Abstract

We demonstrate 20-μm-long twin-mirror membrane distributed-reflector (DR) lasers for chip-to-chip optical interconnects. The lasers employ distributed Bragg reflectors (DBRs) at both ends of a 20-μm-long λ/4-phase shifted distributed feedback (DFB) section. We achieve single-mode lasing in a λ/4-phase shifted DFB mode at room temperature with a threshold current of 0.39 mA. The lasing wavelength remains stable while the injected current is varied, and it is determined by the λ/4 phase-shifted DFB. The modulation current efficiency is 11.4 GHz/mA1/2, which is measured by using relative intensity noise spectra. We also demonstrate the direct modulation of the DR lasers at a bit rate of 25.8 Gbit/s with an energy cost of 163 fJ/bit.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate

Hidetaka Nishi, Takuro Fujii, Koji Takeda, Koichi Hasebe, Takaaki Kakitsuka, Tai Tsuchizawa, Tsuyoshi Yamamoto, Koji Yamada, and Shinji Matsuo
Opt. Express 24(16) 18346-18352 (2016)

Sub-milliampere threshold operation of butt-jointed built-in membrane DFB laser bonded on Si substrate

Daisuke Inoue, Jieun Lee, Takuo Hiratani, Yuki Atsuji, Tomohiro Amemiya, Nobuhiko Nishiyama, and Shigehisa Arai
Opt. Express 23(6) 7771-7778 (2015)

Bandwidth enhancement of injection-locked distributed reflector lasers with wirelike active regions

SeungHun Lee, Devang Parekh, Takahiko Shindo, Weijian Yang, Peng Guo, Daisuke Takahashi, Nobuhiko Nishiyama, Connie J. Chang-Hasnain, and Shigehisa Arai
Opt. Express 18(16) 16370-16378 (2010)

References

  • View by:
  • |
  • |
  • |

  1. Cisco, “Cisco Global Cloud Index: Forecast and Methodology, 2015-2020,” http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.html .
  2. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [Crossref]
  3. P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett. 48(20), 1292–1294 (2012).
    [Crossref]
  4. S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
    [Crossref]
  5. S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultra-low operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
    [Crossref]
  6. K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
    [Crossref]
  7. T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
    [Crossref]
  8. S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22(10), 12139–12147 (2014).
    [Crossref] [PubMed]
  9. S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightwave Technol. 33(6), 1217–1222 (2015).
    [Crossref]
  10. T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9(4), 151–157 (2015).
    [Crossref]
  11. H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24(16), 18346–18352 (2016).
    [Crossref] [PubMed]
  12. D. Inoue, T. Hiratani, K. Fukuda, T. Tomiyasu, T. Amemiya, N. Nishiyama, and S. Arai, “Low-bias current 10 Gbit/s direct modulation of GaInAsP/InP membrane DFB laser on silicon,” Opt. Express 24(16), 18571–18579 (2016).
    [Crossref] [PubMed]
  13. T. Fujii, K. Takeda, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Low operating-energy directly modulated membrane distributed-reflector lasers on Si,” in Proceedings of 42nd European Conference and Exhibition on Optical Communications (2016), pp. 734–736.
  14. D. Inoue, T. Hiratani, K. Fukuda, T. Tomiyasu, T. Amemiya, N. Nishiyama, and S. Arai, “High-modulation efficiency operation of GaInAsP/InP membrane distributed feedback laser on Si substrate,” Opt. Express 23(22), 29024–29031 (2015).
    [Crossref] [PubMed]
  15. T. Hiratani, D. Inoue, T. Tomiyasu, K. Fukuda, N. Nakamura, T. Amemiya, N. Nishiyama, and S. Arai, “High efficiency operation of GaInAsP/InP membrane distributed-reflector laser on Si,” IEEE Photonics Technol. Lett. 29(21), 1832–1835 (2017).
    [Crossref]
  16. T. Segawa, S. Matsuo, T. Ishii, Y. Ohiso, Y. Shibata, and H. Suzuki, “High-speed wavelength-tunable optical filter using cascaded Mach–Zehnder interferometers with apodized sampled gratings,” IEEE J. Quantum Electron. 44(10), 922–930 (2008).
    [Crossref]
  17. T. Numai, Fundamentals of Semiconductor Lasers (Springer, 2004).
  18. K. Nakahara, Y. Wakayama, T. Kitatani, T. Fukamachi, Y. Sakuma, and S. Tanaka, “1.3 μm InGaAlAs asymmetric corrugation-pitch-modulated DFB lasers with high mask margin at 28 Gbit/s,” Electron. Lett. 50(13), 947–948 (2014).
    [Crossref]
  19. K. Takeda, T. Fujii, A. Shinya, T. Tsuchizawa, H. Nishi, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Si nanowire waveguide coupled current-driven photonic-crystal lasers,” in Proceedings of European Conference on Lasers and Electro-Optics (2017), paper CK-9.4.
    [Crossref]
  20. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience Publication, 1995).

