Abstract

This paper presents a method to achieve high-speed and high-accuracy 3D surface measurement using a custom-designed mechanical projector and two high-speed cameras. We developed a computational framework that can achieve absolute shape measurement in sub-pixel accuracy through: 1) capturing precisely phase-shifted fringe patterns by synchronizing the cameras with the projector; 2) generating a rough disparity map between two cameras by employing a standard stereo-vision method using texture images with encoded statistical patterns; and 3) utilizing the wrapped phase as a constraint to refine the disparity map. The projector can project binary patterns at a speed of up to 10,000 Hz, and the camera can capture the required number of phase-shifted fringe patterns with 1/10,000 second, and thus 3D shape measurement can be realized as high as 10,000 Hz regardless the number of phase-shifted fringe patterns required for one 3D reconstruction. Experimental results demonstrated the success of our proposed method.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Absolute three-dimensional shape measurement using coded fringe patterns without phase unwrapping or projector calibration

William Lohry, Vincent Chen, and Song Zhang
Opt. Express 22(2) 1287-1301 (2014)

Motion-oriented high speed 3-D measurements by binocular fringe projection using binary aperiodic patterns

Shijie Feng, Qian Chen, Chao Zuo, Tianyang Tao, Yan Hu, and Anand Asundi
Opt. Express 25(2) 540-559 (2017)

Real-time, high-accuracy 3D imaging and shape measurement

Hieu Nguyen, Dung Nguyen, Zhaoyang Wang, Hien Kieu, and Minh Le
Appl. Opt. 54(1) A9-A17 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Zhang, High-speed 3D Imaging with Digital Fringe Projection Technique, 1st ed. (CRC Press, 2016).
  2. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software(John Wiley and Sons, 1998).
  3. X. Su and W. Chen, “Reliability-guided phase unwrapping algorithm: a review,” Opt. Laser Eng. 42, 245–261 (2004).
    [Crossref]
  4. K. Creath, “Step height measurement using two-wavelength phase-shifting interferometry,” Appl. Opt. 26, 2810–2816 (1987).
    [Crossref] [PubMed]
  5. Y.-Y. Cheng and J. C. Wyant, “Multiple-wavelength phase shifting interferometry,” Appl. Opt. 24, 804–807 (1985).
    [Crossref]
  6. G. Sansoni, M. Carocci, and R. Rodella, “Three-dimensional vision based on a combination of gray-code and phase-shift light projection: Analysis and compensation of the systematic errors,” Appl. Opt. 38, 6565–6573 (1999).
    [Crossref]
  7. K. Zhong, Z. Li, Y. Shi, and C. Wang, “Analysis of solving the point correspondence problem by trifocal tensor for real-time phase measurement profilometry,” Proc. SPIE 8493, 8493 (2012).
  8. Z. Li, K. Zhong, Y. Li, X. Zhou, and Y. Shi, “Multiview phase shifting: a full-resolution and high-speed 3d measurement framework for arbitrary shape dynamic objects,” Opt. Lett. 38, 1389–1391 (2013).
    [Crossref] [PubMed]
  9. K. Zhong, Z. Li, Y. Shi, C. Wang, and Y. Lei, “Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping,” Opt. Laser Eng. 51, 1213–1222 (2013).
    [Crossref]
  10. C. Brauer-Burchardt, P. Kuhmstedt, and G. Notni, “Phase unwrapping using geometric constraints for high-speed fringe projection based 3d measurements,” Proc. SPIE 8789, 878906 (2013).
    [Crossref]
  11. R. Ishiyama, S. Sakamoto, J. Tajima, T. Okatani, and K. Deguchi, “Absolute phase measurements using geometric constraints between multiple cameras and projectors,” Appl. Opt. 46, 3528–3538 (2007).
    [Crossref] [PubMed]
  12. C. Brauer-Burchardt, P. Kuhmstedt, M. Heinze, P. Kuhmstedt, and G. Notni, “Using geometric constraints to solve the point correspondence problem in fringe projection based 3d measuring systems,” in Proc. 16th Intl Conference on Image Analysis and Proc.(2011), pp. 265–274.
  13. Y. R. Huddart, J. D. R. Valera, N. J. Weston, and A. J. M. and, “Absolute phase measurement in fringe projection using multiple perspectives,” Opt. Express 21, 21119–21130 (2013).
    [Crossref] [PubMed]
  14. C. Jiang and S. Zhang, “Absolute phase unwrapping for dual-camera system without embedding statistical features,” Opt. Eng. 56, 094114 (2017).
    [Crossref]
  15. V. Kolmogorov and R. Zabih, “Multi-camera scene reconstruction via graph cuts,” in “Euro Conf. Comp. Vis.” (2002), pp. 82–96.
  16. J. Kostková and R. Sára, “Stratified dense matching for stereopsis in complex scenes,” in “Proc. Brit. Mach. Vis. Conf.”, (2003), pp. 339–348.
  17. H. Hirschmuller, “Stereo processing by semiglobal matching and mutual information,” IEEE Trans. Patt. Analy. Mach. Intellig. 30, 328–341 (2008).
    [Crossref]
  18. F. Besse, C. Rother, A. W. Fitzgibbon, and J. Kautz, “Pmbp: Patchmatch belief propagation for correspondence field estimation,” Intl J. Comp. Vis. 110, 2–13 (2013).
    [Crossref]
  19. S. Xu, F. Zhang, X. He, X. Shen, and X. Zhang, “Pm-pm: Patchmatch with potts model for object segmentation and stereo matching,” IEEE Trans. Image Proc. 24, 2182–2196 (2015).
    [Crossref]
  20. S. Zhu and L. Yan, “Local stereo matching algorithm with efficient matching cost and adaptive guided image filter,” Visual Computer 33, 1087–1102 (2017).
    [Crossref]
  21. T. Kanade and M. Okutomi, “A stereo matching algorithm with an adaptive window: Theory and experiment,” IEEE Trans. Patt. Analy. Mach. Intellig. 16, 920–932 (1994).
    [Crossref]
  22. B. Li, Y. An, D. Cappelleri, J. Xu, and S. Zhang, “High-accuracy, high-speed 3d structured light imaging techniques and potential applications to intelligent robotics,” Intl. J. Intelligent Robotics Appl. 1, 86–103 (2017).
    [Crossref]
  23. W. Lohry, V. Chen, and S. Zhang, “Absolute three-dimensional shape measurement using coded fringe patterns without phase unwrapping or projector calibration,” Opt. Express 22, 1287–1301 (2014).
    [Crossref] [PubMed]
  24. A. Geiger, M. Roser, and R. Urtasun, “Efficient large-scale stereo matching,” Asian Conf. Computer Vis. 6492, 25–38 (2011).
  25. K. Song, S. Hu, X. Wen, and Y. Yan, “Fast 3d shape measurement using fourier transform profilometry without phase unwrapping,” Opt. Laser Eng. 84, 74–81 (2016).
    [Crossref]
  26. S. Gai, F. Da, and X. Dai, “Novel 3d measurement system based on speckle and fringe pattern projection,” Opt. express 24, 17686–17697 (2016).
    [Crossref] [PubMed]
  27. X. Liu and J. Kofman, “High-frequency background modulation fringe patterns based on a fringe-wavelength geometry-constraint model for 3d surface-shape measurement,” Opt. Express 25, 16618–16628 (2017).
    [Crossref] [PubMed]
  28. D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (dmd) applications,” Proc. SPIE 4985, 1 (2003).
  29. S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using gobo projection,” Opt. Laser Eng. 87, 90–96 (2016).
    [Crossref]
  30. A. Brahm, C. Rossler, P. Dietrich, S. Heist, P. Kühmstedt, and G. Notni, “Non-destructive 3d shape measurement of transparent and black objects with thermal fringes,” Proc. SPIE 9868, 98680C (2016).
    [Crossref]
  31. D. Malacara, ed., Optical Shop Testing (John Wiley and Sons, 2007), 3rd ed.
    [Crossref]

