Abstract

Conventional thermal imaging cameras, based on focal-plane array (FPA) sensors, exhibit inherent problems: such as stray radiation, cross-talk and the calibration uncertainty of ensuring each pixel behaves as if it were an identical temperature sensor. Radiation thermometers can largely overcome these issues, comprising of only a single detector element that can be optimised and calibrated. Although the latter approach can provide excellent accuracy for single-point temperature measurement, it does not provide a temperature image of the target object. In this work, we present a micromechanical systems (MEMS) mirror and silicon (Si) avalanche photodiode (APD) based single-pixel camera, capable of producing quantitative thermal images at an operating wavelength of 1 µm. This work utilises a custom designed f-theta wide-angle lens and MEMS mirror, to scan +/− 30° in both x- and y-dimensions, without signal loss due to vignetting at any point in the field of view (FOV). Our single-pixel camera is shown to perform well, with 3 °C size-of-source effect (SSE) related temperature error and can measure below 700 °C whilst achieving ± 0.5 °C noise related measurement uncertainty. Our measurements were calibrated and traceable to the International Temperature Scale of 1990 (ITS-90). The combination of low SSE and absence of vignetting enables quantitative temperature measurements over a spatial field with measurement uncertainty at levels lower than would be possible with FPA based thermal imaging cameras.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative thermal imaging using single-pixel Si APD and MEMS mirror

Matthew J. Hobbs, Matthew P. Grainger, Chengxi Zhu, Chee Hing Tan, and Jonathan R. Willmott
Opt. Express 26(3) 3188-3198 (2018)

Thermodynamic-temperature determinations of the Ag and Au freezing temperatures using a detector-based radiation thermometer

Howard W. Yoon, David W. Allen, Charles E. Gibson, Maritoni Litorja, Robert D. Saunders, Steven W. Brown, George P. Eppeldauer, and Keith R. Lykke
Appl. Opt. 46(15) 2870-2880 (2007)

Joint estimation of unknown radiometric data, gain, and offset from thermal images

