
  12. C. A. Marques, G.-D. Peng, and D. J. Webb, “Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings,” Opt. Express 23(5), 6058–6072 (2015).
    [Crossref] [PubMed]
  13. J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
    [Crossref] [PubMed]
  14. G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
    [Crossref] [PubMed]
  15. H. U. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16, 1 (2016).
    [Crossref]
  16. W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
    [Crossref] [PubMed]
  17. I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
    [Crossref]
  18. C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
    [Crossref] [PubMed]
  19. G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
    [Crossref] [PubMed]
  20. G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286 (2017).
    [Crossref]
  21. A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
    [Crossref]
  22. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
    [Crossref] [PubMed]
  23. K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Broadband terahertz fiber directional coupler,” Opt. Lett. 35(17), 2879–2881 (2010).
    [Crossref] [PubMed]
  24. J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B 28(5), 1013 (2011).
    [Crossref]
  25. G. Woyessa, A. Fasano, C. Markos, H. Rasmussen, and O. Bang, “Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing,” IEEE Photonics Technol. Lett. 29(7), 1 (2017).
    [Crossref]
  26. I. P. Johnson, K. Kalli, and D. J. Webb, “827 nm Bragg grating sensor in multimode microstructured polymer optical fibre,” Electron. Lett. 46(17), 1217 (2010).
    [Crossref]
  27. A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow Bandwidth 850 nm Fiber Bragg Gratings in Few-Mode Polymer Optical Fibers,” IEEE Photonics Technol. Lett. 23(10), 660-662 (2011).
  28. X. Hu, C.-F. J. Pun, H.-Y. Tam, P. Mégret, and C. Caucheteur, “Highly reflective Bragg gratings in slightly etched step-index polymer optical fiber,” Opt. Express 22(15), 18807–18817 (2014).
    [Crossref] [PubMed]
  29. X. Hu, C.-F. J. Pun, H.-Y. Tam, P. Mégret, and C. Caucheteur, “Tilted Bragg gratings in step-index polymer optical fiber,” Opt. Lett. 39(24), 6835–6838 (2014).
    [Crossref] [PubMed]
  30. D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
    [Crossref] [PubMed]
  31. X. Hu, G. Woyessa, D. Kinet, J. Janting, K. Nielsen, O. Bang, and C. Caucheteur, “BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription,” Opt. Lett. 42(11), 2209–2212 (2017).
    [Crossref] [PubMed]
  32. G. Statkiewicz-Barabach, D. Kowal, P. Mergo, and W. Urbanczyk, “Comparison of growth dynamics and temporal stability of Bragg gratings written in polymer fibers of different types,” J. Opt. 17(8), 85606 (2015).
    [Crossref]
  33. C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
    [Crossref] [PubMed]
  34. I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
    [Crossref] [PubMed]
  35. R. Oliveira, L. Bilro, and R. Nogueira, “Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds,” Opt. Express 23(8), 10181–10187 (2015).
    [Crossref] [PubMed]
  36. A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
    [Crossref]
  37. A. Theodosiou, S. Member, A. Lacraz, A. Stassis, M. Komodromos, S. Member, and K. Kalli, “Plane - by - Plane femtosecond laser inscription method for single - peak Bragg gratings in multimode CYTOP polymer optical fibre,” J. Lightwave Technol. 35(24), 5404–5410 (2017).
  38. W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
    [Crossref]
  39. I.-L. Bundalo, K. Nielsen, G. Woyessa, and O. Bang, “Long-term strain response of polymer optical fiber FBG sensors,” Opt. Mater. Express 7(3), 401–403 (2017).
    [Crossref]

2018 (1)

A. G. Leal-Junior, A. Frizera, and M. José Pontes, “Sensitive zone parameters and curvature radius evaluation for polymer optical fiber curvature sensors,” Opt. Laser Technol. 100, 272–281 (2018).
[Crossref]

2017 (11)

A. R. Prado, A. G. Leal-Junior, C. Marques, S. Leite, G. L. de Sena, L. C. Machado, A. Frizera, M. R. N. Ribeiro, and M. J. Pontes, “Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems,” Opt. Express 25(24), 30051–30060 (2017).
[Crossref] [PubMed]

