Abstract

Computational manufacturing experiments are used to detect the types of optical coatings that are showing the presence of a strong error self-compensation effect in the coating production with direct broad band monitoring. It is shown that predictions made on the basis of these experiments coincide with the predictions of the previously developed rigorous mathematical approach to the investigation of the error self-compensation effect.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Error self-compensation mechanism in the optical coating production with direct broad band monitoring

A. V. Tikhonravov, I. V. Kochikov, and A. G. Yagola
Opt. Express 25(22) 27225-27233 (2017)

Investigation of the error self-compensation effect associated with broadband optical monitoring

Alexander V. Tikhonravov, Michael K. Trubetskov, and Tatiana V. Amotchkina
Appl. Opt. 50(9) C111-C116 (2011)

Computational experiments on optical coating production using monochromatic monitoring strategy aimed at eliminating a cumulative effect of thickness errors

Alexander V. Tikhonravov, Michael K. Trubetskov, and Tatiana V. Amotchkina
Appl. Opt. 46(28) 6936-6944 (2007)

References

  • View by:
  • |
  • |
  • |

  1. H. A. Macleod, Thin-Film Optical Filters, 4th ed. (Taylor & Francis, 2010)
  2. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the effect of accumulation of thickness errors in optical coating production by broadband optical monitoring,” Appl. Opt. 45(27), 7026–7034 (2006).
    [Crossref] [PubMed]
  3. P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, and P. Roche, “Optical filters: monitoring process allowing the autocorrection of thickness errors,” Thin Solid Films 13(2), 285–290 (1972).
    [Crossref]
  4. H. A. Macleod, “Turning value monitoring of narrow-band all-dielectric thin film optical filters,” Opt. Acta (Lond.) 19(1), 1–28 (1972).
    [Crossref]
  5. H. Macleod and E. Pelletier, “Error compensation mechanisms in some thin-film monitoring systems,” Opt. Acta (Lond.) 24(9), 907–930 (1977).
    [Crossref]
  6. A. V. Tikhonravov and M. K. Trubetskov, “Automated design and sensitivity analysis of wavelengh-division multiplexing filters,” Appl. Opt. 41(16), 3176–3182 (2002).
    [Crossref] [PubMed]
  7. B. Vidal, A. Fornier, and E. Pelletier, “Optical monitoring of nonquarterwave multilayer filters,” Appl. Opt. 17(7), 1038–1047 (1978).
    [Crossref] [PubMed]
  8. B. Vidal, A. Fornier, and E. Pelletier, “Wideband optical monitoring of nonquarterwave multilayer filters,” Appl. Opt. 18(22), 3851–3856 (1979).
    [Crossref] [PubMed]
  9. B. Vidal and E. Pelletier, “Nonquarterwave multilayer filters: optical monitoring with a minicomputer allowing correction of thickness errors,” Appl. Opt. 18(22), 3857–3862 (1979).
    [Crossref] [PubMed]
  10. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the error self-compensation effect associated with broadband optical monitoring,” Appl. Opt. 50(9), C111–C116 (2011).
    [Crossref] [PubMed]
  11. V. Zhupanov, I. Kozlov, V. Fedoseev, P. Konotopov, M. Trubetskov, and A. Tikhonravov, “Production of Brewster angle thin film polarizers using a ZrO2/SiO2 pair of materials,” Appl. Opt. 56(4), C30–C34 (2017).
    [Crossref] [PubMed]
  12. A. V. Tikhonravov, I. V. Kochikov, and A. G. Yagola, “Mathematical investigation of the error self-compensation mechanism in optical coating technology,” Inverse Probl. Sci. Eng. 26(8), 1214–1229 (2018).
    [Crossref]
  13. A. V. Tikhonravov, I. V. Kochikov, and A. G. Yagola, “Error self-compensation mechanism in the optical coating production with direct broad band monitoring,” Opt. Express 25(22), 27225–27233 (2017).
    [Crossref] [PubMed]
  14. A. V. Tikhonravov and M. K. Trubetskov, “Computational manufacturing as a bridge between design and production,” Appl. Opt. 44(32), 6877–6884 (2005).
    [Crossref] [PubMed]
  15. www.optilayer.com .
  16. B. E. Perilloux, “Discrete thin-film thickness-modulated designs: spacing of all possible stopbands,” Appl. Opt. 38(13), 2911–2915 (1999).
    [Crossref] [PubMed]
  17. O. Lyngnes and J. Kraus, “Design of optical notch filters using apodized thickness modulation,” Appl. Opt. 53(4), A21–A26 (2014).
    [Crossref] [PubMed]

2018 (1)