2017 (4)

C. Jiang and S. Zhang, “Absolute phase unwrapping for dual-camera system without embedding statistical features,” Opt. Eng. 56, 094114 (2017).
[Crossref]

S. Zhu and L. Yan, “Local stereo matching algorithm with efficient matching cost and adaptive guided image filter,” Visual Computer 33, 1087–1102 (2017).
[Crossref]

B. Li, Y. An, D. Cappelleri, J. Xu, and S. Zhang, “High-accuracy, high-speed 3d structured light imaging techniques and potential applications to intelligent robotics,” Intl. J. Intelligent Robotics Appl. 1, 86–103 (2017).
[Crossref]

X. Liu and J. Kofman, “High-frequency background modulation fringe patterns based on a fringe-wavelength geometry-constraint model for 3d surface-shape measurement,” Opt. Express 25, 16618–16628 (2017).
[Crossref] [PubMed]

2016 (4)

S. Gai, F. Da, and X. Dai, “Novel 3d measurement system based on speckle and fringe pattern projection,” Opt. express 24, 17686–17697 (2016).
[Crossref] [PubMed]

K. Song, S. Hu, X. Wen, and Y. Yan, “Fast 3d shape measurement using fourier transform profilometry without phase unwrapping,” Opt. Laser Eng. 84, 74–81 (2016).
[Crossref]

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using gobo projection,” Opt. Laser Eng. 87, 90–96 (2016).
[Crossref]

