Abstract

Divergence compensation, optimization of the optical-to-optical efficiency, and high beam quality of signal and idler beams of a high-energy mid-infrared ZnGeP2 (ZGP) optical parametric oscillator (OPO) have been demonstrated by use of a Galilean telescope inside the nonplanar fractional-image-rotation enhancement (FIRE) ring resonator. With a small variation of the distance between the lenses of the telescope, the divergences of signal and idler beams could be adjusted. Up to 36 mJ of mid-infrared pulse energy in the 3-5 µm wavelength range is obtained with 92 mJ of pump energy on crystal. The beam quality factors M2 are < 1.5 for the resonant signal beam and the non-resonant idler beam, respectively. Actually, this is an improvement of the beam quality by a factor 3 for the signal and ~2.7 for the idler beam compared without using a telescope inside the FIRE ring resonator.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared ZGP-OPO with a high optical-to-optical conversion efficiency of 75.7%

Li Wang, Tinglun Xing, Shuwu Hu, Xianyou Wu, Haixin Wu, Jiyang Wang, and Haihe Jiang
Opt. Express 25(4) 3373-3380 (2017)

Mid-infrared source with 0.2 J pulse energy based on nonlinear conversion of Q-switched pulses in ZnGeP2

Magnus W. Haakestad, Helge Fonnum, and Espen Lippert
Opt. Express 22(7) 8556-8564 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “3.4-µm ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-µm Ho:YLF MOPA system,” Opt. Express 15(22), 14404–14413 (2007).
    [Crossref] [PubMed]
  2. C. Kieleck, M. Eichhorn, A. Hirth, D. Faye, and E. Lallier, “High-efficiency 20-50 kHz mid-infrared orientation-patterned GaAs optical parametric oscillator pumped by a 2 µm holmium laser,” Opt. Lett. 34(3), 262–264 (2009).
    [Crossref] [PubMed]
  3. E. Lippert, H. Fonnum, G. Arisholm, and K. Stenersen, “A 22-watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator,” Opt. Express 18(25), 26475–26483 (2010).
    [Crossref] [PubMed]
  4. M. Eichhorn, G. Stoeppler, M. Schellhorn, K. T. Zawilski, and P. G. Schunemann, “Gaussian- versus flat-top pumping of a mid-IR ZGP RISTRA OPO,” Appl. Phys. B 108(1), 109–115 (2012).
    [Crossref]
  5. G. Stöppler, M. Schellhorn, and M. Eichhorn, “Enhanced beam quality for medical applications at 6.45 µm by using a RISTRA ZGP OPO,” Laser Phys. 22(6), 1095–1098 (2012).
    [Crossref]
  6. M. W. Haakestad, H. Fonnum, and E. Lippert, “Mid-infrared source with 0.2 J pulse energy based on nonlinear conversion of Q-switched pulses in ZnGeP2.,” Opt. Express 22(7), 8556–8564 (2014).
    [Crossref] [PubMed]
  7. M. Eichhorn, M. Schellhorn, M. W. Haakestad, H. Fonnum, and E. Lippert, “High-pulse-energy mid-infrared fractional-image-rotation-enhancement ZnGeP2 optical parametric oscillator,” Opt. Lett. 41(11), 2596–2599 (2016).
    [Crossref] [PubMed]
  8. P. G. Schunemann, K. T. Zawilski, L. A. Pomeranz, D. J. Creeden, and P. A. Budni, “Advances in nonlinear optical crystals for mid-infrared coherent sources,” J. Opt. Soc. Am. B 33(11), D36–D43 (2016).
    [Crossref]
  9. A. Hemming, J. Richards, A. Davidson, N. Carmody, S. Bennetts, N. Simakov, and J. Haub, “99 W mid-IR operation of a ZGP OPO at 25% duty cycle,” Opt. Express 21(8), 10062–10069 (2013).
    [Crossref] [PubMed]
  10. K. T. Zawilski, S. D. Setzler, P. G. Schunemann, and T. M. Pollak, “Increasing the laser-induced damage threshold of single-crystal ZnGeP2,” J. Opt. Soc. Am. B 23(11), 2310–2316 (2006).
    [Crossref]
  11. B. C. Johnson, V. J. Newell, J. B. Clark, and E. S. McPhee, “Narrow-bandwidth low-divergence optical parametric oscillator for nonlinear frequency-conversion applications,” J. Opt. Soc. Am. B 12(11), 2122–2127 (1995).
    [Crossref]
  12. S. Pearl, Y. Ehrlich, S. Fastig, and S. Rosenwaks, “Nearly diffraction-limited signal generated by a lower beam-quality pump in an optical parametric oscillator,” Appl. Opt. 42(6), 1048–1051 (2003).
    [Crossref] [PubMed]
  13. S. Zou, M. Gong, Q. Liu, and G. Chen, “Low threshold characteristic of pulsed confocal unstable optical parametric oscillators with Gaussian reflectivity mirrors,” Opt. Express 13(3), 776–788 (2005).
    [Crossref] [PubMed]
  14. A. V. Smith and D. J. Armstrong, “Nanosecond optical parametric oscillator with 90° image rotation: design and performance,” J. Opt. Soc. Am. B 19(8), 1801–1814 (2002).
    [Crossref]
  15. S. Bigotta, G. Stöppler, J. Schöner, M. Schellhorn, and M. Eichhorn, “Novel non-planar ring cavity for enhanced beam quality in high-pulse-energy optical parametric oscillators,” Opt. Mater. Express 4(2), 411–423 (2014).
    [Crossref]
  16. M. Schellhorn, G. Spindler, and M. Eichhorn, “Improvement of the beam quality of a high-pulse-energy mid-infrared fractional-image-rotation-enhancement ZnGeP2 optical parametric oscillator,” Opt. Lett. 42(6), 1185–1188 (2017).
    [Crossref] [PubMed]
  17. M. Schellhorn and M. Eichhorn, “High-energy Ho:LLF MOPA laser system using a top-hat pump profile for the amplifier stage,” Appl. Phys. B 109(2), 351–357 (2012).
    [Crossref]
  18. LASCAD, LAS-CAD GmbH, http://www.las-cad.com .
  19. A. E. Siegman, Lasers (University Science Books, Sausalito, CA, 1986).
  20. J. A. Fleck, J. R. Morris, and M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. (Berl.) 10(2), 129–160 (1976).
    [Crossref]
  21. G. Arisholm, “General numerical methods for simulating second-order nonlinear interactions in birefringent media,” J. Opt. Soc. Am. B 14(10), 2543–2549 (1997).
    [Crossref]
  22. J. A. Fleck and M. D. Feit, “Beam propagation in uniaxial anisotropic media,” J. Opt. Soc. Am. 73(7), 920–926 (1983).
    [Crossref]