2017 (1)

T. Hiratani, D. Inoue, T. Tomiyasu, K. Fukuda, N. Nakamura, T. Amemiya, N. Nishiyama, and S. Arai, “High efficiency operation of GaInAsP/InP membrane distributed-reflector laser on Si,” IEEE Photonics Technol. Lett. 29(21), 1832–1835 (2017).
[Crossref]

2016 (2)

2015 (3)

2014 (2)

K. Nakahara, Y. Wakayama, T. Kitatani, T. Fukamachi, Y. Sakuma, and S. Tanaka, “1.3 μm InGaAlAs asymmetric corrugation-pitch-modulated DFB lasers with high mask margin at 28 Gbit/s,” Electron. Lett. 50(13), 947–948 (2014).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22(10), 12139–12147 (2014).
[Crossref] [PubMed]

2013 (2)

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultra-low operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

2012 (1)

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett. 48(20), 1292–1294 (2012).
[Crossref]

2010 (1)

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

2009 (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

2008 (1)

T. Segawa, S. Matsuo, T. Ishii, Y. Ohiso, Y. Shibata, and H. Suzuki, “High-speed wavelength-tunable optical filter using cascaded Mach–Zehnder interferometers with apodized sampled gratings,” IEEE J. Quantum Electron. 44(10), 922–930 (2008).
[Crossref]

2003 (1)

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[Crossref]

Amemiya, T.

Arai, S.

T. Hiratani, D. Inoue, T. Tomiyasu, K. Fukuda, N. Nakamura, T. Amemiya, N. Nishiyama, and S. Arai, “High efficiency operation of GaInAsP/InP membrane distributed-reflector laser on Si,” IEEE Photonics Technol. Lett. 29(21), 1832–1835 (2017).
[Crossref]

D. Inoue, T. Hiratani, K. Fukuda, T. Tomiyasu, T. Amemiya, N. Nishiyama, and S. Arai, “Low-bias current 10 Gbit/s direct modulation of GaInAsP/InP membrane DFB laser on silicon,” Opt. Express 24(16), 18571–18579 (2016).
[Crossref] [PubMed]

D. Inoue, T. Hiratani, K. Fukuda, T. Tomiyasu, T. Amemiya, N. Nishiyama, and S. Arai, “High-modulation efficiency operation of GaInAsP/InP membrane distributed feedback laser on Si substrate,” Opt. Express 23(22), 29024–29031 (2015).
[Crossref] [PubMed]

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[Crossref]

Bimberg, D.

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett. 48(20), 1292–1294 (2012).
[Crossref]

Fujii, T.

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24(16), 18346–18352 (2016).
[Crossref] [PubMed]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightwave Technol. 33(6), 1217–1222 (2015).
[Crossref]

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9(4), 151–157 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22(10), 12139–12147 (2014).
[Crossref] [PubMed]

T. Fujii, K. Takeda, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Low operating-energy directly modulated membrane distributed-reflector lasers on Si,” in Proceedings of 42nd European Conference and Exhibition on Optical Communications (2016), pp. 734–736.

Fukamachi, T.

K. Nakahara, Y. Wakayama, T. Kitatani, T. Fukamachi, Y. Sakuma, and S. Tanaka, “1.3 μm InGaAlAs asymmetric corrugation-pitch-modulated DFB lasers with high mask margin at 28 Gbit/s,” Electron. Lett. 50(13), 947–948 (2014).
[Crossref]

Fukuda, K.

Hasebe, K.

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24(16), 18346–18352 (2016).
[Crossref] [PubMed]

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9(4), 151–157 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightwave Technol. 33(6), 1217–1222 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22(10), 12139–12147 (2014).
[Crossref] [PubMed]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultra-low operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

T. Fujii, K. Takeda, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Low operating-energy directly modulated membrane distributed-reflector lasers on Si,” in Proceedings of 42nd European Conference and Exhibition on Optical Communications (2016), pp. 734–736.

