Abstract

We present Fourier rainbow holographic imaging approach. It involves standard laser holographic recording and novel horizontal parallax only holographic display. In the display, the rainbow effect is introduced in an illumination module by high-frequency diffraction grating and white light LED source. The display is addressed by Fourier rainbow digital hologram (FRDH) encoding defocused object field with removed spatial frequency components in one direction by hologram slitting and without spherical phase factor. Theoretically and experimentally it is shown that the method extends the viewing zone of the classical viewing window display in vertical and longitudinal directions, thus the comfort of observation is improved. It is also numerically and experimentally validated that the numerical slitting applied within FRDH generation improves reconstruction depth of the display, here up to 400 mm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Light-field and holographic three-dimensional displays [Invited]

Masahiro Yamaguchi
J. Opt. Soc. Am. A 33(12) 2348-2364 (2016)

Color Fourier orthoscopic holography with laser capture and an LED display

Tomasz Kozacki, Maksymilian Chlipala, and Piotr L. Makowski
Opt. Express 26(9) 12144-12158 (2018)

Coarse integral holography approach for real 3D color video displays

J. S. Chen, Q. Y. J. Smithwick, and D. P. Chu
Opt. Express 24(6) 6705-6718 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. Pan, J. Liu, X. Li, and Y. Wang, “A Review of Dynamic Holographic Three-Dimensional Display: Algorithms, Devices, and Systems,” in Proceedings of IEEE Conference on Transactions on Industrial Informatics, pp. 1599–1610 (2016).
    [Crossref]
  2. J. Hong, Y. Kim, H. J. Choi, J. Hahn, J. H. Park, H. Kim, S. W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt. 50(34), H87–H115 (2011).
    [Crossref] [PubMed]
  3. L. Onural, F. Yaraş, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
    [Crossref]
  4. T. Kozacki, M. Kujawińska, G. Finke, B. Hennelly, and N. Pandey, “Extended viewing angle holographic display system with tilted SLMs in a circular configuration,” Appl. Opt. 51(11), 1771–1780 (2012).
    [Crossref] [PubMed]
  5. Y. Takaki and M. Nakaoka, “Scalable screen-size enlargement by multi-channel viewing-zone scanning holography,” Opt. Express 24(16), 18772–18781 (2016).
    [Crossref] [PubMed]
  6. Y. Lim, K. Hong, H. Kim, H. E. Kim, E. Y. Chang, S. Lee, T. Kim, J. Nam, H. G. Choo, J. Kim, and J. Hahn, “360-degree tabletop electronic holographic display,” Opt. Express 24(22), 24999–25009 (2016).
    [Crossref] [PubMed]
  7. H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2015).
    [Crossref] [PubMed]
  8. S. Reichelt, R. Häussler, N. Leister, G. Fütterer, H. Stolle, and A. Schwerdtner, “Holographic 3-D displays electro-holography within the grasp of commercialization,” in Book of Advances in Lasers and Electro Optics, N. Costa and A. Cartaxo (Academic, 2010).
  9. S. A. Benton and V. M. Bove, Holographic Imaging, (John Wiley & Sons, 2008).
  10. V. M. Bove, W. J. Plesniak, T. Quentmeyer, and J. Barabas, “Real-time holographic video images with commodity PC hardware,” Proc. SPIE 5664, 255–262 (2005).
    [Crossref]
  11. D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
    [Crossref] [PubMed]
  12. Y. Takaki and N. Okada, “Hologram generation by horizontal scanning of a high-speed spatial light modulator,” Appl. Opt. 48(17), 3255–3260 (2009).
    [Crossref] [PubMed]
  13. N. Okada and Y. Takaki, “Horizontally scanning holography to enlarge both image size and viewing zone angle,” Proc. SPIE 7233, 723309 (2009).
    [Crossref]
  14. T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24(3), 2189–2199 (2016).
    [Crossref] [PubMed]
  15. T. Kozacki, M. Chlipala, and P. L. Makowski, “Color Fourier orthoscopic holography with laser capture and an LED display,” Opt. Express 26(9), 12144–12158 (2018).
    [Crossref] [PubMed]
  16. E. Moon, M. Kim, J. Roh, H. Kim, and J. Hahn, “Holographic head-mounted display with RGB light emitting diode light source,” Opt. Express 22(6), 6526–6534 (2014).
    [Crossref] [PubMed]
  17. H. Araki, N. Takada, H. Niwase, S. Ikawa, M. Fujiwara, H. Nakayama, T. Kakue, T. Shimobaba, and T. Ito, “Real-time time-division color electroholography using a single GPU and a USB module for synchronizing reference light,” Appl. Opt. 54(34), 10029–10034 (2015).
    [Crossref] [PubMed]
  18. D. Leseberg and O. Bryngdahl, “Computer-generated rainbow holograms,” Appl. Opt. 23(14), 2441–2447 (1984).
    [Crossref] [PubMed]
  19. H. Yoshikawa and H. Taniguchi, “Computer generated rainbow hologram,” Opt. Rev. 6(2), 118–123 (1999).
    [Crossref]
  20. H. Yoshikawa and T. Yamaguchi, “Computer-generated holograms for 3D display,” Chin. Opt. Lett. 7(12), 1079–1082 (2009).
    [Crossref]
  21. T. Yamaguchi and H. Yoshikawa, “Real time calculation for holographic video display,” Proc. SPIE 6136, 61360T (2006).
    [Crossref]
  22. W. Sun and G. Barbastathis, “Rainbow volume holographic imaging,” Opt. Lett. 30(9), 976–978 (2005).
    [Crossref] [PubMed]
  23. J. C. Wyant, “Image blur for rainbow holograms,” Opt. Lett. 1(4), 130–132 (1977).
    [Crossref] [PubMed]
  24. T. Kozacki and K. Falaggis, “Angular spectrum-based wave-propagation method with compact space bandwidth for large propagation distances,” Opt. Lett. 40(14), 3420–3423 (2015).
    [Crossref] [PubMed]
  25. J.-H. Park, “Recent progress in computer-generated holography for three-dimensional scenes,” J. Inform. Displ. 18(1), 1–12 (2017).
    [Crossref]
  26. A. Symeonidou, D. Blinder, and P. Schelkens, “Colour computer-generated holography for point clouds utilizing the Phong illumination model,” Opt. Express 26(8), 10282–10298 (2018).
    [Crossref] [PubMed]
  27. H. Choo, M. Chlipala, and T. Kozacki, “Image blur and visual perception for rainbow holographic display,” Proc. SPIE 10679, 106790S (2018).
  28. X. Li, J. Liu, J. Jia, Y. Pan, and Y. Wang, “3D dynamic holographic display by modulating complex amplitude experimentally,” Opt. Express 21(18), 20577–20587 (2013).
    [Crossref] [PubMed]
  29. R. Cicala, “The Camera Versus the Human Eye,” https://petapixel.com/2012/11/17/the-camera-versus-the-human-eye .
  30. Y. Shi, H. Wang, Y. Li, H. Jin, and L. Ma, “Practical method for color computer-generated rainbow holograms of real-existing objects,” Appl. Opt. 48(21), 4219–4226 (2009).
    [Crossref] [PubMed]