2017 (1)

2016 (2)

2014 (2)

2013 (1)

2012 (3)

M. Eichhorn, G. Stoeppler, M. Schellhorn, K. T. Zawilski, and P. G. Schunemann, “Gaussian- versus flat-top pumping of a mid-IR ZGP RISTRA OPO,” Appl. Phys. B 108(1), 109–115 (2012).
[Crossref]

G. Stöppler, M. Schellhorn, and M. Eichhorn, “Enhanced beam quality for medical applications at 6.45 µm by using a RISTRA ZGP OPO,” Laser Phys. 22(6), 1095–1098 (2012).
[Crossref]

M. Schellhorn and M. Eichhorn, “High-energy Ho:LLF MOPA laser system using a top-hat pump profile for the amplifier stage,” Appl. Phys. B 109(2), 351–357 (2012).
[Crossref]

2010 (1)

2009 (1)

2007 (1)

2006 (1)

2005 (1)

2003 (1)

2002 (1)

1997 (1)

1995 (1)

1983 (1)

1976 (1)

J. A. Fleck, J. R. Morris, and M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. (Berl.) 10(2), 129–160 (1976).
[Crossref]

Arisholm, G.

Armstrong, D.

Armstrong, D. J.

Bennetts, S.

Bigotta, S.

Budni, P. A.

Carmody, N.

Chen, G.

Clark, J. B.

Creeden, D. J.

Davidson, A.

Dergachev, A.

Drake, T.

Dubois, M.

Ehrlich, Y.

Eichhorn, M.

