Abstract

As one of the promising multiplexing and multicarrier modulation technologies, Nyquist subcarrier multiplexing (Nyquist SCM) has recently attracted research attention to realize ultra-fast and ultra-spectral-efficient optical networks. In this paper, we propose and experimentally demonstrate optical subcarrier processing technologies for Nyquist SCM signals such as frequency conversion, multicast and data aggregation of subcarriers, through the coherent spectrum overlapping between subcarriers in four-wave mixing (FWM) with coherent multi-tone pump. The data aggregation is realized by coherently superposing or combining low-level subcarriers to yield high-level subcarriers in the optical field. Moreover, multiple replicas of the data-aggregated subcarriers and the subcarriers carrying the original data are obtained. In the experiment, two 5 Gbps quadrature phase-shift keying (QPSK) subcarriers are coherently combined to generate a 10 Gbps 16 quadrature amplitude modulation (QAM) subcarrier with frequency conversions through the FWM with coherent multi-tone pump. Less than 1 dB optical signal-to-noise ratio (OSNR) penalty variation is observed for the synthesized 16QAM subcarriers after the data aggregation. In addition, some subcarriers are kept in the original formats, QPSK, with a power penalty of less than 0.4 dB with respect to the original input subcarriers. The proposed subcarrier processing technology enables flexibility for spectral management in future dynamic optical networks.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Flexible and scalable wavelength multicast of coherent optical OFDM with tolerance against pump phase-noise using reconfigurable coherent multi-carrier pumping

Guo-Wei Lu, Tianwai Bo, Takahide Sakamoto, Naokatsu Yamamoto, and Calvin Chun-Kit Chan
Opt. Express 24(20) 22573-22580 (2016)

Polarization insensitive all-optical wavelength conversion of polarization multiplexed signals using co-polarized pumps

Aravind P. Anthur, Rui Zhou, Sean O’Duill, Anthony J. Walsh, Eamonn Martin, Deepa Venkitesh, and Liam P. Barry
Opt. Express 24(11) 11749-11761 (2016)

Digital subcarrier multiplexing for fiber nonlinearity mitigation in coherent optical communication systems

Meng Qiu, Qunbi Zhuge, Mathieu Chagnon, Yuliang Gao, Xian Xu, Mohamed Morsy-Osman, and David V. Plant
Opt. Express 22(15) 18770-18777 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. Schmogrow, S. Wolf, B. Baeuerle, D. Hillerkuss, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “Nyquist frequency division multiplexing for optical communications,” in Conference on Lasers and Electro-Optics/Quantum electronics and laser science (CLEO/QELS, 2012), paper CTh1H.2.
    [Crossref]
  2. K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rohdin, J. S. Gusavsson, A. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using signal cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” in Proceedings of the European Conference and Exhibition on Optical Communication (ECOC, 2010), paper We.7.B.2.
  3. H.-C. Chien, Z. Jia, J. Zhang, Z. Dong, and J. Yu, “Optical independent-sideband modulation for bandwidth-economic coherent transmission,” Opt. Express 22(8), 9465–9470 (2014).
    [Crossref] [PubMed]
  4. A. S. Karar and J. C. Cartledge, “Generation and detection of a 56 Gb/s signal using a DML and half-cycle 16-QAM Nyquist-SCM,” IEEE Photonics Technol. Lett. 25(8), 757–760 (2013).
    [Crossref]
  5. P. J. Winzer, “An opto-electronic interferometer and its use in subcarrier add/drop multiplexing,” J. Lightwave Technol. 31(11), 1775–1782 (2013).
    [Crossref]
  6. S. Watanabe, T. Kato, R. Okabe, R. Elschner, R. Ludwig, and C. Schubert, “All-optical data frequency multiplexing on single-wavelength carrier light by sequentially provided cross-phase modulation in fiber,” IEEE J. Sel. Top. Quantum Electron. 18(2), 577–584 (2012).
    [Crossref]
  7. T. Richter, R. Elschner, C. Schmidt-Langhorst, T. Kato, S. Watanabe, and C. Schubert, “Narrow guard-band distributed Nyquist-WDM using fiber frequency conversion,” in Optical Fiber Communication Conference (OFC, 2013), paper OTh1C.1.
    [Crossref]
  8. T. Richter, C. Schmidt-Langhorst, R. Elschner, T. Kato, T. Tanimura, S. Watanabe, and C. Schubert, “Coherent subcarriers processing node based on optical frequency conversion and free-running lasers,” J. Lightwave Technol. 33(3), 685–693 (2015).
    [Crossref]
  9. R. Elschner, T. Richter, T. Kato, S. Watanabe, and C. Schubert, “Distributed ultradense optical frequency-division multiplexing using fiber nonlinearity,” J. Lightwave Technol. 31(4), 628–633 (2013).
    [Crossref]
  10. R. Okabe, T. Kato, S. Watanabe, C. Schubert, T. Richter, C. Schmidt-Langhorst, and R. Elschner, “Precise remote optical carrier addition into 200-Gb/s CO-OFDM channel using fiber frequency conversion,” in Proceedings of the European Conference and Exhibition on Optical Communication (ECOC, 2013), paper We.1.C.6.
    [Crossref]
  11. G.-W. Lu, T. Sakamoto, and T. Kawanishi, “Pump-Phase-Noise-Tolerant Wavelength Multicasting for QAM Signals using Flexible Coherent Multi-Carrier Pump,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2E.2.
    [Crossref]
  12. G.-W. Lu, T. Sakamoto, and T. Kawanishi, “Multichannel Wavelength Multicasting for QAM Signals Free of Pump-Phase-Noise using Flexible Coherent Multi-Carrier Pump,” in Proceedings of CLEO 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SM1M.3.
  13. G.-W. Lu, A. Albuquerque, B. J. Puttnam, T. Sakamoto, M. Drummond, R. Nogueira, A. Kanno, S. Shinada, N. Wada, and T. Kawanishi, “Pump-phase-noise-free optical wavelength data exchange between QAM signals with 50-GHz channel-spacing using coherent DFB pump,” Opt. Express 24(4), 3702–3712 (2016).
    [Crossref] [PubMed]
  14. G.-W. Lu, T. Bo, T. Sakamoto, N. Yamamoto, and C. C.-K. Chan, “Flexible and scalable wavelength multicast of coherent optical OFDM with tolerance against pump phase-noise using reconfigurable coherent multi-carrier pumping,” Opt. Express 24(20), 22573–22580 (2016).
    [Crossref] [PubMed]
  15. C. Huang, N. Zhang, and C. Shu, “High-Performance Wavelength Multicast With Beat Noise Suppression via Backward Raman Amplification in a Nonlinear Fiber,” J. Lightwave Technol. 35(13), 2587–2592 (2017).
    [Crossref]
  16. Y. Cao, M. Ziyadi, A. Almaiman, A. Mohajerin-Ariaei, P. Liao, C. Bao, F. Alishahi, A. Fallahpour, B. Shamee, A. J. Willner, Y. Akasaka, T. Ikeuchi, S. Wilkinson, C. Langrock, M. M. Fejer, J. Touch, M. Tur, and A. E. Willner, “Pilot-tone-based self-homodyne detection using optical nonlinear wave mixing,” Opt. Lett. 42(9), 1840–1843 (2017).
    [Crossref] [PubMed]