2018 (3)

2017 (1)

J.-H. Park, “Recent progress in computer-generated holography for three-dimensional scenes,” J. Inform. Displ. 18(1), 1–12 (2017).
[Crossref]

2016 (3)

2015 (3)

2014 (1)

2013 (2)

D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

X. Li, J. Liu, J. Jia, Y. Pan, and Y. Wang, “3D dynamic holographic display by modulating complex amplitude experimentally,” Opt. Express 21(18), 20577–20587 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

2009 (4)

2006 (1)

T. Yamaguchi and H. Yoshikawa, “Real time calculation for holographic video display,” Proc. SPIE 6136, 61360T (2006).
[Crossref]

2005 (2)

V. M. Bove, W. J. Plesniak, T. Quentmeyer, and J. Barabas, “Real-time holographic video images with commodity PC hardware,” Proc. SPIE 5664, 255–262 (2005).
[Crossref]

W. Sun and G. Barbastathis, “Rainbow volume holographic imaging,” Opt. Lett. 30(9), 976–978 (2005).
[Crossref] [PubMed]

1999 (1)

H. Yoshikawa and H. Taniguchi, “Computer generated rainbow hologram,” Opt. Rev. 6(2), 118–123 (1999).
[Crossref]

1984 (1)

1977 (1)

Araki, H.