Shahar Papini, Peretz Yafin, Iftach Klapp, and Nir Sochen
Appl. Opt. 57(36) 10390-10401 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Vollmer and K.-P. Möllmann, Infrared Thermal Imaging: Fundamentals, Research and Applications (John Wiley & Sons, 2017).
  2. Q. He, Z. Su, Z. Xie, Z. Zhong, and Q. Yao, “A novel principle for molten steel level measurement in tundish by using temperature gradient,” IEEE Trans. Instrum. Meas. 66(7), 1809–1819 (2017).
    [Crossref]
  3. R. Usamentiaga, J. Molleda, D. F. Garcia, J. C. Granda, and J. L. Rendueles, “Temperature measurement of molten pig iron with slag characterization and detection using infrared computer vision,” IEEE Trans. Instrum. Meas. 61(5), 1149–1159 (2012).
    [Crossref]
  4. S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
    [Crossref]
  5. J. Dixon, “Radiation thermometry,” J. Phys. E Sci. Instrum. 21(5), 425–436 (1988).
    [Crossref]
  6. P. Saunders, Radiation Thermometry: Fundamentals and Applications in the Petrochemical Industry (SPIE, 2007).
  7. H. W. Yoon and G. P. Eppeldauer, “Measurement of thermal radiation using regular glass optics and short-wave infrared detectors,” Opt. Express 16(2), 937–949 (2008).
    [Crossref] [PubMed]
  8. N. Boone, C. Zhu, C. Smith, I. Todd, and J. R. Willmott, “Thermal near infrared monitoring system for electron beam melting with emissivity tracking,” Addit. Manuf. 22, 601–605 (2018).
    [Crossref]
  9. J. Envall, S. Mekhontsev, Y. Zong, and L. Hanssen, “Spatial scatter effects in the calibration of IR pyrometers and imagers,” Int. J. Thermophys. 30(1), 167–178 (2009).
    [Crossref]
  10. G. Grgić and I. Pušnik, “Analysis of thermal imagers,” Int. J. Thermophys. 32(1–2), 237–247 (2011).
    [Crossref]
  11. H. Budzier and G. Gerlach, “Calibration of uncooled thermal infrared cameras,” J. Sens. Sens. Syst. 4(1), 187–197 (2015).
    [Crossref]
  12. A. Whittam, R. Simpson, and H. McEvoy, “Performance tests of thermal imaging systems to assess their suitability for quantitative temperature measurements,” in 12th International Conference on Quantitative InfraRed Thermography (QIRT, 2014).
    [Crossref]
  13. R. Siegel and J. R. Howell, Thermal radiation heat transfer (Hemisphere Publishing Corporation, 1992).
  14. A. Tapetado, J. Díaz-Álvarez, M. H. Miguélez, and C. Vázquez, “Two-color pyrometer for process temperature measurement during machining,” J. Lightwave Technol. 34(4), 1380–1386 (2016).
    [Crossref]
  15. D. Ng and G. Fralick, “Use of a multiwavelength pyrometer in several elevated temperature aerospace applications,” Rev. Sci. Instrum. 72(2), 1522–1530 (2001).
    [Crossref]
  16. T. Duvaut, “Comparison between multiwavelength infrared and visible pyrometry: application to metals,” Infrared Phys. Technol. 51(4), 292–299 (2008).
    [Crossref]
  17. S. Deemyad, A. N. Papathanassiou, and I. F. Silvera, “Strategy and enhanced temperature determination in a laser heated diamond anvil cell,” J. Appl. Phys. 105(9), 093543 (2009).
    [Crossref]
  18. A. S. Machikhin, P. V. Zinin, A. V. Shurygin, and D. D. Khokhlov, “Imaging system based on a tandem acousto-optical tunable filter for in situ measurements of the high temperature distribution,” Opt. Lett. 41(5), 901–904 (2016).
    [Crossref] [PubMed]
  19. M. J. Hobbs, M. P. Grainger, C. Zhu, C. H. Tan, and J. R. Willmott, “Quantitative thermal imaging using single-pixel Si APD and MEMS mirror,” Opt. Express 26(3), 3188–3198 (2018).
    [Crossref] [PubMed]
  20. V. Milanović, A. Kasturi, J. Yang, and F. Hu, “Closed-loop control of gimbal-less MEMS mirrors for increased bandwidth in LiDAR applications,” Proc. SPIE 10191, 101910N (2017).
    [Crossref]
  21. R. Usamentiaga, D. F. Garcia, and J. Molleda, “Uncertainty analysis in spatial thermal measurements using infrared line scanners,” IEEE Trans. Instrum. Meas. 57(9), 2074–2082 (2008).
    [Crossref]
  22. M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
    [Crossref]
  23. M.-J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016).
    [Crossref] [PubMed]
  24. Land Instrument International, “LSP-HD - infrared linescanners,” https://www.ametek-land.com/-/media/ameteklandinstruments/documentation/products/fixedthermalimagerslinescanners/lsphd/ametek_land_lsp-hd_brochure_0310_en.pdf .
  25. M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
    [Crossref] [PubMed]
  26. H. Preston-Thomas, “The international temperature scale of 1990 (ITS-90),” Metrologia 27(1), 3–10 (1990).
    [Crossref]
  27. Land Instruments International, “SPOT - high precision pyrometers,” https://www.ametek-land.com/-/media/ameteklandinstruments/documentation/products/fixedspotnoncontactthermometers/spot/ametek_land_spot_brochure_marcom0355_rev_15.pdf .
  28. R. Gade and T. B. Moeslund, “Thermal cameras and applications: a survey,” Mach. Vis. Appl. 25(1), 245–262 (2014).
    [Crossref]
  29. Hamamatsu Photonics, “Si APD - S12426 series,” https://www.hamamatsu.com/resources/pdf/ssd/s12426_series_kapd1047e.pdf .
  30. Land Instruments International, “Cyclops L - a family of high precision portable non-contact pyrometers,” https://www.ametek-land.com/-/media/ameteklandinstruments/documentation/products/portablenoncontactthermometers/cyclops/ametek_land_cyclops_brochure_rev6_en.pdf .
  31. T. Williams, Thermal imaging cameras: characteristics and performance (CRC, 2009).
  32. J. Bezemer, “Spectral sensitivity corrections for optical standard pyrometers,” Metrologia 10(2), 47–52 (1974).
    [Crossref]
  33. P. Saunders, “Uncertainty arising from the use of the mean effective wavelength in realizing ITS-90,” in AIP Conference Proceedings (AIP, 2003), pp. 639–644.
  34. Land Instruments International, “SPOT - user guide,” https://www.ametek-land.com/-/media/ameteklandinstruments/documentation/products/fixedspotnoncontactthermometers/spot/ametek_land_808273_spot_pyrometer_user_guide_issue_11.pdf .

