Abstract

Arbitrary control of electromagnetic waves remains a significant challenge although it promises many important applications. Here, we proposed a fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry (PB) phase, of which the elements are non-absorptive and capable of predicting the wideband and smooth phase-shift. In our design method, the metasurface is composed of low-Q-factor resonant elements without using the PB phase, and is optimized by the genetic algorithm and nonlinear fitting method, having the advantages that the far field scattering patterns can be quickly synthesized by the hybrid array patterns. To validate the design method, a wideband low radar cross section metasurface is demonstrated, showing good feasibility and performance of wideband RCS reduction. This work reveals an opportunity arising from a metasurface in effective manipulation of microwave and flexible fast optimal design method.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fast design of broadband terahertz diffusion metasurfaces

Jie Zhao, Qiang Cheng, Tian Qi Wang, Wei Yuan, and Tie Jun Cui
Opt. Express 25(2) 1050-1061 (2017)

Tunable Pancharatnam–Berry metasurface for dynamical and high-efficiency anomalous reflection

He-Xiu Xu, Guang-Ming Wang, Tong Cai, Jun Xiao, and Ya-Qiang Zhuang
Opt. Express 24(24) 27836-27848 (2016)

Formation of helical beams by use of Pancharatnam–Berry phase optical elements

Gabriel Biener, Avi Niv, Vladimir Kleiner, and Erez Hasman
Opt. Lett. 27(21) 1875-1877 (2002)

References

  • View by:
  • |
  • |
  • |

  1. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  2. S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
    [Crossref] [PubMed]
  3. C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
    [Crossref]
  4. X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
    [Crossref] [PubMed]
  5. N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (John Wiley & Sons, 2006).
  6. C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
    [Crossref] [PubMed]
  7. S. Xiao, H. Mühlenbernd, G. Li, M. Kenney, F. Liu, T. Zentgraf, S. Zhang, and J. Li, “Helicity‐preserving omnidirectional plasmonic mirror,” Adv. Opt. Mater. 4(5), 654–658 (2016).
    [Crossref]
  8. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
    [Crossref] [PubMed]
  9. M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High‐efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
    [Crossref]
  10. T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
    [Crossref]
  11. C. Della Giovampaola and N. Engheta, “Digital metamaterials,” Nat. Mater. 13(12), 1115–1121 (2014).
    [Crossref] [PubMed]
  12. T. J. Cui, S. Liu, and L. L. Lian, “Information entropy of coding metasurface,” Light Sci. Appl. 5(11), e16172 (2016).
    [Crossref]
  13. L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
    [Crossref]
  14. D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
    [Crossref]
  15. F. Costa, A. Monorchio, and G. Manara, “Wideband scattering diffusion by using diffraction of periodic surfaces and optimized unit cell geometries,” Sci. Rep. 6(1), 25458 (2016).
    [Crossref] [PubMed]
  16. S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 5(1), 37409 (2016).
    [Crossref] [PubMed]
  17. K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
    [Crossref] [PubMed]
  18. Q. Q. Zheng, Y. F. Li, J. Q. Zhang, H. Ma, J. F. Wang, Y. Q. Pang, Y. J. Han, S. Sui, Y. Shen, H. Y. Chen, and S. B. Qu, “Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase,” Sci. Rep. 7, 43543 (2017).
    [Crossref]
  19. H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
    [Crossref] [PubMed]
  20. M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC Structure for Radar Cross-Section Reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
    [Crossref]
  21. T. Hao, C. J. Stevens, and D. J. Edwards, “Optimization of metamaterials by Q factor,” Electron. Lett. 41(11), 653–654 (2005).
  22. S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
    [Crossref]
  23. C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (Wiley, 2005).