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

C. A. F. Marques, D. J. Webb, and P. Andre, “Polymer optical fiber sensors in human life safety,” Opt. Fiber Technol. 36, 144–154 (2017).
[Crossref]

A. Fasano, G. Woyessa, J. Janting, H. K. Rasmussen, and O. Bang, “Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperature,” IEEE Photonics Technol. Lett. 29(8), 687–690 (2017).
[Crossref]

G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
[Crossref] [PubMed]

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286 (2017).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, H. Rasmussen, and O. Bang, “Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing,” IEEE Photonics Technol. Lett. 29(7), 1 (2017).
[Crossref]

X. Hu, G. Woyessa, D. Kinet, J. Janting, K. Nielsen, O. Bang, and C. Caucheteur, “BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription,” Opt. Lett. 42(11), 2209–2212 (2017).
[Crossref] [PubMed]

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[Crossref] [PubMed]

A. Theodosiou, S. Member, A. Lacraz, A. Stassis, M. Komodromos, S. Member, and K. Kalli, “Plane - by - Plane femtosecond laser inscription method for single - peak Bragg gratings in multimode CYTOP polymer optical fibre,” J. Lightwave Technol. 35(24), 5404–5410 (2017).

I.-L. Bundalo, K. Nielsen, G. Woyessa, and O. Bang, “Long-term strain response of polymer optical fiber FBG sensors,” Opt. Mater. Express 7(3), 401–403 (2017).
[Crossref]

2016 (4)

2015 (6)

C. A. Marques, G.-D. Peng, and D. J. Webb, “Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings,” Opt. Express 23(5), 6058–6072 (2015).
[Crossref] [PubMed]

D. J. Webb, “Fibre Bragg grating sensors in polymer optical fibres,” Meas. Sci. Technol. 26(9), 92004 (2015).
[Crossref]

X. Hu, D. Saez-Rodriguez, C. Marques, O. Bang, D. J. Webb, P. Mégret, and C. Caucheteur, “Polarization effects in polymer FBGs: study and use for transverse force sensing,” Opt. Express 23(4), 4581–4590 (2015).
[Crossref] [PubMed]

R. Oliveira, L. Bilro, and R. Nogueira, “Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds,” Opt. Express 23(8), 10181–10187 (2015).
[Crossref] [PubMed]

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

G. Statkiewicz-Barabach, D. Kowal, P. Mergo, and W. Urbanczyk, “Comparison of growth dynamics and temporal stability of Bragg gratings written in polymer fibers of different types,” J. Opt. 17(8), 85606 (2015).
[Crossref]

2014 (3)

2013 (3)

2012 (2)

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

2011 (5)

J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B 28(5), 1013 (2011).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
[Crossref]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow Bandwidth 850 nm Fiber Bragg Gratings in Few-Mode Polymer Optical Fibers,” IEEE Photonics Technol. Lett. 23(10), 660-662 (2011).

2010 (2)

K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Broadband terahertz fiber directional coupler,” Opt. Lett. 35(17), 2879–2881 (2010).
[Crossref] [PubMed]

I. P. Johnson, K. Kalli, and D. J. Webb, “827 nm Bragg grating sensor in multimode microstructured polymer optical fibre,” Electron. Lett. 46(17), 1217 (2010).
[Crossref]

2009 (1)

2005 (1)

Aasmul, S.

H. U. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16, 1 (2016).
[Crossref]

Adam, A. J.

Andre, P.

C. A. F. Marques, D. J. Webb, and P. Andre, “Polymer optical fiber sensors in human life safety,” Opt. Fiber Technol. 36, 144–154 (2017).
[Crossref]

André, P.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[Crossref] [PubMed]

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

Andresen, S.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Anthony, J.

Antunes, P.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[Crossref] [PubMed]

Argyros, A.