2018 (2)

N. Boone, C. Zhu, C. Smith, I. Todd, and J. R. Willmott, “Thermal near infrared monitoring system for electron beam melting with emissivity tracking,” Addit. Manuf. 22, 601–605 (2018).
[Crossref]

M. J. Hobbs, M. P. Grainger, C. Zhu, C. H. Tan, and J. R. Willmott, “Quantitative thermal imaging using single-pixel Si APD and MEMS mirror,” Opt. Express 26(3), 3188–3198 (2018).
[Crossref] [PubMed]

2017 (2)

V. Milanović, A. Kasturi, J. Yang, and F. Hu, “Closed-loop control of gimbal-less MEMS mirrors for increased bandwidth in LiDAR applications,” Proc. SPIE 10191, 101910N (2017).
[Crossref]

Q. He, Z. Su, Z. Xie, Z. Zhong, and Q. Yao, “A novel principle for molten steel level measurement in tundish by using temperature gradient,” IEEE Trans. Instrum. Meas. 66(7), 1809–1819 (2017).
[Crossref]

2016 (4)

2015 (2)

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref] [PubMed]

H. Budzier and G. Gerlach, “Calibration of uncooled thermal infrared cameras,” J. Sens. Sens. Syst. 4(1), 187–197 (2015).
[Crossref]

2014 (1)

R. Gade and T. B. Moeslund, “Thermal cameras and applications: a survey,” Mach. Vis. Appl. 25(1), 245–262 (2014).
[Crossref]

2012 (1)

R. Usamentiaga, J. Molleda, D. F. Garcia, J. C. Granda, and J. L. Rendueles, “Temperature measurement of molten pig iron with slag characterization and detection using infrared computer vision,” IEEE Trans. Instrum. Meas. 61(5), 1149–1159 (2012).
[Crossref]

2011 (1)

G. Grgić and I. Pušnik, “Analysis of thermal imagers,” Int. J. Thermophys. 32(1–2), 237–247 (2011).
[Crossref]

2009 (2)

J. Envall, S. Mekhontsev, Y. Zong, and L. Hanssen, “Spatial scatter effects in the calibration of IR pyrometers and imagers,” Int. J. Thermophys. 30(1), 167–178 (2009).
[Crossref]

S. Deemyad, A. N. Papathanassiou, and I. F. Silvera, “Strategy and enhanced temperature determination in a laser heated diamond anvil cell,” J. Appl. Phys. 105(9), 093543 (2009).
[Crossref]

2008 (4)

H. W. Yoon and G. P. Eppeldauer, “Measurement of thermal radiation using regular glass optics and short-wave infrared detectors,” Opt. Express 16(2), 937–949 (2008).
[Crossref] [PubMed]

T. Duvaut, “Comparison between multiwavelength infrared and visible pyrometry: application to metals,” Infrared Phys. Technol. 51(4), 292–299 (2008).
[Crossref]

R. Usamentiaga, D. F. Garcia, and J. Molleda, “Uncertainty analysis in spatial thermal measurements using infrared line scanners,” IEEE Trans. Instrum. Meas. 57(9), 2074–2082 (2008).
[Crossref]

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

2001 (1)

D. Ng and G. Fralick, “Use of a multiwavelength pyrometer in several elevated temperature aerospace applications,” Rev. Sci. Instrum. 72(2), 1522–1530 (2001).
[Crossref]

1990 (1)

H. Preston-Thomas, “The international temperature scale of 1990 (ITS-90),” Metrologia 27(1), 3–10 (1990).
[Crossref]

1988 (1)

J. Dixon, “Radiation thermometry,” J. Phys. E Sci. Instrum. 21(5), 425–436 (1988).
[Crossref]

1974 (1)

J. Bezemer, “Spectral sensitivity corrections for optical standard pyrometers,” Metrologia 10(2), 47–52 (1974).
[Crossref]

Baraniuk, R. G.