A. Brahm, C. Rossler, P. Dietrich, S. Heist, P. Kühmstedt, and G. Notni, “Non-destructive 3d shape measurement of transparent and black objects with thermal fringes,” Proc. SPIE 9868, 98680C (2016).
[Crossref]

2015 (1)

S. Xu, F. Zhang, X. He, X. Shen, and X. Zhang, “Pm-pm: Patchmatch with potts model for object segmentation and stereo matching,” IEEE Trans. Image Proc. 24, 2182–2196 (2015).
[Crossref]

2014 (1)

2013 (5)

Z. Li, K. Zhong, Y. Li, X. Zhou, and Y. Shi, “Multiview phase shifting: a full-resolution and high-speed 3d measurement framework for arbitrary shape dynamic objects,” Opt. Lett. 38, 1389–1391 (2013).
[Crossref] [PubMed]

Y. R. Huddart, J. D. R. Valera, N. J. Weston, and A. J. M. and, “Absolute phase measurement in fringe projection using multiple perspectives,” Opt. Express 21, 21119–21130 (2013).
[Crossref] [PubMed]

F. Besse, C. Rother, A. W. Fitzgibbon, and J. Kautz, “Pmbp: Patchmatch belief propagation for correspondence field estimation,” Intl J. Comp. Vis. 110, 2–13 (2013).
[Crossref]

K. Zhong, Z. Li, Y. Shi, C. Wang, and Y. Lei, “Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping,” Opt. Laser Eng. 51, 1213–1222 (2013).
[Crossref]

C. Brauer-Burchardt, P. Kuhmstedt, and G. Notni, “Phase unwrapping using geometric constraints for high-speed fringe projection based 3d measurements,” Proc. SPIE 8789, 878906 (2013).
[Crossref]

2012 (1)

K. Zhong, Z. Li, Y. Shi, and C. Wang, “Analysis of solving the point correspondence problem by trifocal tensor for real-time phase measurement profilometry,” Proc. SPIE 8493, 8493 (2012).

2011 (1)

A. Geiger, M. Roser, and R. Urtasun, “Efficient large-scale stereo matching,” Asian Conf. Computer Vis. 6492, 25–38 (2011).

2008 (1)

H. Hirschmuller, “Stereo processing by semiglobal matching and mutual information,” IEEE Trans. Patt. Analy. Mach. Intellig. 30, 328–341 (2008).
[Crossref]

2007 (1)

2004 (1)

X. Su and W. Chen, “Reliability-guided phase unwrapping algorithm: a review,” Opt. Laser Eng. 42, 245–261 (2004).
[Crossref]

2003 (1)

D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (dmd) applications,” Proc. SPIE 4985, 1 (2003).

1999 (1)

1994 (1)

T. Kanade and M. Okutomi, “A stereo matching algorithm with an adaptive window: Theory and experiment,” IEEE Trans. Patt. Analy. Mach. Intellig. 16, 920–932 (1994).
[Crossref]

1987 (1)

1985 (1)

An, Y.

B. Li, Y. An, D. Cappelleri, J. Xu, and S. Zhang, “High-accuracy, high-speed 3d structured light imaging techniques and potential applications to intelligent robotics,” Intl. J. Intelligent Robotics Appl. 1, 86–103 (2017).
[Crossref]

Besse, F.

F. Besse, C. Rother, A. W. Fitzgibbon, and J. Kautz, “Pmbp: Patchmatch belief propagation for correspondence field estimation,” Intl J. Comp. Vis. 110, 2–13 (2013).
[Crossref]

Brahm, A.

A. Brahm, C. Rossler, P. Dietrich, S. Heist, P. Kühmstedt, and G. Notni, “Non-destructive 3d shape measurement of transparent and black objects with thermal fringes,” Proc. SPIE 9868, 98680C (2016).
[Crossref]

Brauer-Burchardt, C.

C. Brauer-Burchardt, P. Kuhmstedt, and G. Notni, “Phase unwrapping using geometric constraints for high-speed fringe projection based 3d measurements,” Proc. SPIE 8789, 878906 (2013).
[Crossref]

C. Brauer-Burchardt, P. Kuhmstedt, M. Heinze, P. Kuhmstedt, and G. Notni, “Using geometric constraints to solve the point correspondence problem in fringe projection based 3d measuring systems,” in Proc. 16th Intl Conference on Image Analysis and Proc.(2011), pp. 265–274.

Cappelleri, D.

B. Li, Y. An, D. Cappelleri, J. Xu, and S. Zhang, “High-accuracy, high-speed 3d structured light imaging techniques and potential applications to intelligent robotics,” Intl. J. Intelligent Robotics Appl. 1, 86–103 (2017).
[Crossref]

Carocci, M.

Chen, V.

Chen, W.

X. Su and W. Chen, “Reliability-guided phase unwrapping algorithm: a review,” Opt. Laser Eng. 42, 245–261 (2004).
[Crossref]

Cheng, Y.-Y.