M. Schellhorn, G. Spindler, and M. Eichhorn, “Improvement of the beam quality of a high-pulse-energy mid-infrared fractional-image-rotation-enhancement ZnGeP2 optical parametric oscillator,” Opt. Lett. 42(6), 1185–1188 (2017).
[Crossref] [PubMed]

M. Eichhorn, M. Schellhorn, M. W. Haakestad, H. Fonnum, and E. Lippert, “High-pulse-energy mid-infrared fractional-image-rotation-enhancement ZnGeP2 optical parametric oscillator,” Opt. Lett. 41(11), 2596–2599 (2016).
[Crossref] [PubMed]

S. Bigotta, G. Stöppler, J. Schöner, M. Schellhorn, and M. Eichhorn, “Novel non-planar ring cavity for enhanced beam quality in high-pulse-energy optical parametric oscillators,” Opt. Mater. Express 4(2), 411–423 (2014).
[Crossref]

M. Schellhorn and M. Eichhorn, “High-energy Ho:LLF MOPA laser system using a top-hat pump profile for the amplifier stage,” Appl. Phys. B 109(2), 351–357 (2012).
[Crossref]

M. Eichhorn, G. Stoeppler, M. Schellhorn, K. T. Zawilski, and P. G. Schunemann, “Gaussian- versus flat-top pumping of a mid-IR ZGP RISTRA OPO,” Appl. Phys. B 108(1), 109–115 (2012).
[Crossref]

G. Stöppler, M. Schellhorn, and M. Eichhorn, “Enhanced beam quality for medical applications at 6.45 µm by using a RISTRA ZGP OPO,” Laser Phys. 22(6), 1095–1098 (2012).
[Crossref]

C. Kieleck, M. Eichhorn, A. Hirth, D. Faye, and E. Lallier, “High-efficiency 20-50 kHz mid-infrared orientation-patterned GaAs optical parametric oscillator pumped by a 2 µm holmium laser,” Opt. Lett. 34(3), 262–264 (2009).
[Crossref] [PubMed]

Fastig, S.

Faye, D.

Feit, M. D.

J. A. Fleck and M. D. Feit, “Beam propagation in uniaxial anisotropic media,” J. Opt. Soc. Am. 73(7), 920–926 (1983).
[Crossref]

J. A. Fleck, J. R. Morris, and M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. (Berl.) 10(2), 129–160 (1976).
[Crossref]

Fleck, J. A.

J. A. Fleck and M. D. Feit, “Beam propagation in uniaxial anisotropic media,” J. Opt. Soc. Am. 73(7), 920–926 (1983).
[Crossref]

J. A. Fleck, J. R. Morris, and M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. (Berl.) 10(2), 129–160 (1976).
[Crossref]

Fonnum, H.

Gong, M.

Haakestad, M. W.

Haub, J.

Hemming, A.

Hirth, A.

Johnson, B. C.

Kieleck, C.

Lallier, E.

Lippert, E.

Liu, Q.

McPhee, E. S.

Morris, J. R.

J. A. Fleck, J. R. Morris, and M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. (Berl.) 10(2), 129–160 (1976).
[Crossref]

Newell, V. J.

Pearl, S.

Pollak, T. M.

Pomeranz, L. A.

Richards, J.

Rosenwaks, S.

Schellhorn, M.

M. Schellhorn, G. Spindler, and M. Eichhorn, “Improvement of the beam quality of a high-pulse-energy mid-infrared fractional-image-rotation-enhancement ZnGeP2 optical parametric oscillator,” Opt. Lett. 42(6), 1185–1188 (2017).
[Crossref] [PubMed]

M. Eichhorn, M. Schellhorn, M. W. Haakestad, H. Fonnum, and E. Lippert, “High-pulse-energy mid-infrared fractional-image-rotation-enhancement ZnGeP2 optical parametric oscillator,” Opt. Lett. 41(11), 2596–2599 (2016).
[Crossref] [PubMed]

S. Bigotta, G. Stöppler, J. Schöner, M. Schellhorn, and M. Eichhorn, “Novel non-planar ring cavity for enhanced beam quality in high-pulse-energy optical parametric oscillators,” Opt. Mater. Express 4(2), 411–423 (2014).
[Crossref]

G. Stöppler, M. Schellhorn, and M. Eichhorn, “Enhanced beam quality for medical applications at 6.45 µm by using a RISTRA ZGP OPO,” Laser Phys. 22(6), 1095–1098 (2012).
[Crossref]

M. Schellhorn and M. Eichhorn, “High-energy Ho:LLF MOPA laser system using a top-hat pump profile for the amplifier stage,” Appl. Phys. B 109(2), 351–357 (2012).
[Crossref]

M. Eichhorn, G. Stoeppler, M. Schellhorn, K. T. Zawilski, and P. G. Schunemann, “Gaussian- versus flat-top pumping of a mid-IR ZGP RISTRA OPO,” Appl. Phys. B 108(1), 109–115 (2012).
[Crossref]

Schöner, J.