Hiratani, T.

Inoue, D.

Ishii, T.

T. Segawa, S. Matsuo, T. Ishii, Y. Ohiso, Y. Shibata, and H. Suzuki, “High-speed wavelength-tunable optical filter using cascaded Mach–Zehnder interferometers with apodized sampled gratings,” IEEE J. Quantum Electron. 44(10), 922–930 (2008).
[Crossref]

Kakitsuka, T.

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24(16), 18346–18352 (2016).
[Crossref] [PubMed]

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9(4), 151–157 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightwave Technol. 33(6), 1217–1222 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22(10), 12139–12147 (2014).
[Crossref] [PubMed]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultra-low operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

T. Fujii, K. Takeda, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Low operating-energy directly modulated membrane distributed-reflector lasers on Si,” in Proceedings of 42nd European Conference and Exhibition on Optical Communications (2016), pp. 734–736.

Kanno, E.

T. Fujii, K. Takeda, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Low operating-energy directly modulated membrane distributed-reflector lasers on Si,” in Proceedings of 42nd European Conference and Exhibition on Optical Communications (2016), pp. 734–736.

Kawaguchi, Y.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Kitatani, T.

K. Nakahara, Y. Wakayama, T. Kitatani, T. Fukamachi, Y. Sakuma, and S. Tanaka, “1.3 μm InGaAlAs asymmetric corrugation-pitch-modulated DFB lasers with high mask margin at 28 Gbit/s,” Electron. Lett. 50(13), 947–948 (2014).
[Crossref]

Kobayashi, W.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

Larisch, G.

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett. 48(20), 1292–1294 (2012).
[Crossref]

Ledentsov, N. N.

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett. 48(20), 1292–1294 (2012).
[Crossref]

Li, H.

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett. 48(20), 1292–1294 (2012).
[Crossref]

Lott, J. A.

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett. 48(20), 1292–1294 (2012).
[Crossref]

Matsuo, S.

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24(16), 18346–18352 (2016).
[Crossref] [PubMed]

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9(4), 151–157 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightwave Technol. 33(6), 1217–1222 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22(10), 12139–12147 (2014).
[Crossref] [PubMed]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultra-low operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

T. Segawa, S. Matsuo, T. Ishii, Y. Ohiso, Y. Shibata, and H. Suzuki, “High-speed wavelength-tunable optical filter using cascaded Mach–Zehnder interferometers with apodized sampled gratings,” IEEE J. Quantum Electron. 44(10), 922–930 (2008).
[Crossref]

T. Fujii, K. Takeda, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Low operating-energy directly modulated membrane distributed-reflector lasers on Si,” in Proceedings of 42nd European Conference and Exhibition on Optical Communications (2016), pp. 734–736.

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Moser, P.

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett. 48(20), 1292–1294 (2012).
[Crossref]

Nakahara, K.

K. Nakahara, Y. Wakayama, T. Kitatani, T. Fukamachi, Y. Sakuma, and S. Tanaka, “1.3 μm InGaAlAs asymmetric corrugation-pitch-modulated DFB lasers with high mask margin at 28 Gbit/s,” Electron. Lett. 50(13), 947–948 (2014).
[Crossref]

Nakamura, N.

T. Hiratani, D. Inoue, T. Tomiyasu, K. Fukuda, N. Nakamura, T. Amemiya, N. Nishiyama, and S. Arai, “High efficiency operation of GaInAsP/InP membrane distributed-reflector laser on Si,” IEEE Photonics Technol. Lett. 29(21), 1832–1835 (2017).
[Crossref]

Nakao, R.

T. Fujii, K. Takeda, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Low operating-energy directly modulated membrane distributed-reflector lasers on Si,” in Proceedings of 42nd European Conference and Exhibition on Optical Communications (2016), pp. 734–736.

Nishi, H.

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24(16), 18346–18352 (2016).
[Crossref] [PubMed]

T. Fujii, K. Takeda, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Low operating-energy directly modulated membrane distributed-reflector lasers on Si,” in Proceedings of 42nd European Conference and Exhibition on Optical Communications (2016), pp. 734–736.

Nishiyama, N.

Notomi, M.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultra-low operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Nozaki, K.

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultra-low operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Nunoya, N.

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[Crossref]

Ohiso, Y.