A. V. Tikhonravov, I. V. Kochikov, and A. G. Yagola, “Mathematical investigation of the error self-compensation mechanism in optical coating technology,” Inverse Probl. Sci. Eng. 26(8), 1214–1229 (2018).
[Crossref]

2017 (2)

2014 (1)

2011 (1)

2006 (1)

2005 (1)

2002 (1)

1999 (1)

1979 (2)

1978 (1)

1977 (1)

H. Macleod and E. Pelletier, “Error compensation mechanisms in some thin-film monitoring systems,” Opt. Acta (Lond.) 24(9), 907–930 (1977).
[Crossref]

1972 (2)

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, and P. Roche, “Optical filters: monitoring process allowing the autocorrection of thickness errors,” Thin Solid Films 13(2), 285–290 (1972).
[Crossref]

H. A. Macleod, “Turning value monitoring of narrow-band all-dielectric thin film optical filters,” Opt. Acta (Lond.) 19(1), 1–28 (1972).
[Crossref]

Amotchkina, T. V.

Bousquet, P.

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, and P. Roche, “Optical filters: monitoring process allowing the autocorrection of thickness errors,” Thin Solid Films 13(2), 285–290 (1972).
[Crossref]

Fedoseev, V.

Fornier, A.

Kochikov, I. V.

A. V. Tikhonravov, I. V. Kochikov, and A. G. Yagola, “Mathematical investigation of the error self-compensation mechanism in optical coating technology,” Inverse Probl. Sci. Eng. 26(8), 1214–1229 (2018).
[Crossref]

A. V. Tikhonravov, I. V. Kochikov, and A. G. Yagola, “Error self-compensation mechanism in the optical coating production with direct broad band monitoring,” Opt. Express 25(22), 27225–27233 (2017).
[Crossref] [PubMed]

Konotopov, P.

Kowalczyk, R.

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, and P. Roche, “Optical filters: monitoring process allowing the autocorrection of thickness errors,” Thin Solid Films 13(2), 285–290 (1972).
[Crossref]

Kozlov, I.

Kraus, J.

Lyngnes, O.

Macleod, H.

H. Macleod and E. Pelletier, “Error compensation mechanisms in some thin-film monitoring systems,” Opt. Acta (Lond.) 24(9), 907–930 (1977).
[Crossref]

Macleod, H. A.

H. A. Macleod, “Turning value monitoring of narrow-band all-dielectric thin film optical filters,” Opt. Acta (Lond.) 19(1), 1–28 (1972).
[Crossref]

Pelletier, E.

Perilloux, B. E.

Roche, P.

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, and P. Roche, “Optical filters: monitoring process allowing the autocorrection of thickness errors,” Thin Solid Films 13(2), 285–290 (1972).
[Crossref]

Tikhonravov, A.

Tikhonravov, A. V.

Trubetskov, M.

Trubetskov, M. K.

Vidal, B.

Yagola, A. G.

A. V. Tikhonravov, I. V. Kochikov, and A. G. Yagola, “Mathematical investigation of the error self-compensation mechanism in optical coating technology,” Inverse Probl. Sci. Eng. 26(8), 1214–1229 (2018).
[Crossref]

A. V. Tikhonravov, I. V. Kochikov, and A. G. Yagola, “Error self-compensation mechanism in the optical coating production with direct broad band monitoring,” Opt. Express 25(22), 27225–27233 (2017).
[Crossref] [PubMed]

Zhupanov, V.

Appl. Opt. (10)

A. V. Tikhonravov and M. K. Trubetskov, “Automated design and sensitivity analysis of wavelengh-division multiplexing filters,” Appl. Opt. 41(16), 3176–3182 (2002).
[Crossref] [PubMed]

B. Vidal, A. Fornier, and E. Pelletier, “Optical monitoring of nonquarterwave multilayer filters,” Appl. Opt. 17(7), 1038–1047 (1978).
[Crossref] [PubMed]

B. Vidal, A. Fornier, and E. Pelletier, “Wideband optical monitoring of nonquarterwave multilayer filters,” Appl. Opt. 18(22), 3851–3856 (1979).
[Crossref] [PubMed]

B. Vidal and E. Pelletier, “Nonquarterwave multilayer filters: optical monitoring with a minicomputer allowing correction of thickness errors,” Appl. Opt. 18(22), 3857–3862 (1979).
[Crossref] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the error self-compensation effect associated with broadband optical monitoring,” Appl. Opt. 50(9), C111–C116 (2011).
[Crossref] [PubMed]