Creath, K.

Da, F.

Dai, X.

Deguchi, K.

Dietrich, P.

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using gobo projection,” Opt. Laser Eng. 87, 90–96 (2016).
[Crossref]

A. Brahm, C. Rossler, P. Dietrich, S. Heist, P. Kühmstedt, and G. Notni, “Non-destructive 3d shape measurement of transparent and black objects with thermal fringes,” Proc. SPIE 9868, 98680C (2016).
[Crossref]

Dudley, D.

D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (dmd) applications,” Proc. SPIE 4985, 1 (2003).

Duncan, W.

D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (dmd) applications,” Proc. SPIE 4985, 1 (2003).

Fitzgibbon, A. W.

F. Besse, C. Rother, A. W. Fitzgibbon, and J. Kautz, “Pmbp: Patchmatch belief propagation for correspondence field estimation,” Intl J. Comp. Vis. 110, 2–13 (2013).
[Crossref]

Gai, S.

Geiger, A.

A. Geiger, M. Roser, and R. Urtasun, “Efficient large-scale stereo matching,” Asian Conf. Computer Vis. 6492, 25–38 (2011).

Ghiglia, D. C.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software(John Wiley and Sons, 1998).

He, X.

S. Xu, F. Zhang, X. He, X. Shen, and X. Zhang, “Pm-pm: Patchmatch with potts model for object segmentation and stereo matching,” IEEE Trans. Image Proc. 24, 2182–2196 (2015).
[Crossref]

Heinze, M.

C. Brauer-Burchardt, P. Kuhmstedt, M. Heinze, P. Kuhmstedt, and G. Notni, “Using geometric constraints to solve the point correspondence problem in fringe projection based 3d measuring systems,” in Proc. 16th Intl Conference on Image Analysis and Proc.(2011), pp. 265–274.

Heist, S.

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using gobo projection,” Opt. Laser Eng. 87, 90–96 (2016).
[Crossref]

A. Brahm, C. Rossler, P. Dietrich, S. Heist, P. Kühmstedt, and G. Notni, “Non-destructive 3d shape measurement of transparent and black objects with thermal fringes,” Proc. SPIE 9868, 98680C (2016).
[Crossref]

Hirschmuller, H.

H. Hirschmuller, “Stereo processing by semiglobal matching and mutual information,” IEEE Trans. Patt. Analy. Mach. Intellig. 30, 328–341 (2008).
[Crossref]

Hu, S.

K. Song, S. Hu, X. Wen, and Y. Yan, “Fast 3d shape measurement using fourier transform profilometry without phase unwrapping,” Opt. Laser Eng. 84, 74–81 (2016).
[Crossref]

Huddart, Y. R.

Ishiyama, R.

Jiang, C.

C. Jiang and S. Zhang, “Absolute phase unwrapping for dual-camera system without embedding statistical features,” Opt. Eng. 56, 094114 (2017).
[Crossref]

Kanade, T.

T. Kanade and M. Okutomi, “A stereo matching algorithm with an adaptive window: Theory and experiment,” IEEE Trans. Patt. Analy. Mach. Intellig. 16, 920–932 (1994).
[Crossref]

Kautz, J.

F. Besse, C. Rother, A. W. Fitzgibbon, and J. Kautz, “Pmbp: Patchmatch belief propagation for correspondence field estimation,” Intl J. Comp. Vis. 110, 2–13 (2013).
[Crossref]

Kofman, J.

Kolmogorov, V.

V. Kolmogorov and R. Zabih, “Multi-camera scene reconstruction via graph cuts,” in “Euro Conf. Comp. Vis.” (2002), pp. 82–96.

Kostková, J.

J. Kostková and R. Sára, “Stratified dense matching for stereopsis in complex scenes,” in “Proc. Brit. Mach. Vis. Conf.”, (2003), pp. 339–348.

Kuhmstedt, P.

C. Brauer-Burchardt, P. Kuhmstedt, and G. Notni, “Phase unwrapping using geometric constraints for high-speed fringe projection based 3d measurements,” Proc. SPIE 8789, 878906 (2013).
[Crossref]

C. Brauer-Burchardt, P. Kuhmstedt, M. Heinze, P. Kuhmstedt, and G. Notni, “Using geometric constraints to solve the point correspondence problem in fringe projection based 3d measuring systems,” in Proc. 16th Intl Conference on Image Analysis and Proc.(2011), pp. 265–274.

C. Brauer-Burchardt, P. Kuhmstedt, M. Heinze, P. Kuhmstedt, and G. Notni, “Using geometric constraints to solve the point correspondence problem in fringe projection based 3d measuring systems,” in Proc. 16th Intl Conference on Image Analysis and Proc.(2011), pp. 265–274.