2017 (2)

2016 (2)

2015 (1)

2014 (1)

2013 (3)

2012 (1)

S. Watanabe, T. Kato, R. Okabe, R. Elschner, R. Ludwig, and C. Schubert, “All-optical data frequency multiplexing on single-wavelength carrier light by sequentially provided cross-phase modulation in fiber,” IEEE J. Sel. Top. Quantum Electron. 18(2), 577–584 (2012).
[Crossref]

Akasaka, Y.

Albuquerque, A.

Alishahi, F.

Almaiman, A.

Bao, C.

Bo, T.

Cao, Y.

Cartledge, J. C.

A. S. Karar and J. C. Cartledge, “Generation and detection of a 56 Gb/s signal using a DML and half-cycle 16-QAM Nyquist-SCM,” IEEE Photonics Technol. Lett. 25(8), 757–760 (2013).
[Crossref]

Chan, C. C.-K.

Chien, H.-C.

Dong, Z.

Drummond, M.

Elschner, R.

Fallahpour, A.

Fejer, M. M.

Huang, C.

Ikeuchi, T.

Jia, Z.

Kanno, A.

Karar, A. S.

A. S. Karar and J. C. Cartledge, “Generation and detection of a 56 Gb/s signal using a DML and half-cycle 16-QAM Nyquist-SCM,” IEEE Photonics Technol. Lett. 25(8), 757–760 (2013).
[Crossref]

Kato, T.

Kawanishi, T.

Langrock, C.

Liao, P.

Lu, G.-W.

Ludwig, R.

S. Watanabe, T. Kato, R. Okabe, R. Elschner, R. Ludwig, and C. Schubert, “All-optical data frequency multiplexing on single-wavelength carrier light by sequentially provided cross-phase modulation in fiber,” IEEE J. Sel. Top. Quantum Electron. 18(2), 577–584 (2012).
[Crossref]

Mohajerin-Ariaei, A.

Nogueira, R.

Okabe, R.

S. Watanabe, T. Kato, R. Okabe, R. Elschner, R. Ludwig, and C. Schubert, “All-optical data frequency multiplexing on single-wavelength carrier light by sequentially provided cross-phase modulation in fiber,” IEEE J. Sel. Top. Quantum Electron. 18(2), 577–584 (2012).
[Crossref]

Puttnam, B. J.