V. Zhupanov, I. Kozlov, V. Fedoseev, P. Konotopov, M. Trubetskov, and A. Tikhonravov, “Production of Brewster angle thin film polarizers using a ZrO2/SiO2 pair of materials,” Appl. Opt. 56(4), C30–C34 (2017).
[Crossref] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the effect of accumulation of thickness errors in optical coating production by broadband optical monitoring,” Appl. Opt. 45(27), 7026–7034 (2006).
[Crossref] [PubMed]

A. V. Tikhonravov and M. K. Trubetskov, “Computational manufacturing as a bridge between design and production,” Appl. Opt. 44(32), 6877–6884 (2005).
[Crossref] [PubMed]

B. E. Perilloux, “Discrete thin-film thickness-modulated designs: spacing of all possible stopbands,” Appl. Opt. 38(13), 2911–2915 (1999).
[Crossref] [PubMed]

O. Lyngnes and J. Kraus, “Design of optical notch filters using apodized thickness modulation,” Appl. Opt. 53(4), A21–A26 (2014).
[Crossref] [PubMed]

Inverse Probl. Sci. Eng. (1)

A. V. Tikhonravov, I. V. Kochikov, and A. G. Yagola, “Mathematical investigation of the error self-compensation mechanism in optical coating technology,” Inverse Probl. Sci. Eng. 26(8), 1214–1229 (2018).
[Crossref]

Opt. Acta (Lond.) (2)

H. A. Macleod, “Turning value monitoring of narrow-band all-dielectric thin film optical filters,” Opt. Acta (Lond.) 19(1), 1–28 (1972).
[Crossref]

H. Macleod and E. Pelletier, “Error compensation mechanisms in some thin-film monitoring systems,” Opt. Acta (Lond.) 24(9), 907–930 (1977).
[Crossref]

Opt. Express (1)

Thin Solid Films (1)

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, and P. Roche, “Optical filters: monitoring process allowing the autocorrection of thickness errors,” Thin Solid Films 13(2), 285–290 (1972).
[Crossref]

Other (2)

www.optilayer.com .

H. A. Macleod, Thin-Film Optical Filters, 4th ed. (Taylor & Francis, 2010)

Supplementary Material (3)

NameDescription
» Data File 1       The file contains layer thicknesses of a 3-line filter design and layer thicknesses obtained in the course of deposition modeling. Contains underlying values for Figs. 4(a) and 5(a).
» Data File 2       The file contains layer thicknesses of a gain-flattening filter design and layer thicknesses obtained in the course of deposition modeling. Contains underlying values for Figs. 6(a) and 7(a).
» Data File 3       The file contains layer thicknesses of a non-polarizing edge filter design and layer thicknesses obtained in the course of deposition modeling. Contains underlying values for Figs. 1(a) and 2(a).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Optical thicknesses (a) and theoretical s- and p-reflectances (b) of the 50-layer non-polarizing edge filter. See Data File 1 for underlying values.
Fig. 2
Fig. 2 Relative errors in the thicknesses of computationally manufactured edge filter (a) and s- and p-reflectances of this filter (b). See Data File 1 for underlying values.
Fig. 3
Fig. 3 Results of 5 tests with uncorrelated thickness errors of the same level as correlated errors shown in Fig. 2(a) (a - Rs, b Rp) and results of 5 tests with uncorrelated thickness errors of the same 2% levels for all coating layers (c Rs, d Rp).
Fig. 4
Fig. 4 Optical thicknesses (a) and theoretical transmittance (b) of the 51-layer 3-line filter. See Data File 2 for underlying values.
Fig. 5
Fig. 5 (a) relative errors in the thicknesses of computationally manufactured 3-line filter; (b) transmittance of the computationally manufactured filter; (c) results of the statistical error analysis with uncorrelated thickness errors of the same level as in Fig. 5(a): red curve mathematical expectation of the filter transmittance, black curves show the corridor of standard deviations. See Data File 2 for underlying values.
Fig. 6
Fig. 6 Optical thicknesses (a) and theoretical transmittance (b) of the73-layer gain flattening filter (crosses in Fig. 6(b) present target transmittance values). See Data File 3 for underlying values.
Fig. 7
Fig. 7 (a) relative errors in the thicknesses of computationally manufactured gain flattening filter; (b) transmittance of the computationally manufactured filter (red curve) and transmittance of the theoretical filter design (black curve); (c) results of the statistical error analysis with 1% uncorrelated thickness errors: red curve mathematical expectation of the filter transmittance, black curves designate the corridor of standard deviations. See Data File 3 for underlying values.
Fig. 8
Fig. 8 Comparison of the singular values of matrices W and W ^ in the case of NPEF.

Metrics