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Bezemer, J.

J. Bezemer, “Spectral sensitivity corrections for optical standard pyrometers,” Metrologia 10(2), 47–52 (1974).
[Crossref]

Boone, N.

N. Boone, C. Zhu, C. Smith, I. Todd, and J. R. Willmott, “Thermal near infrared monitoring system for electron beam melting with emissivity tracking,” Addit. Manuf. 22, 601–605 (2018).
[Crossref]

Bowman, R. W.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref] [PubMed]

Budzier, H.

H. Budzier and G. Gerlach, “Calibration of uncooled thermal infrared cameras,” J. Sens. Sens. Syst. 4(1), 187–197 (2015).
[Crossref]

Clare, A. T.

S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
[Crossref]

Davenport, M. A.

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Deemyad, S.

S. Deemyad, A. N. Papathanassiou, and I. F. Silvera, “Strategy and enhanced temperature determination in a laser heated diamond anvil cell,” J. Appl. Phys. 105(9), 093543 (2009).
[Crossref]

Díaz-Álvarez, J.

Dixon, J.

J. Dixon, “Radiation thermometry,” J. Phys. E Sci. Instrum. 21(5), 425–436 (1988).
[Crossref]

Duarte, M. F.

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Duvaut, T.

T. Duvaut, “Comparison between multiwavelength infrared and visible pyrometry: application to metals,” Infrared Phys. Technol. 51(4), 292–299 (2008).
[Crossref]

Edgar, M. P.

M.-J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016).
[Crossref] [PubMed]

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref] [PubMed]

Envall, J.

J. Envall, S. Mekhontsev, Y. Zong, and L. Hanssen, “Spatial scatter effects in the calibration of IR pyrometers and imagers,” Int. J. Thermophys. 30(1), 167–178 (2009).
[Crossref]

Eppeldauer, G. P.

Everton, S. K.

S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
[Crossref]

Fralick, G.

D. Ng and G. Fralick, “Use of a multiwavelength pyrometer in several elevated temperature aerospace applications,” Rev. Sci. Instrum. 72(2), 1522–1530 (2001).
[Crossref]

Gade, R.

R. Gade and T. B. Moeslund, “Thermal cameras and applications: a survey,” Mach. Vis. Appl. 25(1), 245–262 (2014).
[Crossref]

Garcia, D. F.

R. Usamentiaga, J. Molleda, D. F. Garcia, J. C. Granda, and J. L. Rendueles, “Temperature measurement of molten pig iron with slag characterization and detection using infrared computer vision,” IEEE Trans. Instrum. Meas. 61(5), 1149–1159 (2012).
[Crossref]

R. Usamentiaga, D. F. Garcia, and J. Molleda, “Uncertainty analysis in spatial thermal measurements using infrared line scanners,” IEEE Trans. Instrum. Meas. 57(9), 2074–2082 (2008).
[Crossref]

Gerlach, G.

H. Budzier and G. Gerlach, “Calibration of uncooled thermal infrared cameras,” J. Sens. Sens. Syst. 4(1), 187–197 (2015).
[Crossref]

Gibson, G. M.

M.-J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016).
[Crossref] [PubMed]

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref] [PubMed]

Grainger, M. P.

Granda, J. C.

R. Usamentiaga, J. Molleda, D. F. Garcia, J. C. Granda, and J. L. Rendueles, “Temperature measurement of molten pig iron with slag characterization and detection using infrared computer vision,” IEEE Trans. Instrum. Meas. 61(5), 1149–1159 (2012).
[Crossref]

Grgic, G.

G. Grgić and I. Pušnik, “Analysis of thermal imagers,” Int. J. Thermophys. 32(1–2), 237–247 (2011).
[Crossref]

Hanssen, L.

J. Envall, S. Mekhontsev, Y. Zong, and L. Hanssen, “Spatial scatter effects in the calibration of IR pyrometers and imagers,” Int. J. Thermophys. 30(1), 167–178 (2009).
[Crossref]

He, Q.