Barabas, J.

D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

V. M. Bove, W. J. Plesniak, T. Quentmeyer, and J. Barabas, “Real-time holographic video images with commodity PC hardware,” Proc. SPIE 5664, 255–262 (2005).
[Crossref]

Barbastathis, G.

Blinder, D.

Bove, V. M.

D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

V. M. Bove, W. J. Plesniak, T. Quentmeyer, and J. Barabas, “Real-time holographic video images with commodity PC hardware,” Proc. SPIE 5664, 255–262 (2005).
[Crossref]

Bryngdahl, O.

Chang, E. Y.

Chen, N.

Chlipala, M.

Choi, H. J.

Choo, H.

H. Choo, M. Chlipala, and T. Kozacki, “Image blur and visual perception for rainbow holographic display,” Proc. SPIE 10679, 106790S (2018).

Choo, H. G.

Falaggis, K.

Finke, G.

Fujiwara, M.

Hahn, J.

Hennelly, B.

Hong, J.

Hong, K.

Ichihashi, Y.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2015).
[Crossref] [PubMed]

Ikawa, S.

Ito, T.

Jia, J.

Jin, H.

Jolly, S.

D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

Kakue, T.

Kang, H.

L. Onural, F. Yaraş, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
[Crossref]

Kim, H.

Kim, H. E.

Kim, J.

Kim, M.

Kim, T.

Kim, Y.

Kozacki, T.

Kujawinska, M.

Lee, B.

Lee, S.

Leseberg, D.

Li, X.

X. Li, J. Liu, J. Jia, Y. Pan, and Y. Wang, “3D dynamic holographic display by modulating complex amplitude experimentally,” Opt. Express 21(18), 20577–20587 (2013).
[Crossref] [PubMed]

Y. Pan, J. Liu, X. Li, and Y. Wang, “A Review of Dynamic Holographic Three-Dimensional Display: Algorithms, Devices, and Systems,” in Proceedings of IEEE Conference on Transactions on Industrial Informatics, pp. 1599–1610 (2016).
[Crossref]

Li, Y.

Lim, Y.

Liu, J.

X. Li, J. Liu, J. Jia, Y. Pan, and Y. Wang, “3D dynamic holographic display by modulating complex amplitude experimentally,” Opt. Express 21(18), 20577–20587 (2013).
[Crossref] [PubMed]

Y. Pan, J. Liu, X. Li, and Y. Wang, “A Review of Dynamic Holographic Three-Dimensional Display: Algorithms, Devices, and Systems,” in Proceedings of IEEE Conference on Transactions on Industrial Informatics, pp. 1599–1610 (2016).
[Crossref]

Ma, L.

Makowski, P. L.

Min, S. W.

Moon, E.

Nakaoka, M.

Nakayama, H.

Nam, J.

Niwase, H.

Oi, R.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2015).
[Crossref] [PubMed]

Okada, N.

N. Okada and Y. Takaki, “Horizontally scanning holography to enlarge both image size and viewing zone angle,” Proc. SPIE 7233, 723309 (2009).
[Crossref]

Y. Takaki and N. Okada, “Hologram generation by horizontal scanning of a high-speed spatial light modulator,” Appl. Opt. 48(17), 3255–3260 (2009).
[Crossref] [PubMed]

Onural, L.

L. Onural, F. Yaraş, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
[Crossref]

Pan, Y.

X. Li, J. Liu, J. Jia, Y. Pan, and Y. Wang, “3D dynamic holographic display by modulating complex amplitude experimentally,” Opt. Express 21(18), 20577–20587 (2013).
[Crossref] [PubMed]

Y. Pan, J. Liu, X. Li, and Y. Wang, “A Review of Dynamic Holographic Three-Dimensional Display: Algorithms, Devices, and Systems,” in Proceedings of IEEE Conference on Transactions on Industrial Informatics, pp. 1599–1610 (2016).
[Crossref]

Pandey, N.

Park, J. H.

Park, J.-H.

J.-H. Park, “Recent progress in computer-generated holography for three-dimensional scenes,” J. Inform. Displ. 18(1), 1–12 (2017).
[Crossref]

Plesniak, W. J.

V. M. Bove, W. J. Plesniak, T. Quentmeyer, and J. Barabas, “Real-time holographic video images with commodity PC hardware,” Proc. SPIE 5664, 255–262 (2005).
[Crossref]

Quentmeyer, T.