Kühmstedt, P.

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using gobo projection,” Opt. Laser Eng. 87, 90–96 (2016).
[Crossref]

A. Brahm, C. Rossler, P. Dietrich, S. Heist, P. Kühmstedt, and G. Notni, “Non-destructive 3d shape measurement of transparent and black objects with thermal fringes,” Proc. SPIE 9868, 98680C (2016).
[Crossref]

Lei, Y.

K. Zhong, Z. Li, Y. Shi, C. Wang, and Y. Lei, “Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping,” Opt. Laser Eng. 51, 1213–1222 (2013).
[Crossref]

Li, B.

B. Li, Y. An, D. Cappelleri, J. Xu, and S. Zhang, “High-accuracy, high-speed 3d structured light imaging techniques and potential applications to intelligent robotics,” Intl. J. Intelligent Robotics Appl. 1, 86–103 (2017).
[Crossref]

Li, Y.

Li, Z.

Z. Li, K. Zhong, Y. Li, X. Zhou, and Y. Shi, “Multiview phase shifting: a full-resolution and high-speed 3d measurement framework for arbitrary shape dynamic objects,” Opt. Lett. 38, 1389–1391 (2013).
[Crossref] [PubMed]

K. Zhong, Z. Li, Y. Shi, C. Wang, and Y. Lei, “Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping,” Opt. Laser Eng. 51, 1213–1222 (2013).
[Crossref]

K. Zhong, Z. Li, Y. Shi, and C. Wang, “Analysis of solving the point correspondence problem by trifocal tensor for real-time phase measurement profilometry,” Proc. SPIE 8493, 8493 (2012).

Liu, X.

Lohry, W.

Lutzke, P.

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using gobo projection,” Opt. Laser Eng. 87, 90–96 (2016).
[Crossref]

Notni, G.

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using gobo projection,” Opt. Laser Eng. 87, 90–96 (2016).
[Crossref]

A. Brahm, C. Rossler, P. Dietrich, S. Heist, P. Kühmstedt, and G. Notni, “Non-destructive 3d shape measurement of transparent and black objects with thermal fringes,” Proc. SPIE 9868, 98680C (2016).
[Crossref]

C. Brauer-Burchardt, P. Kuhmstedt, and G. Notni, “Phase unwrapping using geometric constraints for high-speed fringe projection based 3d measurements,” Proc. SPIE 8789, 878906 (2013).
[Crossref]

C. Brauer-Burchardt, P. Kuhmstedt, M. Heinze, P. Kuhmstedt, and G. Notni, “Using geometric constraints to solve the point correspondence problem in fringe projection based 3d measuring systems,” in Proc. 16th Intl Conference on Image Analysis and Proc.(2011), pp. 265–274.

Okatani, T.

Okutomi, M.

T. Kanade and M. Okutomi, “A stereo matching algorithm with an adaptive window: Theory and experiment,” IEEE Trans. Patt. Analy. Mach. Intellig. 16, 920–932 (1994).
[Crossref]

Pritt, M. D.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software(John Wiley and Sons, 1998).

Rodella, R.

Roser, M.

A. Geiger, M. Roser, and R. Urtasun, “Efficient large-scale stereo matching,” Asian Conf. Computer Vis. 6492, 25–38 (2011).

Rossler, C.

A. Brahm, C. Rossler, P. Dietrich, S. Heist, P. Kühmstedt, and G. Notni, “Non-destructive 3d shape measurement of transparent and black objects with thermal fringes,” Proc. SPIE 9868, 98680C (2016).
[Crossref]

Rother, C.

F. Besse, C. Rother, A. W. Fitzgibbon, and J. Kautz, “Pmbp: Patchmatch belief propagation for correspondence field estimation,” Intl J. Comp. Vis. 110, 2–13 (2013).
[Crossref]

Sakamoto, S.

Sansoni, G.

Sára, R.

J. Kostková and R. Sára, “Stratified dense matching for stereopsis in complex scenes,” in “Proc. Brit. Mach. Vis. Conf.”, (2003), pp. 339–348.

Schmidt, I.

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using gobo projection,” Opt. Laser Eng. 87, 90–96 (2016).
[Crossref]

Shen, X.

S. Xu, F. Zhang, X. He, X. Shen, and X. Zhang, “Pm-pm: Patchmatch with potts model for object segmentation and stereo matching,” IEEE Trans. Image Proc. 24, 2182–2196 (2015).
[Crossref]

Shi, Y.