T. Segawa, S. Matsuo, T. Ishii, Y. Ohiso, Y. Shibata, and H. Suzuki, “High-speed wavelength-tunable optical filter using cascaded Mach–Zehnder interferometers with apodized sampled gratings,” IEEE J. Quantum Electron. 44(10), 922–930 (2008).
[Crossref]

Okamoto, T.

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[Crossref]

Onodera, Y.

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[Crossref]

Sakuma, Y.

K. Nakahara, Y. Wakayama, T. Kitatani, T. Fukamachi, Y. Sakuma, and S. Tanaka, “1.3 μm InGaAlAs asymmetric corrugation-pitch-modulated DFB lasers with high mask margin at 28 Gbit/s,” Electron. Lett. 50(13), 947–948 (2014).
[Crossref]

Sato, T.

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightwave Technol. 33(6), 1217–1222 (2015).
[Crossref]

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9(4), 151–157 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22(10), 12139–12147 (2014).
[Crossref] [PubMed]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultra-low operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Segawa, T.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

T. Segawa, S. Matsuo, T. Ishii, Y. Ohiso, Y. Shibata, and H. Suzuki, “High-speed wavelength-tunable optical filter using cascaded Mach–Zehnder interferometers with apodized sampled gratings,” IEEE J. Quantum Electron. 44(10), 922–930 (2008).
[Crossref]

Shibata, Y.

T. Segawa, S. Matsuo, T. Ishii, Y. Ohiso, Y. Shibata, and H. Suzuki, “High-speed wavelength-tunable optical filter using cascaded Mach–Zehnder interferometers with apodized sampled gratings,” IEEE J. Quantum Electron. 44(10), 922–930 (2008).
[Crossref]

Shinya, A.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultra-low operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Suzuki, H.

T. Segawa, S. Matsuo, T. Ishii, Y. Ohiso, Y. Shibata, and H. Suzuki, “High-speed wavelength-tunable optical filter using cascaded Mach–Zehnder interferometers with apodized sampled gratings,” IEEE J. Quantum Electron. 44(10), 922–930 (2008).
[Crossref]

Takeda, K.

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24(16), 18346–18352 (2016).
[Crossref] [PubMed]

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9(4), 151–157 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightwave Technol. 33(6), 1217–1222 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22(10), 12139–12147 (2014).
[Crossref] [PubMed]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultra-low operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

T. Fujii, K. Takeda, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Low operating-energy directly modulated membrane distributed-reflector lasers on Si,” in Proceedings of 42nd European Conference and Exhibition on Optical Communications (2016), pp. 734–736.

Tamura, S.

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[Crossref]

Tanaka, S.

K. Nakahara, Y. Wakayama, T. Kitatani, T. Fukamachi, Y. Sakuma, and S. Tanaka, “1.3 μm InGaAlAs asymmetric corrugation-pitch-modulated DFB lasers with high mask margin at 28 Gbit/s,” Electron. Lett. 50(13), 947–948 (2014).
[Crossref]

Taniyama, H.

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultra-low operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

Tomiyasu, T.

Tsuchizawa, T.

Wakayama, Y.

K. Nakahara, Y. Wakayama, T. Kitatani, T. Fukamachi, Y. Sakuma, and S. Tanaka, “1.3 μm InGaAlAs asymmetric corrugation-pitch-modulated DFB lasers with high mask margin at 28 Gbit/s,” Electron. Lett. 50(13), 947–948 (2014).
[Crossref]

Wolf, P.

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett. 48(20), 1292–1294 (2012).
[Crossref]

Yamada, K.

Yamamoto, T.

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24(16), 18346–18352 (2016).
[Crossref] [PubMed]

T. Fujii, K. Takeda, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Low operating-energy directly modulated membrane distributed-reflector lasers on Si,” in Proceedings of 42nd European Conference and Exhibition on Optical Communications (2016), pp. 734–736.

Yamazaki, T.