Bache, M.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Bang, O.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[Crossref] [PubMed]

A. Fasano, G. Woyessa, J. Janting, H. K. Rasmussen, and O. Bang, “Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperature,” IEEE Photonics Technol. Lett. 29(8), 687–690 (2017).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, H. Rasmussen, and O. Bang, “Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing,” IEEE Photonics Technol. Lett. 29(7), 1 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
[Crossref] [PubMed]

X. Hu, G. Woyessa, D. Kinet, J. Janting, K. Nielsen, O. Bang, and C. Caucheteur, “BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription,” Opt. Lett. 42(11), 2209–2212 (2017).
[Crossref] [PubMed]

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286 (2017).
[Crossref]

I.-L. Bundalo, K. Nielsen, G. Woyessa, and O. Bang, “Long-term strain response of polymer optical fiber FBG sensors,” Opt. Mater. Express 7(3), 401–403 (2017).
[Crossref]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649 (2016).
[Crossref]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

H. U. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16, 1 (2016).
[Crossref]

X. Hu, D. Saez-Rodriguez, C. Marques, O. Bang, D. J. Webb, P. Mégret, and C. Caucheteur, “Polarization effects in polymer FBGs: study and use for transverse force sensing,” Opt. Express 23(4), 4581–4590 (2015).
[Crossref] [PubMed]

I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
[Crossref] [PubMed]

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
[Crossref]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow Bandwidth 850 nm Fiber Bragg Gratings in Few-Mode Polymer Optical Fibers,” IEEE Photonics Technol. Lett. 23(10), 660-662 (2011).

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Broadband terahertz fiber directional coupler,” Opt. Lett. 35(17), 2879–2881 (2010).
[Crossref] [PubMed]

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[Crossref] [PubMed]

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[Crossref] [PubMed]

Bilro, L.

Bjarklev, A.

Bundalo, I.-L.

Caucheteur, C.

Çetinkaya, O.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[Crossref] [PubMed]

de Sena, G. L.

Demirci, G.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[Crossref] [PubMed]

Emiliyanov, G.

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[Crossref] [PubMed]

Fasano, A.

G. Woyessa, A. Fasano, C. Markos, H. Rasmussen, and O. Bang, “Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing,” IEEE Photonics Technol. Lett. 29(7), 1 (2017).
[Crossref]

A. Fasano, G. Woyessa, J. Janting, H. K. Rasmussen, and O. Bang, “Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperature,” IEEE Photonics Technol. Lett. 29(8), 687–690 (2017).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286 (2017).
[Crossref]

G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
[Crossref] [PubMed]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649 (2016).
[Crossref]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

Frizera, A.

A. G. Leal-Junior, A. Frizera, and M. José Pontes, “Sensitive zone parameters and curvature radius evaluation for polymer optical fiber curvature sensors,” Opt. Laser Technol. 100, 272–281 (2018).
[Crossref]

A. R. Prado, A. G. Leal-Junior, C. Marques, S. Leite, G. L. de Sena, L. C. Machado, A. Frizera, M. R. N. Ribeiro, and M. J. Pontes, “Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems,” Opt. Express 25(24), 30051–30060 (2017).
[Crossref] [PubMed]

Gawdzik, B.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[Crossref] [PubMed]

Hansen, K. S.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Hassan, H. U.

H. U. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16, 1 (2016).
[Crossref]

Herholdt-Rasmussen, N.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Hoiby, P.

Høiby, P. E.

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

Hu, X.

Jacobsen, T.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Janting, J.

A. Fasano, G. Woyessa, J. Janting, H. K. Rasmussen, and O. Bang, “Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperature,” IEEE Photonics Technol. Lett. 29(8), 687–690 (2017).
[Crossref]

X. Hu, G. Woyessa, D. Kinet, J. Janting, K. Nielsen, O. Bang, and C. Caucheteur, “BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription,” Opt. Lett. 42(11), 2209–2212 (2017).
[Crossref] [PubMed]

H. U. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16, 1 (2016).
[Crossref]

Jensen, J.

Jepsen, P. U.

Johnson, I. P.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
[Crossref]

I. P. Johnson, K. Kalli, and D. J. Webb, “827 nm Bragg grating sensor in multimode microstructured polymer optical fibre,” Electron. Lett. 46(17), 1217 (2010).
[Crossref]

José Pontes, M.

A. G. Leal-Junior, A. Frizera, and M. José Pontes, “Sensitive zone parameters and curvature radius evaluation for polymer optical fiber curvature sensors,” Opt. Laser Technol. 100, 272–281 (2018).
[Crossref]

Kalli, K.

A. Theodosiou, S. Member, A. Lacraz, A. Stassis, M. Komodromos, S. Member, and K. Kalli, “Plane - by - Plane femtosecond laser inscription method for single - peak Bragg gratings in multimode CYTOP polymer optical fibre,” J. Lightwave Technol. 35(24), 5404–5410 (2017).