2017 (1)

Q. Q. Zheng, Y. F. Li, J. Q. Zhang, H. Ma, J. F. Wang, Y. Q. Pang, Y. J. Han, S. Sui, Y. Shen, H. Y. Chen, and S. B. Qu, “Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase,” Sci. Rep. 7, 43543 (2017).
[Crossref]

2016 (7)

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

S. Xiao, H. Mühlenbernd, G. Li, M. Kenney, F. Liu, T. Zentgraf, S. Zhang, and J. Li, “Helicity‐preserving omnidirectional plasmonic mirror,” Adv. Opt. Mater. 4(5), 654–658 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

T. J. Cui, S. Liu, and L. L. Lian, “Information entropy of coding metasurface,” Light Sci. Appl. 5(11), e16172 (2016).
[Crossref]

F. Costa, A. Monorchio, and G. Manara, “Wideband scattering diffusion by using diffraction of periodic surfaces and optimized unit cell geometries,” Sci. Rep. 6(1), 25458 (2016).
[Crossref] [PubMed]

S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 5(1), 37409 (2016).
[Crossref] [PubMed]

2015 (3)

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High‐efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

2014 (4)

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

C. Della Giovampaola and N. Engheta, “Digital metamaterials,” Nat. Mater. 13(12), 1115–1121 (2014).
[Crossref] [PubMed]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
[Crossref] [PubMed]

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

2012 (3)

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref] [PubMed]

2011 (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

2007 (1)

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC Structure for Radar Cross-Section Reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

2005 (1)

T. Hao, C. J. Stevens, and D. J. Edwards, “Optimization of metamaterials by Q factor,” Electron. Lett. 41(11), 653–654 (2005).

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Boltasseva, A.

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

Booth, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Brener, I.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High‐efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Cai, B.

Cao, X. Y.

S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 5(1), 37409 (2016).
[Crossref] [PubMed]

Capasso, F.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Chen, H. B.

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Chen, H. T.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Chen, H. Y.

Q. Q. Zheng, Y. F. Li, J. Q. Zhang, H. Ma, J. F. Wang, Y. Q. Pang, Y. J. Han, S. Sui, Y. Shen, H. Y. Chen, and S. B. Qu, “Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase,” Sci. Rep. 7, 43543 (2017).
[Crossref]

Chen, W. T.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Cheng, Q.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
[Crossref] [PubMed]

Costa, F.

F. Costa, A. Monorchio, and G. Manara, “Wideband scattering diffusion by using diffraction of periodic surfaces and optimized unit cell geometries,” Sci. Rep. 6(1), 25458 (2016).
[Crossref] [PubMed]

Cui, T. J.

T. J. Cui, S. Liu, and L. L. Lian, “Information entropy of coding metasurface,” Light Sci. Appl. 5(11), e16172 (2016).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
[Crossref] [PubMed]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref] [PubMed]

de Maagt, P.

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC Structure for Radar Cross-Section Reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

Decker, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High‐efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Della Giovampaola, C.

C. Della Giovampaola and N. Engheta, “Digital metamaterials,” Nat. Mater. 13(12), 1115–1121 (2014).
[Crossref] [PubMed]

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Dominguez, J.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High‐efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Dong, D. S.

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
[Crossref] [PubMed]

Ederra, I.

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC Structure for Radar Cross-Section Reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

Edwards, D. J.

T. Hao, C. J. Stevens, and D. J. Edwards, “Optimization of metamaterials by Q factor,” Electron. Lett. 41(11), 653–654 (2005).

Emani, N. K.

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

Engheta, N.

C. Della Giovampaola and N. Engheta, “Digital metamaterials,” Nat. Mater. 13(12), 1115–1121 (2014).
[Crossref] [PubMed]

Falkner, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High‐efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Fang, Z.

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

Feng, M. D.

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gao, L. H.

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gonzalo, R.

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC Structure for Radar Cross-Section Reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

Gordon, J. A.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Grbic, A.

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

Guo, G. Y.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Han, J. F.

S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 5(1), 37409 (2016).
[Crossref] [PubMed]

Han, Y. J.

Q. Q. Zheng, Y. F. Li, J. Q. Zhang, H. Ma, J. F. Wang, Y. Q. Pang, Y. J. Han, S. Sui, Y. Shen, H. Y. Chen, and S. B. Qu, “Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase,” Sci. Rep. 7, 43543 (2017).
[Crossref]

Hao, T.

T. Hao, C. J. Stevens, and D. J. Edwards, “Optimization of metamaterials by Q factor,” Electron. Lett. 41(11), 653–654 (2005).

He, Q.

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref] [PubMed]

Holloway, C. L.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Iriarte, J. C.