K. Zhong, Z. Li, Y. Shi, C. Wang, and Y. Lei, “Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping,” Opt. Laser Eng. 51, 1213–1222 (2013).
[Crossref]

Z. Li, K. Zhong, Y. Li, X. Zhou, and Y. Shi, “Multiview phase shifting: a full-resolution and high-speed 3d measurement framework for arbitrary shape dynamic objects,” Opt. Lett. 38, 1389–1391 (2013).
[Crossref] [PubMed]

K. Zhong, Z. Li, Y. Shi, and C. Wang, “Analysis of solving the point correspondence problem by trifocal tensor for real-time phase measurement profilometry,” Proc. SPIE 8493, 8493 (2012).

Slaughter, J.

D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (dmd) applications,” Proc. SPIE 4985, 1 (2003).

Song, K.

K. Song, S. Hu, X. Wen, and Y. Yan, “Fast 3d shape measurement using fourier transform profilometry without phase unwrapping,” Opt. Laser Eng. 84, 74–81 (2016).
[Crossref]

Su, X.

X. Su and W. Chen, “Reliability-guided phase unwrapping algorithm: a review,” Opt. Laser Eng. 42, 245–261 (2004).
[Crossref]

Tajima, J.

Tünnermann, A.

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using gobo projection,” Opt. Laser Eng. 87, 90–96 (2016).
[Crossref]

Urtasun, R.

A. Geiger, M. Roser, and R. Urtasun, “Efficient large-scale stereo matching,” Asian Conf. Computer Vis. 6492, 25–38 (2011).

Valera, J. D. R.

Wang, C.

K. Zhong, Z. Li, Y. Shi, C. Wang, and Y. Lei, “Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping,” Opt. Laser Eng. 51, 1213–1222 (2013).
[Crossref]

K. Zhong, Z. Li, Y. Shi, and C. Wang, “Analysis of solving the point correspondence problem by trifocal tensor for real-time phase measurement profilometry,” Proc. SPIE 8493, 8493 (2012).

Wen, X.

K. Song, S. Hu, X. Wen, and Y. Yan, “Fast 3d shape measurement using fourier transform profilometry without phase unwrapping,” Opt. Laser Eng. 84, 74–81 (2016).
[Crossref]

Weston, N. J.

Wyant, J. C.

Xu, J.

B. Li, Y. An, D. Cappelleri, J. Xu, and S. Zhang, “High-accuracy, high-speed 3d structured light imaging techniques and potential applications to intelligent robotics,” Intl. J. Intelligent Robotics Appl. 1, 86–103 (2017).
[Crossref]

Xu, S.

S. Xu, F. Zhang, X. He, X. Shen, and X. Zhang, “Pm-pm: Patchmatch with potts model for object segmentation and stereo matching,” IEEE Trans. Image Proc. 24, 2182–2196 (2015).
[Crossref]

Yan, L.

S. Zhu and L. Yan, “Local stereo matching algorithm with efficient matching cost and adaptive guided image filter,” Visual Computer 33, 1087–1102 (2017).
[Crossref]

Yan, Y.

K. Song, S. Hu, X. Wen, and Y. Yan, “Fast 3d shape measurement using fourier transform profilometry without phase unwrapping,” Opt. Laser Eng. 84, 74–81 (2016).
[Crossref]

Zabih, R.

V. Kolmogorov and R. Zabih, “Multi-camera scene reconstruction via graph cuts,” in “Euro Conf. Comp. Vis.” (2002), pp. 82–96.

Zhang, F.

S. Xu, F. Zhang, X. He, X. Shen, and X. Zhang, “Pm-pm: Patchmatch with potts model for object segmentation and stereo matching,” IEEE Trans. Image Proc. 24, 2182–2196 (2015).
[Crossref]

Zhang, S.

B. Li, Y. An, D. Cappelleri, J. Xu, and S. Zhang, “High-accuracy, high-speed 3d structured light imaging techniques and potential applications to intelligent robotics,” Intl. J. Intelligent Robotics Appl. 1, 86–103 (2017).
[Crossref]

C. Jiang and S. Zhang, “Absolute phase unwrapping for dual-camera system without embedding statistical features,” Opt. Eng. 56, 094114 (2017).
[Crossref]

W. Lohry, V. Chen, and S. Zhang, “Absolute three-dimensional shape measurement using coded fringe patterns without phase unwrapping or projector calibration,” Opt. Express 22, 1287–1301 (2014).
[Crossref] [PubMed]

S. Zhang, High-speed 3D Imaging with Digital Fringe Projection Technique, 1st ed. (CRC Press, 2016).

Zhang, X.

S. Xu, F. Zhang, X. He, X. Shen, and X. Zhang, “Pm-pm: Patchmatch with potts model for object segmentation and stereo matching,” IEEE Trans. Image Proc. 24, 2182–2196 (2015).
[Crossref]

Zhong, K.