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[Crossref]

Electron. Lett. (2)

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett. 48(20), 1292–1294 (2012).
[Crossref]

K. Nakahara, Y. Wakayama, T. Kitatani, T. Fukamachi, Y. Sakuma, and S. Tanaka, “1.3 μm InGaAlAs asymmetric corrugation-pitch-modulated DFB lasers with high mask margin at 28 Gbit/s,” Electron. Lett. 50(13), 947–948 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Segawa, S. Matsuo, T. Ishii, Y. Ohiso, Y. Shibata, and H. Suzuki, “High-speed wavelength-tunable optical filter using cascaded Mach–Zehnder interferometers with apodized sampled gratings,” IEEE J. Quantum Electron. 44(10), 922–930 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultra-low operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. Hiratani, D. Inoue, T. Tomiyasu, K. Fukuda, N. Nakamura, T. Amemiya, N. Nishiyama, and S. Arai, “High efficiency operation of GaInAsP/InP membrane distributed-reflector laser on Si,” IEEE Photonics Technol. Lett. 29(21), 1832–1835 (2017).
[Crossref]

IET Optoelectron. (1)

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9(4), 151–157 (2015).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (2)

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Opt. Express (4)

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Other (5)

Cisco, “Cisco Global Cloud Index: Forecast and Methodology, 2015-2020,” http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.html .

T. Fujii, K. Takeda, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Low operating-energy directly modulated membrane distributed-reflector lasers on Si,” in Proceedings of 42nd European Conference and Exhibition on Optical Communications (2016), pp. 734–736.

T. Numai, Fundamentals of Semiconductor Lasers (Springer, 2004).

K. Takeda, T. Fujii, A. Shinya, T. Tsuchizawa, H. Nishi, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Si nanowire waveguide coupled current-driven photonic-crystal lasers,” in Proceedings of European Conference on Lasers and Electro-Optics (2017), paper CK-9.4.
[Crossref]

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience Publication, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Short cavity lasers with a 20-μm-long active region. (a) Schematic of three cavity designs employing λ/4-phase shifted DFB: DFB lasers, single-mirror DR lasers, and twin-mirror DR lasers. (b) Threshold gain versus coupling coefficient of the grating. The internal loss αi and the grating loss αloss were assumed to be 0 cm−1 in the calculations.
Fig. 2
Fig. 2 Fabrication error tolerance of the twin-mirror DR lasers with front DBR lengths of 10, 20, and 30 μm. We assumed there was a Bragg wavelength difference between the DFB and DBR sections. (a) Threshold gain (Γgth) and (b) lasing wavelength versus Bragg wavelength difference between the DFB and DBRs (Δλ).
Fig. 3
Fig. 3 Fabrication error tolerance of twin-mirror DR lasers. We assumed that the active region shrank by 0.3 μm with variable displacement due to lithographic error. (a) Schematic explanation of the shrinkage or displacement of the active region. (b) Threshold gain (Γgth), (c) difference between threshold gains of DFB and FP modes (ΔΓgth), and (d) lasing wavelength versus displacement of active region.
Fig. 4
Fig. 4 Structure of twin-mirror DR lasers: (a) Bird’s eye view of the device. Cross-sectional schematic of (b) active region and (c) passive region.
Fig. 5
Fig. 5 Fabrication procedure of twin-mirror DR lasers on SiO2/Si substrates: (a) Epitaxial growth of QWs on InP substrates. (b) O2 plasma-assisted direct bonding of InP and SiO2/Si substrates. (c) InP substrate and InGaAs etch stop layer removal. (d) Forming mesa stripes. (e) MOVPE regrowth of InP to form BH. (f) n- and p-type doping. (g) Etching surface gratings. (h) Forming InP waveguides. (h) Electrode deposition, followed by Si substrate lapping.
Fig. 6
Fig. 6 Static characteristics of the twin-mirror DR lasers: (a) Fiber output power and applied voltage versus injected current. (b) Lasing spectra with injected currents of 2.0 mA.
Fig. 7
Fig. 7 (a) L-I-V characteristics of twin-mirror DR lasers with 10-μm-long front DBRs. The DFB lengths were 10, 15, and 20 μm. (b) Active region length versus threshold current. Dots show experimental values and lines show calculation results.
Fig. 8
Fig. 8 Dynamic characteristics of the twin-mirror DR laser. (a) Relative intensity noise (RIN) spectra with a bias current of 0.5 to 2.5 mA. (b) Relaxation oscillation frequency (fr) determined by RIN spectra as a function of the square root of the injected current minus the threshold current.
Fig. 9
Fig. 9 Eye pattern at a bit rate of 25.8 Gbit/s. The bias current was 1.8 mA and the bias voltage was 2.33 V.

Tables (1)

Tables Icon

Table 1 Parameters for threshold current calculation

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Γ g th = α i + α m + α loss
I th =qVB N th 2 / η i
N th =( N tr + N s )exp( g th / g 0 ) N s

Metrics