Q. He, Z. Su, Z. Xie, Z. Zhong, and Q. Yao, “A novel principle for molten steel level measurement in tundish by using temperature gradient,” IEEE Trans. Instrum. Meas. 66(7), 1809–1819 (2017).
[Crossref]

Hirsch, M.

S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
[Crossref]

Hobbs, M. J.

Hu, F.

V. Milanović, A. Kasturi, J. Yang, and F. Hu, “Closed-loop control of gimbal-less MEMS mirrors for increased bandwidth in LiDAR applications,” Proc. SPIE 10191, 101910N (2017).
[Crossref]

Kasturi, A.

V. Milanović, A. Kasturi, J. Yang, and F. Hu, “Closed-loop control of gimbal-less MEMS mirrors for increased bandwidth in LiDAR applications,” Proc. SPIE 10191, 101910N (2017).
[Crossref]

Kelly, K. F.

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Khokhlov, D. D.

Laska, J. N.

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Leach, R. K.

S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
[Crossref]

Machikhin, A. S.

McEvoy, H.

A. Whittam, R. Simpson, and H. McEvoy, “Performance tests of thermal imaging systems to assess their suitability for quantitative temperature measurements,” in 12th International Conference on Quantitative InfraRed Thermography (QIRT, 2014).
[Crossref]

Mekhontsev, S.

J. Envall, S. Mekhontsev, Y. Zong, and L. Hanssen, “Spatial scatter effects in the calibration of IR pyrometers and imagers,” Int. J. Thermophys. 30(1), 167–178 (2009).
[Crossref]

Miguélez, M. H.

Milanovic, V.

V. Milanović, A. Kasturi, J. Yang, and F. Hu, “Closed-loop control of gimbal-less MEMS mirrors for increased bandwidth in LiDAR applications,” Proc. SPIE 10191, 101910N (2017).
[Crossref]

Mitchell, K. J.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref] [PubMed]

Moeslund, T. B.

R. Gade and T. B. Moeslund, “Thermal cameras and applications: a survey,” Mach. Vis. Appl. 25(1), 245–262 (2014).
[Crossref]

Molleda, J.

R. Usamentiaga, J. Molleda, D. F. Garcia, J. C. Granda, and J. L. Rendueles, “Temperature measurement of molten pig iron with slag characterization and detection using infrared computer vision,” IEEE Trans. Instrum. Meas. 61(5), 1149–1159 (2012).
[Crossref]

R. Usamentiaga, D. F. Garcia, and J. Molleda, “Uncertainty analysis in spatial thermal measurements using infrared line scanners,” IEEE Trans. Instrum. Meas. 57(9), 2074–2082 (2008).
[Crossref]

Ng, D.

D. Ng and G. Fralick, “Use of a multiwavelength pyrometer in several elevated temperature aerospace applications,” Rev. Sci. Instrum. 72(2), 1522–1530 (2001).
[Crossref]

Padgett, M. J.

M.-J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016).
[Crossref] [PubMed]

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref] [PubMed]

Papathanassiou, A. N.

S. Deemyad, A. N. Papathanassiou, and I. F. Silvera, “Strategy and enhanced temperature determination in a laser heated diamond anvil cell,” J. Appl. Phys. 105(9), 093543 (2009).
[Crossref]

Phillips, D. B.

Preston-Thomas, H.

H. Preston-Thomas, “The international temperature scale of 1990 (ITS-90),” Metrologia 27(1), 3–10 (1990).
[Crossref]

Pušnik, I.

G. Grgić and I. Pušnik, “Analysis of thermal imagers,” Int. J. Thermophys. 32(1–2), 237–247 (2011).
[Crossref]

Radwell, N.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref] [PubMed]

Rendueles, J. L.

R. Usamentiaga, J. Molleda, D. F. Garcia, J. C. Granda, and J. L. Rendueles, “Temperature measurement of molten pig iron with slag characterization and detection using infrared computer vision,” IEEE Trans. Instrum. Meas. 61(5), 1149–1159 (2012).
[Crossref]

Shurygin, A. V.

Silvera, I. F.