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

I. P. Johnson, K. Kalli, and D. J. Webb, “827 nm Bragg grating sensor in multimode microstructured polymer optical fibre,” Electron. Lett. 46(17), 1217 (2010).
[Crossref]

Khan, L.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Kinet, D.

Komodromos, M.

Koutsides, C.

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

Kowal, D.

G. Statkiewicz-Barabach, D. Kowal, P. Mergo, and W. Urbanczyk, “Comparison of growth dynamics and temporal stability of Bragg gratings written in polymer fibers of different types,” J. Opt. 17(8), 85606 (2015).
[Crossref]

Krebber, K.

Lacraz, A.

A. Theodosiou, S. Member, A. Lacraz, A. Stassis, M. Komodromos, S. Member, and K. Kalli, “Plane - by - Plane femtosecond laser inscription method for single - peak Bragg gratings in multimode CYTOP polymer optical fibre,” J. Lightwave Technol. 35(24), 5404–5410 (2017).

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

Large, M. C. J.

Leal-Junior, A. G.

A. G. Leal-Junior, A. Frizera, and M. José Pontes, “Sensitive zone parameters and curvature radius evaluation for polymer optical fiber curvature sensors,” Opt. Laser Technol. 100, 272–281 (2018).
[Crossref]

A. R. Prado, A. G. Leal-Junior, C. Marques, S. Leite, G. L. de Sena, L. C. Machado, A. Frizera, M. R. N. Ribeiro, and M. J. Pontes, “Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems,” Opt. Express 25(24), 30051–30060 (2017).
[Crossref] [PubMed]

Leite, S.

Leonhardt, R.

Machado, L. C.

Markos, C.

G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
[Crossref] [PubMed]

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286 (2017).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, H. Rasmussen, and O. Bang, “Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing,” IEEE Photonics Technol. Lett. 29(7), 1 (2017).
[Crossref]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649 (2016).
[Crossref]

I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow Bandwidth 850 nm Fiber Bragg Gratings in Few-Mode Polymer Optical Fibers,” IEEE Photonics Technol. Lett. 23(10), 660-662 (2011).

Marques, C.

Marques, C. A.

Marques, C. A. F.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[Crossref] [PubMed]

C. A. F. Marques, D. J. Webb, and P. Andre, “Polymer optical fiber sensors in human life safety,” Opt. Fiber Technol. 36, 144–154 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

Mégret, P.

Member, S.

Mergo, P.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[Crossref] [PubMed]

G. Statkiewicz-Barabach, D. Kowal, P. Mergo, and W. Urbanczyk, “Comparison of growth dynamics and temporal stability of Bragg gratings written in polymer fibers of different types,” J. Opt. 17(8), 85606 (2015).
[Crossref]

Nielsen, F. K.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Nielsen, K.

X. Hu, G. Woyessa, D. Kinet, J. Janting, K. Nielsen, O. Bang, and C. Caucheteur, “BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription,” Opt. Lett. 42(11), 2209–2212 (2017).
[Crossref] [PubMed]

G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
[Crossref] [PubMed]

I.-L. Bundalo, K. Nielsen, G. Woyessa, and O. Bang, “Long-term strain response of polymer optical fiber FBG sensors,” Opt. Mater. Express 7(3), 401–403 (2017).
[Crossref]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649 (2016).
[Crossref]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
[Crossref] [PubMed]

D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
[Crossref]

K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Broadband terahertz fiber directional coupler,” Opt. Lett. 35(17), 2879–2881 (2010).
[Crossref] [PubMed]

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[Crossref] [PubMed]

Nogueira, R.

Oliveira, R.

Pedersen, J. K. M.

Pedersen, L.

Pedersen, L. H.

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

Peng, G.-D.

Planken, P. C.

Polis, M.

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

Pontes, M. J.

Pospori, A.

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[Crossref] [PubMed]

Prado, A. R.

Pun, C.-F. J.

Rasmussen, H.

G. Woyessa, A. Fasano, C. Markos, H. Rasmussen, and O. Bang, “Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing,” IEEE Photonics Technol. Lett. 29(7), 1 (2017).
[Crossref]

Rasmussen, H. K.