V. M. Bove, W. J. Plesniak, T. Quentmeyer, and J. Barabas, “Real-time holographic video images with commodity PC hardware,” Proc. SPIE 5664, 255–262 (2005).
[Crossref]

Roh, J.

Sasaki, H.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2015).
[Crossref] [PubMed]

Schelkens, P.

Senoh, T.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2015).
[Crossref] [PubMed]

Shi, Y.

Shimobaba, T.

Smalley, D. E.

D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

Smithwick, Q. Y.

D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

Sun, W.

Symeonidou, A.

Takada, N.

Takaki, Y.

Taniguchi, H.

H. Yoshikawa and H. Taniguchi, “Computer generated rainbow hologram,” Opt. Rev. 6(2), 118–123 (1999).
[Crossref]

Wakunami, K.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2015).
[Crossref] [PubMed]

Wang, H.

Wang, Y.

X. Li, J. Liu, J. Jia, Y. Pan, and Y. Wang, “3D dynamic holographic display by modulating complex amplitude experimentally,” Opt. Express 21(18), 20577–20587 (2013).
[Crossref] [PubMed]

Y. Pan, J. Liu, X. Li, and Y. Wang, “A Review of Dynamic Holographic Three-Dimensional Display: Algorithms, Devices, and Systems,” in Proceedings of IEEE Conference on Transactions on Industrial Informatics, pp. 1599–1610 (2016).
[Crossref]

Wyant, J. C.

Yamaguchi, T.

H. Yoshikawa and T. Yamaguchi, “Computer-generated holograms for 3D display,” Chin. Opt. Lett. 7(12), 1079–1082 (2009).
[Crossref]

T. Yamaguchi and H. Yoshikawa, “Real time calculation for holographic video display,” Proc. SPIE 6136, 61360T (2006).
[Crossref]

Yamamoto, K.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2015).
[Crossref] [PubMed]

Yaras, F.

L. Onural, F. Yaraş, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
[Crossref]

Yoshikawa, H.

H. Yoshikawa and T. Yamaguchi, “Computer-generated holograms for 3D display,” Chin. Opt. Lett. 7(12), 1079–1082 (2009).
[Crossref]

T. Yamaguchi and H. Yoshikawa, “Real time calculation for holographic video display,” Proc. SPIE 6136, 61360T (2006).
[Crossref]

H. Yoshikawa and H. Taniguchi, “Computer generated rainbow hologram,” Opt. Rev. 6(2), 118–123 (1999).
[Crossref]

Appl. Opt. (6)

Chin. Opt. Lett. (1)

J. Inform. Displ. (1)

J.-H. Park, “Recent progress in computer-generated holography for three-dimensional scenes,” J. Inform. Displ. 18(1), 1–12 (2017).
[Crossref]

Nature (1)

D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

Opt. Express (7)

Opt. Lett. (3)

Opt. Rev. (1)

H. Yoshikawa and H. Taniguchi, “Computer generated rainbow hologram,” Opt. Rev. 6(2), 118–123 (1999).
[Crossref]

Proc. IEEE (1)

L. Onural, F. Yaraş, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
[Crossref]

Proc. SPIE (4)

V. M. Bove, W. J. Plesniak, T. Quentmeyer, and J. Barabas, “Real-time holographic video images with commodity PC hardware,” Proc. SPIE 5664, 255–262 (2005).
[Crossref]

T. Yamaguchi and H. Yoshikawa, “Real time calculation for holographic video display,” Proc. SPIE 6136, 61360T (2006).
[Crossref]

N. Okada and Y. Takaki, “Horizontally scanning holography to enlarge both image size and viewing zone angle,” Proc. SPIE 7233, 723309 (2009).
[Crossref]

H. Choo, M. Chlipala, and T. Kozacki, “Image blur and visual perception for rainbow holographic display,” Proc. SPIE 10679, 106790S (2018).

Sci. Rep. (1)

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2015).
[Crossref] [PubMed]

Other (4)

S. Reichelt, R. Häussler, N. Leister, G. Fütterer, H. Stolle, and A. Schwerdtner, “Holographic 3-D displays electro-holography within the grasp of commercialization,” in Book of Advances in Lasers and Electro Optics, N. Costa and A. Cartaxo (Academic, 2010).