S. Deemyad, A. N. Papathanassiou, and I. F. Silvera, “Strategy and enhanced temperature determination in a laser heated diamond anvil cell,” J. Appl. Phys. 105(9), 093543 (2009).
[Crossref]

Simpson, R.

A. Whittam, R. Simpson, and H. McEvoy, “Performance tests of thermal imaging systems to assess their suitability for quantitative temperature measurements,” in 12th International Conference on Quantitative InfraRed Thermography (QIRT, 2014).
[Crossref]

Smith, C.

N. Boone, C. Zhu, C. Smith, I. Todd, and J. R. Willmott, “Thermal near infrared monitoring system for electron beam melting with emissivity tracking,” Addit. Manuf. 22, 601–605 (2018).
[Crossref]

Stravroulakis, P.

S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
[Crossref]

Su, Z.

Q. He, Z. Su, Z. Xie, Z. Zhong, and Q. Yao, “A novel principle for molten steel level measurement in tundish by using temperature gradient,” IEEE Trans. Instrum. Meas. 66(7), 1809–1819 (2017).
[Crossref]

Sun, B.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref] [PubMed]

Sun, M.-J.

Sun, T.

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Takbar, D.

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Tan, C. H.

Tapetado, A.

Todd, I.

N. Boone, C. Zhu, C. Smith, I. Todd, and J. R. Willmott, “Thermal near infrared monitoring system for electron beam melting with emissivity tracking,” Addit. Manuf. 22, 601–605 (2018).
[Crossref]

Usamentiaga, R.

R. Usamentiaga, J. Molleda, D. F. Garcia, J. C. Granda, and J. L. Rendueles, “Temperature measurement of molten pig iron with slag characterization and detection using infrared computer vision,” IEEE Trans. Instrum. Meas. 61(5), 1149–1159 (2012).
[Crossref]

R. Usamentiaga, D. F. Garcia, and J. Molleda, “Uncertainty analysis in spatial thermal measurements using infrared line scanners,” IEEE Trans. Instrum. Meas. 57(9), 2074–2082 (2008).
[Crossref]

Vázquez, C.

Welsh, S. S.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref] [PubMed]

Whittam, A.

A. Whittam, R. Simpson, and H. McEvoy, “Performance tests of thermal imaging systems to assess their suitability for quantitative temperature measurements,” in 12th International Conference on Quantitative InfraRed Thermography (QIRT, 2014).
[Crossref]

Willmott, J. R.

N. Boone, C. Zhu, C. Smith, I. Todd, and J. R. Willmott, “Thermal near infrared monitoring system for electron beam melting with emissivity tracking,” Addit. Manuf. 22, 601–605 (2018).
[Crossref]

M. J. Hobbs, M. P. Grainger, C. Zhu, C. H. Tan, and J. R. Willmott, “Quantitative thermal imaging using single-pixel Si APD and MEMS mirror,” Opt. Express 26(3), 3188–3198 (2018).
[Crossref] [PubMed]

Xie, Z.

Q. He, Z. Su, Z. Xie, Z. Zhong, and Q. Yao, “A novel principle for molten steel level measurement in tundish by using temperature gradient,” IEEE Trans. Instrum. Meas. 66(7), 1809–1819 (2017).
[Crossref]

Yang, J.

V. Milanović, A. Kasturi, J. Yang, and F. Hu, “Closed-loop control of gimbal-less MEMS mirrors for increased bandwidth in LiDAR applications,” Proc. SPIE 10191, 101910N (2017).
[Crossref]

Yao, Q.

Q. He, Z. Su, Z. Xie, Z. Zhong, and Q. Yao, “A novel principle for molten steel level measurement in tundish by using temperature gradient,” IEEE Trans. Instrum. Meas. 66(7), 1809–1819 (2017).
[Crossref]

Yoon, H. W.

Zhong, Z.

Q. He, Z. Su, Z. Xie, Z. Zhong, and Q. Yao, “A novel principle for molten steel level measurement in tundish by using temperature gradient,” IEEE Trans. Instrum. Meas. 66(7), 1809–1819 (2017).
[Crossref]

Zhu, C.