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC Structure for Radar Cross-Section Reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

Jiang, W. X.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Jin, B. B.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Juan, T. K.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kenney, M.

S. Xiao, H. Mühlenbernd, G. Li, M. Kenney, F. Liu, T. Zentgraf, S. Zhang, and J. Li, “Helicity‐preserving omnidirectional plasmonic mirror,” Adv. Opt. Mater. 4(5), 654–658 (2016).
[Crossref]

Khorasaninejad, M.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Kivshar, Y. S.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High‐efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Kuester, E. F.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Kung, W. T.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Li, G.

S. Xiao, H. Mühlenbernd, G. Li, M. Kenney, F. Liu, T. Zentgraf, S. Zhang, and J. Li, “Helicity‐preserving omnidirectional plasmonic mirror,” Adv. Opt. Mater. 4(5), 654–658 (2016).
[Crossref]

Li, J.

S. Xiao, H. Mühlenbernd, G. Li, M. Kenney, F. Liu, T. Zentgraf, S. Zhang, and J. Li, “Helicity‐preserving omnidirectional plasmonic mirror,” Adv. Opt. Mater. 4(5), 654–658 (2016).
[Crossref]

Li, S. J.

S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 5(1), 37409 (2016).
[Crossref] [PubMed]

Li, X.

Li, Y. F.

Q. Q. Zheng, Y. F. Li, J. Q. Zhang, H. Ma, J. F. Wang, Y. Q. Pang, Y. J. Han, S. Sui, Y. Shen, H. Y. Chen, and S. B. Qu, “Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase,” Sci. Rep. 7, 43543 (2017).
[Crossref]

Lian, L. L.

T. J. Cui, S. Liu, and L. L. Lian, “Information entropy of coding metasurface,” Light Sci. Appl. 5(11), e16172 (2016).
[Crossref]

Liang, L. J.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Liao, C. Y.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Liu, F.

S. Xiao, H. Mühlenbernd, G. Li, M. Kenney, F. Liu, T. Zentgraf, S. Zhang, and J. Li, “Helicity‐preserving omnidirectional plasmonic mirror,” Adv. Opt. Mater. 4(5), 654–658 (2016).
[Crossref]

Liu, S.

T. J. Cui, S. Liu, and L. L. Lian, “Information entropy of coding metasurface,” Light Sci. Appl. 5(11), e16172 (2016).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Liu, W. W.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

Liu, X.

S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 5(1), 37409 (2016).
[Crossref] [PubMed]

Ma, H.

Q. Q. Zheng, Y. F. Li, J. Q. Zhang, H. Ma, J. F. Wang, Y. Q. Pang, Y. J. Han, S. Sui, Y. Shen, H. Y. Chen, and S. B. Qu, “Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase,” Sci. Rep. 7, 43543 (2017).
[Crossref]

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Ma, H. F.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Ma, S. J.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

Manara, G.

F. Costa, A. Monorchio, and G. Manara, “Wideband scattering diffusion by using diffraction of periodic surfaces and optimized unit cell geometries,” Sci. Rep. 6(1), 25458 (2016).
[Crossref] [PubMed]

Monorchio, A.

F. Costa, A. Monorchio, and G. Manara, “Wideband scattering diffusion by using diffraction of periodic surfaces and optimized unit cell geometries,” Sci. Rep. 6(1), 25458 (2016).
[Crossref] [PubMed]

Mühlenbernd, H.

S. Xiao, H. Mühlenbernd, G. Li, M. Kenney, F. Liu, T. Zentgraf, S. Zhang, and J. Li, “Helicity‐preserving omnidirectional plasmonic mirror,” Adv. Opt. Mater. 4(5), 654–658 (2016).
[Crossref]

Neshev, D. N.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High‐efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

O’Hara, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Oh, J.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Pang, Y. Q.

Q. Q. Zheng, Y. F. Li, J. Q. Zhang, H. Ma, J. F. Wang, Y. Q. Pang, Y. J. Han, S. Sui, Y. Shen, H. Y. Chen, and S. B. Qu, “Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase,” Sci. Rep. 7, 43543 (2017).
[Crossref]

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Paquay, M.

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC Structure for Radar Cross-Section Reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

Pertsch, T.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High‐efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Pfeiffer, C.