Schunemann, P. G.

Setzler, S. D.

Simakov, N.

Smith, A.

Smith, A. V.

Spindler, G.

Stenersen, K.

Stoeppler, G.

M. Eichhorn, G. Stoeppler, M. Schellhorn, K. T. Zawilski, and P. G. Schunemann, “Gaussian- versus flat-top pumping of a mid-IR ZGP RISTRA OPO,” Appl. Phys. B 108(1), 109–115 (2012).
[Crossref]

Stöppler, G.

S. Bigotta, G. Stöppler, J. Schöner, M. Schellhorn, and M. Eichhorn, “Novel non-planar ring cavity for enhanced beam quality in high-pulse-energy optical parametric oscillators,” Opt. Mater. Express 4(2), 411–423 (2014).
[Crossref]

G. Stöppler, M. Schellhorn, and M. Eichhorn, “Enhanced beam quality for medical applications at 6.45 µm by using a RISTRA ZGP OPO,” Laser Phys. 22(6), 1095–1098 (2012).
[Crossref]

Zawilski, K. T.

Zou, S.

Appl. Opt. (1)

Appl. Phys. (Berl.) (1)

J. A. Fleck, J. R. Morris, and M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. (Berl.) 10(2), 129–160 (1976).
[Crossref]

Appl. Phys. B (2)

M. Schellhorn and M. Eichhorn, “High-energy Ho:LLF MOPA laser system using a top-hat pump profile for the amplifier stage,” Appl. Phys. B 109(2), 351–357 (2012).
[Crossref]

M. Eichhorn, G. Stoeppler, M. Schellhorn, K. T. Zawilski, and P. G. Schunemann, “Gaussian- versus flat-top pumping of a mid-IR ZGP RISTRA OPO,” Appl. Phys. B 108(1), 109–115 (2012).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (5)

Laser Phys. (1)

G. Stöppler, M. Schellhorn, and M. Eichhorn, “Enhanced beam quality for medical applications at 6.45 µm by using a RISTRA ZGP OPO,” Laser Phys. 22(6), 1095–1098 (2012).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Opt. Mater. Express (1)

Other (2)

LASCAD, LAS-CAD GmbH, http://www.las-cad.com .

A. E. Siegman, Lasers (University Science Books, Sausalito, CA, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup of the high-energy mid-infrared FIRE ZGP OPO pumped by a Ho3+:LLF MOPA system.
Fig. 2
Fig. 2 OPO output pulse energy (sum of signal and idler) versus the incident pump energy on the crystal without telescope and with telescope being aligned slightly divergent (red), collimated (green) and slightly divergent (blue). Straight lines are the result of a linear fit and the calculated slope efficiencies are given.
Fig. 3
Fig. 3 Signal beam quality versus pump energy without and with Galilean telescope (adjusted slightly convergent) in FIRE cavity. The insets show the far field at maximum pulse energy.
Fig. 4
Fig. 4 Idler beam quality versus pump energy without and with Galilean telescope (adjusted slightly convergent) in FIRE cavity. The insets show the far field at maximum pulse energy.
Fig. 5
Fig. 5 Mode size calculation of FIRE ring cavity using laser cavity analysis and design (LASCAD) software [18] assuming a quadratic variation of the gain parameter (α2 = 0.025 mm−3 [16]): signal beam with (a) M2 = 4.5 and (b) M2 = 1 without Galilean telescope and adapted fundamental mode of signal beam to the mode size of the pump beam with telescope in FIRE cavity (c). Scales are given in mm.
Fig. 6
Fig. 6 Diameters of signal and idler beam as a function of distance from the ZGP crystal (a) with telescope slightly adjusted divergent, (b) collimated and (c) slightly adjusted convergent for the resonant signal beam. Actually, the measurements (left hand side) and results from numerical simulation (right hand side) are obtained with distances of (a) 14.75 mm, (b) 15 mm, and (c) 15.25 mm between lenses L3 and L4. The upper and lower insets show signal and idler beam fluence distribution, respectively.

Metrics