S. A. Benton and V. M. Bove, Holographic Imaging, (John Wiley & Sons, 2008).

Y. Pan, J. Liu, X. Li, and Y. Wang, “A Review of Dynamic Holographic Three-Dimensional Display: Algorithms, Devices, and Systems,” in Proceedings of IEEE Conference on Transactions on Industrial Informatics, pp. 1599–1610 (2016).
[Crossref]

R. Cicala, “The Camera Versus the Human Eye,” https://petapixel.com/2012/11/17/the-camera-versus-the-human-eye .

Supplementary Material (3)

NameDescription
» Visualization 1       Reconstructed figurine rotating in 30 degree
» Visualization 2       Continuous change of colors of view of reconstructed figurine for camera moving in y direction
» Visualization 3       Continuous change of view of reconstructed figurine for different axial camera position

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Geometry for (a) generation, and (b) reconstruction of the FRDH.
Fig. 2
Fig. 2 Numerical processing of FRDH generation: (a) flow chart, (b) illustration of image transfer.
Fig. 3
Fig. 3 Simulated axial perception of reconstructed points for different axial positions: spatial distributions of views of reconstructed point sources at (a) z2 = 0 mm, (b) z2 = −300 mm; (c) distributions of FWHMz2/FWHMREF factor; FWHMz2 is calculated value of FWHM for z2; reference FWHMREF is calculated for z2 = 0 mm and S = 6.75 mm. Data was simulated for parameters of our display setup.
Fig. 4
Fig. 4 Fourier rainbow holographic display.
Fig. 5
Fig. 5 Viewing zone of the rainbow display; k2R+ and k2B- are related to reconstruction waves k2R and k2B by the diffracted angle of SLM, respectively.
Fig. 6
Fig. 6 (a) Geometry for evaluating the rainbow spreads and (b) visualization of spectral range of observed view for different eye positions. Data was simulated for parameters of our display setup.
Fig. 7
Fig. 7 Reconstruction of FRDH of the “Lowiczanka” figurine, (a) captured and (b) enlarged image; (c) camera photo of the object.
Fig. 8
Fig. 8 Reconstruction of the FRDH photographed for three vertical camera locations at the RVW plane. Visualization 2 shows continuous change of views for the camera moving in y direction.
Fig. 9
Fig. 9 Reconstruction of the FRDH photographed for four longitudinal camera locations on the optical axis. Visualization 3 presents continous change of views for the camera position from zp = 500 mm to zp = 700 mm.
Fig. 10
Fig. 10 Reconstruction of the CGRH designed and photographed for different reconstruction distances.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

O R * ( u 1 , v 1 )= O c ( u 1 , v 1 , R 1 )=O( u 1 , v 1 )exp[ iπ( u 1 2 + v 1 2 ) λ 1 R 1 ],
O c ( x 1 , y 1 , R 1 )= O c ( u 1 , v 1 , R 1 ) exp{ 2πi( u 1 x 1 + v 1 y 1 ) λ 1 R 1 }d u 1 d v 1 .
H r ( u 1 , v 1 )=( | R( u 1 , v 1 ) | 2 + | O( u 1 , v 1 ) | 2 +R O * ( u 1 , v 1 )+O R * ( u 1 , v 1 ) )Π( u 1 S 1 ),
O c r ( u 2 , v 2 , F f )=exp[ 2πi( u 2 2 + v 2 2 ) λ 2 F f ] n=1 N exp{ 2πi[ ( u 2 x n ) 2 + ( v 2 y n ) 2 ] λ 2 z n } .
β 2 '= ( λ 2 λ 2 ' )sin( θ ) M λ 2 .
z 2 '= z 2 F f λ 2 λ 2 ' F f + z 2 ( λ 2 λ 2 ') ,,
ΔV Z u 2 = F f ( λ 2 R λ 2 B ) 2M [ 1 d + 1 Δ SLM ],
ΔV Z z 2 = B x 2 F f [ 1 B x 2 ΔV Z u 2 1 B x 2 +ΔV Z u 2 ],
λ 2 '= λ 2 + λ 2 M( α 2 α 2 ' ) sinθ .
Δ λ on axis =| FoV λ 2 M( F f z p 1 1 ) sinθ |.

Metrics