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

Qi, M. Q.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Qu, S. B.

Q. Q. Zheng, Y. F. Li, J. Q. Zhang, H. Ma, J. F. Wang, Y. Q. Pang, Y. J. Han, S. Sui, Y. Shen, H. Y. Chen, and S. B. Qu, “Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase,” Sci. Rep. 7, 43543 (2017).
[Crossref]

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Shalaev, V. M.

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

Shaltout, A. M.

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

Shen, Y.

Q. Q. Zheng, Y. F. Li, J. Q. Zhang, H. Ma, J. F. Wang, Y. Q. Pang, Y. J. Han, S. Sui, Y. Shen, H. Y. Chen, and S. B. Qu, “Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase,” Sci. Rep. 7, 43543 (2017).
[Crossref]

Smith, D. R.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Staude, I.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High‐efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Stevens, C. J.

T. Hao, C. J. Stevens, and D. J. Edwards, “Optimization of metamaterials by Q factor,” Electron. Lett. 41(11), 653–654 (2005).

Sui, S.

Q. Q. Zheng, Y. F. Li, J. Q. Zhang, H. Ma, J. F. Wang, Y. Q. Pang, Y. J. Han, S. Sui, Y. Shen, H. Y. Chen, and S. B. Qu, “Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase,” Sci. Rep. 7, 43543 (2017).
[Crossref]

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Sun, S.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Taylor, A. J.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Tsai, D. P.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Wan, X.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Wang, C. M.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Wang, J. F.

Q. Q. Zheng, Y. F. Li, J. Q. Zhang, H. Ma, J. F. Wang, Y. Q. Pang, Y. J. Han, S. Sui, Y. Shen, H. Y. Chen, and S. B. Qu, “Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase,” Sci. Rep. 7, 43543 (2017).
[Crossref]

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Wang, K.

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
[Crossref] [PubMed]

Wen, Q. Y.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Wu, P. H.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Xia, S.

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Xiao, S.

S. Xiao, H. Mühlenbernd, G. Li, M. Kenney, F. Liu, T. Zentgraf, S. Zhang, and J. Li, “Helicity‐preserving omnidirectional plasmonic mirror,” Adv. Opt. Mater. 4(5), 654–658 (2016).
[Crossref]

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref] [PubMed]

Xu, L. M.

S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 5(1), 37409 (2016).
[Crossref] [PubMed]

Xu, Z.

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Yang, H. H.

S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 5(1), 37409 (2016).
[Crossref] [PubMed]

Yang, J.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

Yang, K. Y.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Yao, J. Q.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Yu, N.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Zentgraf, T.

S. Xiao, H. Mühlenbernd, G. Li, M. Kenney, F. Liu, T. Zentgraf, S. Zhang, and J. Li, “Helicity‐preserving omnidirectional plasmonic mirror,” Adv. Opt. Mater. 4(5), 654–658 (2016).
[Crossref]

Zhang, C.

S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 5(1), 37409 (2016).
[Crossref] [PubMed]

Zhang, D.

S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 5(1), 37409 (2016).
[Crossref] [PubMed]

Zhang, J. Q.

Q. Q. Zheng, Y. F. Li, J. Q. Zhang, H. Ma, J. F. Wang, Y. Q. Pang, Y. J. Han, S. Sui, Y. Shen, H. Y. Chen, and S. B. Qu, “Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase,” Sci. Rep. 7, 43543 (2017).
[Crossref]

Zhang, S.

S. Xiao, H. Mühlenbernd, G. Li, M. Kenney, F. Liu, T. Zentgraf, S. Zhang, and J. Li, “Helicity‐preserving omnidirectional plasmonic mirror,” Adv. Opt. Mater. 4(5), 654–658 (2016).
[Crossref]

Zhang, Z.

S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 5(1), 37409 (2016).
[Crossref] [PubMed]

Zhao, J.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
[Crossref] [PubMed]

Zhao, Y.

S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 5(1), 37409 (2016).
[Crossref] [PubMed]

Zheng, Q. Q.

Q. Q. Zheng, Y. F. Li, J. Q. Zhang, H. Ma, J. F. Wang, Y. Q. Pang, Y. J. Han, S. Sui, Y. Shen, H. Y. Chen, and S. B. Qu, “Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase,” Sci. Rep. 7, 43543 (2017).
[Crossref]

Zheng, Y. J.