Richter, T.

Sakamoto, T.

Schmidt-Langhorst, C.

Schubert, C.

Shamee, B.

Shinada, S.

Shu, C.

Tanimura, T.

Touch, J.

Tur, M.

Wada, N.

Watanabe, S.

Wilkinson, S.

Willner, A. E.

Willner, A. J.

Winzer, P. J.

Yamamoto, N.

Yu, J.

Zhang, J.

Zhang, N.

Ziyadi, M.

IEEE J. Sel. Top. Quantum Electron. (1)

S. Watanabe, T. Kato, R. Okabe, R. Elschner, R. Ludwig, and C. Schubert, “All-optical data frequency multiplexing on single-wavelength carrier light by sequentially provided cross-phase modulation in fiber,” IEEE J. Sel. Top. Quantum Electron. 18(2), 577–584 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. S. Karar and J. C. Cartledge, “Generation and detection of a 56 Gb/s signal using a DML and half-cycle 16-QAM Nyquist-SCM,” IEEE Photonics Technol. Lett. 25(8), 757–760 (2013).
[Crossref]

J. Lightwave Technol. (4)

Opt. Express (3)

Opt. Lett. (1)

Other (6)

R. Schmogrow, S. Wolf, B. Baeuerle, D. Hillerkuss, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “Nyquist frequency division multiplexing for optical communications,” in Conference on Lasers and Electro-Optics/Quantum electronics and laser science (CLEO/QELS, 2012), paper CTh1H.2.
[Crossref]

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rohdin, J. S. Gusavsson, A. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using signal cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” in Proceedings of the European Conference and Exhibition on Optical Communication (ECOC, 2010), paper We.7.B.2.

T. Richter, R. Elschner, C. Schmidt-Langhorst, T. Kato, S. Watanabe, and C. Schubert, “Narrow guard-band distributed Nyquist-WDM using fiber frequency conversion,” in Optical Fiber Communication Conference (OFC, 2013), paper OTh1C.1.
[Crossref]

R. Okabe, T. Kato, S. Watanabe, C. Schubert, T. Richter, C. Schmidt-Langhorst, and R. Elschner, “Precise remote optical carrier addition into 200-Gb/s CO-OFDM channel using fiber frequency conversion,” in Proceedings of the European Conference and Exhibition on Optical Communication (ECOC, 2013), paper We.1.C.6.
[Crossref]

G.-W. Lu, T. Sakamoto, and T. Kawanishi, “Pump-Phase-Noise-Tolerant Wavelength Multicasting for QAM Signals using Flexible Coherent Multi-Carrier Pump,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2E.2.
[Crossref]

G.-W. Lu, T. Sakamoto, and T. Kawanishi, “Multichannel Wavelength Multicasting for QAM Signals Free of Pump-Phase-Noise using Flexible Coherent Multi-Carrier Pump,” in Proceedings of CLEO 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SM1M.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Operation principle of the coherent spectrum overlapping with a coherent multi-carrier pump.
Fig. 2
Fig. 2 Operation principle of coherent superposition through FWM with coherent (a) two- and (b) three-tone pump.
Fig. 3
Fig. 3 Operation principle of high-level format synthesis from low-level formats.
Fig. 4
Fig. 4 Diagram of the experimental setup.
Fig. 5
Fig. 5 Measured EVM of converted QPSK subcarriers at U3 when tuning the launched (a) probe and (b) pump power.
Fig. 6
Fig. 6 Measured optical spectra with coherent (a) two- and (b) three-tone pumps.
Fig. 7
Fig. 7 Measured constellations of the original input QPSK subcarriers at (a) L and (b) U, and the frequency converted QPSK subcarriers (c) L3 and (d) U3.
Fig. 8
Fig. 8 Measured constellations of the data-aggregated 16QAMs from two input QPSKs at subcarriers at the subcarriers (a) U1, (b) L1, (c) U2, (d) L2, (e) L and (f) U after the FWM.
Fig. 9
Fig. 9 Measured BER curves vs. OSNR for input Nyquist QPSK subcarriers and converted Nyquist QPSK and 16QAM subcarriers; Theoretical BER curves vs. OSNR: blue solid line: Nyquist QPSK, red solid line: Nyquist 16QAM.

Tables (2)

Tables Icon

Table 1 Electrical field of the resultant Nyquist subcarriers after the optical subcarrier processing with coherent 2-carrier pump

Tables Icon

Table 2 Electrical field of each subcarrier in the resultant Nyquist SCM signals after the optical subcarrier processing with coherent 3-carrier pump

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

θ output = θ input ±(Δ θ Pi Δ θ Pj )+c.

Metrics