K. Zhong, Z. Li, Y. Shi, C. Wang, and Y. Lei, “Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping,” Opt. Laser Eng. 51, 1213–1222 (2013).
[Crossref]

Z. Li, K. Zhong, Y. Li, X. Zhou, and Y. Shi, “Multiview phase shifting: a full-resolution and high-speed 3d measurement framework for arbitrary shape dynamic objects,” Opt. Lett. 38, 1389–1391 (2013).
[Crossref] [PubMed]

K. Zhong, Z. Li, Y. Shi, and C. Wang, “Analysis of solving the point correspondence problem by trifocal tensor for real-time phase measurement profilometry,” Proc. SPIE 8493, 8493 (2012).

Zhou, X.

Zhu, S.

S. Zhu and L. Yan, “Local stereo matching algorithm with efficient matching cost and adaptive guided image filter,” Visual Computer 33, 1087–1102 (2017).
[Crossref]

Appl. Opt. (4)

Asian Conf. Computer Vis. (1)

A. Geiger, M. Roser, and R. Urtasun, “Efficient large-scale stereo matching,” Asian Conf. Computer Vis. 6492, 25–38 (2011).

IEEE Trans. Image Proc. (1)

S. Xu, F. Zhang, X. He, X. Shen, and X. Zhang, “Pm-pm: Patchmatch with potts model for object segmentation and stereo matching,” IEEE Trans. Image Proc. 24, 2182–2196 (2015).
[Crossref]

IEEE Trans. Patt. Analy. Mach. Intellig. (2)

T. Kanade and M. Okutomi, “A stereo matching algorithm with an adaptive window: Theory and experiment,” IEEE Trans. Patt. Analy. Mach. Intellig. 16, 920–932 (1994).
[Crossref]

H. Hirschmuller, “Stereo processing by semiglobal matching and mutual information,” IEEE Trans. Patt. Analy. Mach. Intellig. 30, 328–341 (2008).
[Crossref]

Intl J. Comp. Vis. (1)

F. Besse, C. Rother, A. W. Fitzgibbon, and J. Kautz, “Pmbp: Patchmatch belief propagation for correspondence field estimation,” Intl J. Comp. Vis. 110, 2–13 (2013).
[Crossref]

Intl. J. Intelligent Robotics Appl. (1)

B. Li, Y. An, D. Cappelleri, J. Xu, and S. Zhang, “High-accuracy, high-speed 3d structured light imaging techniques and potential applications to intelligent robotics,” Intl. J. Intelligent Robotics Appl. 1, 86–103 (2017).
[Crossref]

Opt. Eng. (1)

C. Jiang and S. Zhang, “Absolute phase unwrapping for dual-camera system without embedding statistical features,” Opt. Eng. 56, 094114 (2017).
[Crossref]

Opt. Express (3)

Opt. Laser Eng. (4)

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using gobo projection,” Opt. Laser Eng. 87, 90–96 (2016).
[Crossref]

X. Su and W. Chen, “Reliability-guided phase unwrapping algorithm: a review,” Opt. Laser Eng. 42, 245–261 (2004).
[Crossref]

K. Zhong, Z. Li, Y. Shi, C. Wang, and Y. Lei, “Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping,” Opt. Laser Eng. 51, 1213–1222 (2013).
[Crossref]

K. Song, S. Hu, X. Wen, and Y. Yan, “Fast 3d shape measurement using fourier transform profilometry without phase unwrapping,” Opt. Laser Eng. 84, 74–81 (2016).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (4)

A. Brahm, C. Rossler, P. Dietrich, S. Heist, P. Kühmstedt, and G. Notni, “Non-destructive 3d shape measurement of transparent and black objects with thermal fringes,” Proc. SPIE 9868, 98680C (2016).
[Crossref]

D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (dmd) applications,” Proc. SPIE 4985, 1 (2003).

C. Brauer-Burchardt, P. Kuhmstedt, and G. Notni, “Phase unwrapping using geometric constraints for high-speed fringe projection based 3d measurements,” Proc. SPIE 8789, 878906 (2013).
[Crossref]

K. Zhong, Z. Li, Y. Shi, and C. Wang, “Analysis of solving the point correspondence problem by trifocal tensor for real-time phase measurement profilometry,” Proc. SPIE 8493, 8493 (2012).

Visual Computer (1)

S. Zhu and L. Yan, “Local stereo matching algorithm with efficient matching cost and adaptive guided image filter,” Visual Computer 33, 1087–1102 (2017).
[Crossref]

Other (6)

C. Brauer-Burchardt, P. Kuhmstedt, M. Heinze, P. Kuhmstedt, and G. Notni, “Using geometric constraints to solve the point correspondence problem in fringe projection based 3d measuring systems,” in Proc. 16th Intl Conference on Image Analysis and Proc.(2011), pp. 265–274.

S. Zhang, High-speed 3D Imaging with Digital Fringe Projection Technique, 1st ed. (CRC Press, 2016).

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software(John Wiley and Sons, 1998).