S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 5(1), 37409 (2016).
[Crossref] [PubMed]

Zhou, L.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref] [PubMed]

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Zhou, L. J.

S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 5(1), 37409 (2016).
[Crossref] [PubMed]

Zhu, A. Y.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Adv. Opt. Mater. (3)

S. Xiao, H. Mühlenbernd, G. Li, M. Kenney, F. Liu, T. Zentgraf, S. Zhang, and J. Li, “Helicity‐preserving omnidirectional plasmonic mirror,” Adv. Opt. Mater. 4(5), 654–658 (2016).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High‐efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

Appl. Phys. Lett. (1)

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Electron. Lett. (1)

T. Hao, C. J. Stevens, and D. J. Edwards, “Optimization of metamaterials by Q factor,” Electron. Lett. 41(11), 653–654 (2005).

IEEE Antennas Propag. Mag. (1)

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC Structure for Radar Cross-Section Reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

Light Sci. Appl. (3)

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

T. J. Cui, S. Liu, and L. L. Lian, “Information entropy of coding metasurface,” Light Sci. Appl. 5(11), e16172 (2016).
[Crossref]

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Nano Lett. (2)

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

C. Della Giovampaola and N. Engheta, “Digital metamaterials,” Nat. Mater. 13(12), 1115–1121 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Rep. Prog. Phys. (1)

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Sci. Rep. (4)

F. Costa, A. Monorchio, and G. Manara, “Wideband scattering diffusion by using diffraction of periodic surfaces and optimized unit cell geometries,” Sci. Rep. 6(1), 25458 (2016).
[Crossref] [PubMed]

S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 5(1), 37409 (2016).
[Crossref] [PubMed]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
[Crossref] [PubMed]

Q. Q. Zheng, Y. F. Li, J. Q. Zhang, H. Ma, J. F. Wang, Y. Q. Pang, Y. J. Han, S. Sui, Y. Shen, H. Y. Chen, and S. B. Qu, “Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase,” Sci. Rep. 7, 43543 (2017).
[Crossref]

Science (2)

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Other (2)

N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (John Wiley & Sons, 2006).

C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (Wiley, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

The frequency dependence between Q-factor and phase shift.

Fig. 2
Fig. 2

(a) Schematic of the unit cell topology of the Crusades. (b) The corresponding low Q-factor in wideband by proper design of unit cell.

Fig. 3
Fig. 3

The relationship between parameter b and its reflective phase utilizing nonlinear fitting with discrete frequency sample of 12, 13, 15, 18, 19, 21, 24GHz respectively.

Fig. 4
Fig. 4

The simulation result of reflective phase and amplitude of the optimized coding element “0” and “1”, which parameter are b1=0.738,b2=1.942 respectively.

Fig. 5
Fig. 5

The flow chart of fast optimization synthesis of coding element and array coding sequence

Fig. 6
Fig. 6

The evolution plot of array coding sequence optimization procedure.

Fig. 7
Fig. 7

(a) The optimized configuration of coding metasurface; (b) Corresponding distribution of digital element “0” and “1”.

Fig. 8
Fig. 8

Schematic of electric-field scattering pattern of metal in 3D (a) and 2D (b); (c) The full wave simulation result; (d) and (e) are schematic of 2D and 3D electric-field scattering pattern of optimized coding metasurface, respectively; (f) The full wave simulation result of optimal coding metasurface.

Fig. 9
Fig. 9

The RCS reduction of metal and optimized coding metasurface

Fig. 10
Fig. 10

(a) and (b) Photograph of the fabricated metasurface and measurement environment. (c) The measured backward reflection spectra.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Phase= P 1 *b (f) N + P 2 *b (f) (N1) +...+ P N *b(f)+ P N+1
fitness1= fstart fstop g(f)
g(f)={ 1 if 180 ° 37 ° <| phas e b1 (f)phas e b2 (f) |< 180 ° + 37 ° 0 else
AF= m=1 M n=1 N exp{ jkd[(m1/2)sinθcosφ+(n1/2)sinθsinφ]+jϕ(m,n) }