N. Boone, C. Zhu, C. Smith, I. Todd, and J. R. Willmott, “Thermal near infrared monitoring system for electron beam melting with emissivity tracking,” Addit. Manuf. 22, 601–605 (2018).
[Crossref]

M. J. Hobbs, M. P. Grainger, C. Zhu, C. H. Tan, and J. R. Willmott, “Quantitative thermal imaging using single-pixel Si APD and MEMS mirror,” Opt. Express 26(3), 3188–3198 (2018).
[Crossref] [PubMed]

Zinin, P. V.

Zong, Y.

J. Envall, S. Mekhontsev, Y. Zong, and L. Hanssen, “Spatial scatter effects in the calibration of IR pyrometers and imagers,” Int. J. Thermophys. 30(1), 167–178 (2009).
[Crossref]

Addit. Manuf. (1)

N. Boone, C. Zhu, C. Smith, I. Todd, and J. R. Willmott, “Thermal near infrared monitoring system for electron beam melting with emissivity tracking,” Addit. Manuf. 22, 601–605 (2018).
[Crossref]

IEEE Signal Process. Mag. (1)

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

IEEE Trans. Instrum. Meas. (3)

R. Usamentiaga, D. F. Garcia, and J. Molleda, “Uncertainty analysis in spatial thermal measurements using infrared line scanners,” IEEE Trans. Instrum. Meas. 57(9), 2074–2082 (2008).
[Crossref]

Q. He, Z. Su, Z. Xie, Z. Zhong, and Q. Yao, “A novel principle for molten steel level measurement in tundish by using temperature gradient,” IEEE Trans. Instrum. Meas. 66(7), 1809–1819 (2017).
[Crossref]

R. Usamentiaga, J. Molleda, D. F. Garcia, J. C. Granda, and J. L. Rendueles, “Temperature measurement of molten pig iron with slag characterization and detection using infrared computer vision,” IEEE Trans. Instrum. Meas. 61(5), 1149–1159 (2012).
[Crossref]

Infrared Phys. Technol. (1)

T. Duvaut, “Comparison between multiwavelength infrared and visible pyrometry: application to metals,” Infrared Phys. Technol. 51(4), 292–299 (2008).
[Crossref]

Int. J. Thermophys. (2)

J. Envall, S. Mekhontsev, Y. Zong, and L. Hanssen, “Spatial scatter effects in the calibration of IR pyrometers and imagers,” Int. J. Thermophys. 30(1), 167–178 (2009).
[Crossref]

G. Grgić and I. Pušnik, “Analysis of thermal imagers,” Int. J. Thermophys. 32(1–2), 237–247 (2011).
[Crossref]

J. Appl. Phys. (1)

S. Deemyad, A. N. Papathanassiou, and I. F. Silvera, “Strategy and enhanced temperature determination in a laser heated diamond anvil cell,” J. Appl. Phys. 105(9), 093543 (2009).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. E Sci. Instrum. (1)

J. Dixon, “Radiation thermometry,” J. Phys. E Sci. Instrum. 21(5), 425–436 (1988).
[Crossref]

J. Sens. Sens. Syst. (1)

H. Budzier and G. Gerlach, “Calibration of uncooled thermal infrared cameras,” J. Sens. Sens. Syst. 4(1), 187–197 (2015).
[Crossref]

Mach. Vis. Appl. (1)

R. Gade and T. B. Moeslund, “Thermal cameras and applications: a survey,” Mach. Vis. Appl. 25(1), 245–262 (2014).
[Crossref]

Mater. Des. (1)

S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
[Crossref]

Metrologia (2)

H. Preston-Thomas, “The international temperature scale of 1990 (ITS-90),” Metrologia 27(1), 3–10 (1990).
[Crossref]

J. Bezemer, “Spectral sensitivity corrections for optical standard pyrometers,” Metrologia 10(2), 47–52 (1974).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (1)

V. Milanović, A. Kasturi, J. Yang, and F. Hu, “Closed-loop control of gimbal-less MEMS mirrors for increased bandwidth in LiDAR applications,” Proc. SPIE 10191, 101910N (2017).
[Crossref]

Rev. Sci. Instrum. (1)

D. Ng and G. Fralick, “Use of a multiwavelength pyrometer in several elevated temperature aerospace applications,” Rev. Sci. Instrum. 72(2), 1522–1530 (2001).
[Crossref]

Sci. Rep. (1)

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref] [PubMed]

Other (11)

Land Instrument International, “LSP-HD - infrared linescanners,” https://www.ametek-land.com/-/media/ameteklandinstruments/documentation/products/fixedthermalimagerslinescanners/lsphd/ametek_land_lsp-hd_brochure_0310_en.pdf .