A. Fasano, G. Woyessa, J. Janting, H. K. Rasmussen, and O. Bang, “Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperature,” IEEE Photonics Technol. Lett. 29(8), 687–690 (2017).
[Crossref]

G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
[Crossref] [PubMed]

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286 (2017).
[Crossref]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649 (2016).
[Crossref]

D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Broadband terahertz fiber directional coupler,” Opt. Lett. 35(17), 2879–2881 (2010).
[Crossref] [PubMed]

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[Crossref] [PubMed]

Ribeiro, M. R. N.

Rose, B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Saez-Rodriguez, D.

Sáez-Rodríguez, D.

Sørensen, O. B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Stajanca, P.

Stassis, A.

Statkiewicz-Barabach, G.

G. Statkiewicz-Barabach, D. Kowal, P. Mergo, and W. Urbanczyk, “Comparison of growth dynamics and temporal stability of Bragg gratings written in polymer fibers of different types,” J. Opt. 17(8), 85606 (2015).
[Crossref]

Stefani, A.

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286 (2017).
[Crossref]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649 (2016).
[Crossref]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
[Crossref]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow Bandwidth 850 nm Fiber Bragg Gratings in Few-Mode Polymer Optical Fibers,” IEEE Photonics Technol. Lett. 23(10), 660-662 (2011).

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Tam, H.-Y.

Theodosiou, A.

A. Theodosiou, S. Member, A. Lacraz, A. Stassis, M. Komodromos, S. Member, and K. Kalli, “Plane - by - Plane femtosecond laser inscription method for single - peak Bragg gratings in multimode CYTOP polymer optical fibre,” J. Lightwave Technol. 35(24), 5404–5410 (2017).

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

Urbanczyk, W.

G. Statkiewicz-Barabach, D. Kowal, P. Mergo, and W. Urbanczyk, “Comparison of growth dynamics and temporal stability of Bragg gratings written in polymer fibers of different types,” J. Opt. 17(8), 85606 (2015).
[Crossref]

Webb, D. J.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[Crossref] [PubMed]

C. A. F. Marques, D. J. Webb, and P. Andre, “Polymer optical fiber sensors in human life safety,” Opt. Fiber Technol. 36, 144–154 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

D. J. Webb, “Fibre Bragg grating sensors in polymer optical fibres,” Meas. Sci. Technol. 26(9), 92004 (2015).
[Crossref]

X. Hu, D. Saez-Rodriguez, C. Marques, O. Bang, D. J. Webb, P. Mégret, and C. Caucheteur, “Polarization effects in polymer FBGs: study and use for transverse force sensing,” Opt. Express 23(4), 4581–4590 (2015).
[Crossref] [PubMed]

C. A. Marques, G.-D. Peng, and D. J. Webb, “Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings,” Opt. Express 23(5), 6058–6072 (2015).
[Crossref] [PubMed]

D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
[Crossref] [PubMed]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
[Crossref]

I. P. Johnson, K. Kalli, and D. J. Webb, “827 nm Bragg grating sensor in multimode microstructured polymer optical fibre,” Electron. Lett. 46(17), 1217 (2010).
[Crossref]

Woyessa, G.

G. Woyessa, A. Fasano, C. Markos, H. Rasmussen, and O. Bang, “Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing,” IEEE Photonics Technol. Lett. 29(7), 1 (2017).
[Crossref]

A. Fasano, G. Woyessa, J. Janting, H. K. Rasmussen, and O. Bang, “Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperature,” IEEE Photonics Technol. Lett. 29(8), 687–690 (2017).
[Crossref]

X. Hu, G. Woyessa, D. Kinet, J. Janting, K. Nielsen, O. Bang, and C. Caucheteur, “BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription,” Opt. Lett. 42(11), 2209–2212 (2017).
[Crossref] [PubMed]

G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
[Crossref] [PubMed]

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286 (2017).
[Crossref]

I.-L. Bundalo, K. Nielsen, G. Woyessa, and O. Bang, “Long-term strain response of polymer optical fiber FBG sensors,” Opt. Mater. Express 7(3), 401–403 (2017).
[Crossref]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649 (2016).
[Crossref]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

Yuan, W.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow Bandwidth 850 nm Fiber Bragg Gratings in Few-Mode Polymer Optical Fibers,” IEEE Photonics Technol. Lett. 23(10), 660-662 (2011).