V. Kolmogorov and R. Zabih, “Multi-camera scene reconstruction via graph cuts,” in “Euro Conf. Comp. Vis.” (2002), pp. 82–96.

J. Kostková and R. Sára, “Stratified dense matching for stereopsis in complex scenes,” in “Proc. Brit. Mach. Vis. Conf.”, (2003), pp. 339–348.

D. Malacara, ed., Optical Shop Testing (John Wiley and Sons, 2007), 3rd ed.
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1       Visualization 1

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic diagram of the mechanical projection system.
Fig. 2
Fig. 2 Timing diagram for the proposed high-speed 3D shape measurement system. Here Ts represents the period of the slot projection; Tc represents the period of the signal generated by the microprocessor to trigger both high-speed cameras; texp represents the exposure time of the camera; and N represents the number of phase-shifted fringe patterns required for one 3D reconstruction.
Fig. 3
Fig. 3 Computational framework of our proposed 3D reconstruction method.
Fig. 4
Fig. 4 Illustration of epipolar geometry for a stereo-vision system.
Fig. 5
Fig. 5 Image rectification to facilitate correspondence searching. (a) Texture image captured by the left camera; (b) rectified image of (a); (c) a pair of rectified images for stereo matching, horizontal green lines (v1, v2, …) show representative epipolar lines.
Fig. 6
Fig. 6 Graphical illustrations of the proposed disparity map establishments on one epipolar line v. The first row image shows two rectified images; the second row image illustrates the rough corresponding point establishment using the standard stereo-vision algorithm on the rectified texture image; the third row image illustrates that first step of refinement by applying the phase constraint, e.g., the initial corresponding point P r ( u 0 r , v ) is shifted by τ0 to P r ( u 0 r , + τ 0 , v ); and the bottom row image shows the last refinement stage by subpixel interpolation, further move P r ( u 0 r , + τ 0 , v ) by Δτ to the ultimate matching point Pr(ur, v).
Fig. 7
Fig. 7 Photograph of experimental hardware system setup.
Fig. 8
Fig. 8 Measurement results of a ping-pong ball. (a) One of three phase-shifted fringe patterns captured by the left camera; (b) the texture image obtained by averaging three fringe patterns captured by the left camera; (c) wrapped phase map from those images captured by the left camera; (d)–(f) corresponding images for the right camera.
Fig. 9
Fig. 9 Measurement results of a ping-pong ball shown in Fig. 8. (a) 3D reconstruction using the rough disparity map generated by the ELAS algorithm; (b) 3D reconstruction result from refined disparity map after applying our proposed refinement algorithm; (c) overlays of the ideal fitted sphere and the measured data; (d) difference map between the fitted ideal sphere and the measured data (rms error of approximately 6 µm, and the standard deviation of approximately 78 µm).
Fig. 10
Fig. 10 Measurement results of a statue with complex geometry. (a) Photograph of the sculpture; (b) one of three phase-shifted fringe patterns captured by the left camera; (c) the corresponding texture image; (d) 3D reconstruction using the rough disparity map generated by the ELAS algorithm; (e) 3D reconstruction by applying the phase constraint; (f) 3D reconstruction using our proposed sub-pixel level refinement algorithm.
Fig. 11
Fig. 11 Closed-up views of the results from Fig. 10 around the mouth region. (a) Zoom-in view of Fig. 10(a); (b) zoom-in view of Fig. 10(d); (c) zoom-in view of Fig. 10(e); (d) zoom-in view of Fig. 10(f).
Fig. 12
Fig. 12 Measurement results of multiple isolated objects. (a) Photograph of the objects; (b) 3D reconstruction using the rough disparity map; (d) 3D reconstruction using the refined disparity map.
Fig. 13
Fig. 13 Experimental results of measuring a rapidly moving object. Five representative frames from a sequence of recording shown in the associated with Visualization 1

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I k ( x , y ) = I ( x , y ) + I ( x , y ) cos [ ϕ ( x , y ) δ k ] ,
ϕ ( x , y ) = tan 1 [ k = 1 N I k ( x , y ) sin δ k k = 1 N I k ( x , y ) cos δ k ] .
I ( x , y ) = [ k = 1 N I k ( x , y ) N ] .
T c = T s / N ,
f s = ω 2 π × 60 × M
[ ϕ r ( u r + τ 0 , v ) ϕ l ( u l , v ) ] [ ϕ r ( u r + τ 0 , + 1 , v ) ϕ l ( u l , v ) ] 0 ,
Δ τ = ϕ l ( u l , v ) ϕ r ( u r + τ 0 , v ) ϕ r ( u r + τ 0 + 1 , v ) ϕ r ( u r + τ 0 , v ) .
d = d 0 + τ 0 + Δ τ = u 0 r u l + τ 0 + Δ τ .

Metrics