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Electron. Lett. (2)

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
[Crossref]

I. P. Johnson, K. Kalli, and D. J. Webb, “827 nm Bragg grating sensor in multimode microstructured polymer optical fibre,” Electron. Lett. 46(17), 1217 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (5)

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow Bandwidth 850 nm Fiber Bragg Gratings in Few-Mode Polymer Optical Fibers,” IEEE Photonics Technol. Lett. 23(10), 660-662 (2011).

G. Woyessa, A. Fasano, C. Markos, H. Rasmussen, and O. Bang, “Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing,” IEEE Photonics Technol. Lett. 29(7), 1 (2017).
[Crossref]

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

A. Fasano, G. Woyessa, J. Janting, H. K. Rasmussen, and O. Bang, “Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperature,” IEEE Photonics Technol. Lett. 29(8), 687–690 (2017).
[Crossref]

IEEE Sens. J. (1)

H. U. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16, 1 (2016).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

G. Statkiewicz-Barabach, D. Kowal, P. Mergo, and W. Urbanczyk, “Comparison of growth dynamics and temporal stability of Bragg gratings written in polymer fibers of different types,” J. Opt. 17(8), 85606 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

D. J. Webb, “Fibre Bragg grating sensors in polymer optical fibres,” Meas. Sci. Technol. 26(9), 92004 (2015).
[Crossref]

Opt. Commun. (2)

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

Opt. Express (13)

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[Crossref] [PubMed]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

X. Hu, C.-F. J. Pun, H.-Y. Tam, P. Mégret, and C. Caucheteur, “Highly reflective Bragg gratings in slightly etched step-index polymer optical fiber,” Opt. Express 22(15), 18807–18817 (2014).
[Crossref] [PubMed]

A. R. Prado, A. G. Leal-Junior, C. Marques, S. Leite, G. L. de Sena, L. C. Machado, A. Frizera, M. R. N. Ribeiro, and M. J. Pontes, “Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems,” Opt. Express 25(24), 30051–30060 (2017).
[Crossref] [PubMed]

X. Hu, D. Saez-Rodriguez, C. Marques, O. Bang, D. J. Webb, P. Mégret, and C. Caucheteur, “Polarization effects in polymer FBGs: study and use for transverse force sensing,” Opt. Express 23(4), 4581–4590 (2015).
[Crossref] [PubMed]

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

C. A. Marques, G.-D. Peng, and D. J. Webb, “Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings,” Opt. Express 23(5), 6058–6072 (2015).
[Crossref] [PubMed]

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
[Crossref] [PubMed]

R. Oliveira, L. Bilro, and R. Nogueira, “Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds,” Opt. Express 23(8), 10181–10187 (2015).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

C. A. F. Marques, D. J. Webb, and P. Andre, “Polymer optical fiber sensors in human life safety,” Opt. Fiber Technol. 36, 144–154 (2017).
[Crossref]

Opt. Laser Technol. (1)

A. G. Leal-Junior, A. Frizera, and M. José Pontes, “Sensitive zone parameters and curvature radius evaluation for polymer optical fiber curvature sensors,” Opt. Laser Technol. 100, 272–281 (2018).
[Crossref]

Opt. Lett. (5)

Opt. Mater. Express (3)

Sensors (Basel) (2)

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Setup employed for the POFBGs inscription.
Fig. 2
Fig. 2 Reflection spectra of the POFGBs inscribed with the pulsed UV KrF @248 nm laser. The inscription times are also presented for (a) PMMA POFBG, (b) Topas 8007POFBG, (c) Topas 5013 POFBG, (d) Topas 5013 step index POFBG, (e) Zeonex 480R POFBG and (f) Polycarbonate POFBG. The insets show the transmission spectrum of each grating.
Fig. 3
Fig. 3 Stability of each POFBG after 40 days. (a) Gratings reflectivity, (b) bandwidth of the POFBGs and (c) central wavelength.

Tables (4)

Tables Icon

Table 1 Dimensions and Tg of each POFs employed for the grating fabrication

Tables Icon

Table 2 The annealing parameters applied for the POFs used for grating inscription

Tables Icon

Table 3 POFBGs inscription with the CW UV HeCd laser at 325 nm

Tables Icon

Table 4 POFBGs inscription with the pulsed UV KrF laser at 248 nm

Metrics