Hamamatsu Photonics, “Si APD - S12426 series,” https://www.hamamatsu.com/resources/pdf/ssd/s12426_series_kapd1047e.pdf .

Land Instruments International, “Cyclops L - a family of high precision portable non-contact pyrometers,” https://www.ametek-land.com/-/media/ameteklandinstruments/documentation/products/portablenoncontactthermometers/cyclops/ametek_land_cyclops_brochure_rev6_en.pdf .

T. Williams, Thermal imaging cameras: characteristics and performance (CRC, 2009).

P. Saunders, “Uncertainty arising from the use of the mean effective wavelength in realizing ITS-90,” in AIP Conference Proceedings (AIP, 2003), pp. 639–644.

Land Instruments International, “SPOT - user guide,” https://www.ametek-land.com/-/media/ameteklandinstruments/documentation/products/fixedspotnoncontactthermometers/spot/ametek_land_808273_spot_pyrometer_user_guide_issue_11.pdf .

Land Instruments International, “SPOT - high precision pyrometers,” https://www.ametek-land.com/-/media/ameteklandinstruments/documentation/products/fixedspotnoncontactthermometers/spot/ametek_land_spot_brochure_marcom0355_rev_15.pdf .

M. Vollmer and K.-P. Möllmann, Infrared Thermal Imaging: Fundamentals, Research and Applications (John Wiley & Sons, 2017).

P. Saunders, Radiation Thermometry: Fundamentals and Applications in the Petrochemical Industry (SPIE, 2007).

A. Whittam, R. Simpson, and H. McEvoy, “Performance tests of thermal imaging systems to assess their suitability for quantitative temperature measurements,” in 12th International Conference on Quantitative InfraRed Thermography (QIRT, 2014).
[Crossref]

R. Siegel and J. R. Howell, Thermal radiation heat transfer (Hemisphere Publishing Corporation, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Single-pixel camera thermal imaging setup. DAQ unit replaces DMM for noise measurement; furnace can alternatively be replaced by a hot object.
Fig. 2
Fig. 2 MTF test plate used for spatial frequency assessment.
Fig. 3
Fig. 3 Target object imaging of 3D printed titanium lattice: (a) visible image of target, (b) near infrared illuminated target image, (c) uncalibrated raw data image of heated target and (d) calibrated temperature map of the heated target. The emissivity of the titanium lattice is a priori assumed to be 0.55 [34].
Fig. 4
Fig. 4 Target object imaging of (a) a narrowing point, (b) a mesh with 5 mm holes, (c) 6 mm wide slits and (d) 3 mm wide slits. Each object is shown with a visible image, a raw data near infrared image and a calibrated temperature map image. Furnace temperature was 993 °C.
Fig. 5
Fig. 5 Single-pixel camera MTF as a function of spatial frequency. Furnace temperature of 993 °C.
Fig. 6
Fig. 6 Target aperture imaging shown for target apertures of 5, 8, 10, 14, 20 and 25 mm in diameter. Furnace temperature of 993 °C.
Fig. 7
Fig. 7 Mid-point cross sections of aperture images. Furnace temperature of 993 °C.
Fig. 8
Fig. 8 FOV and SSE results at different single-pixel camera scan angles ranging from its 0°, 0° origin position and its maximum scan angle for a 993 °C furnace. Measured temperature shown as function of (a) target aperture diameter and (b) target aperture area.
Fig. 9
Fig. 9 Single-pixel camera noise with target temperature at different integration levels.
Fig. 10
Fig. 10 (a) FOV and SSE results at a 0°, 0° origin position before and after additional optimisation and (b) mid-point cross sections of aperture images after further optimisation. Furnace temperature of 993 °C.

Tables (1)

Tables Icon

Table 1 Temperature measured by single-pixel camera at different scan angles for 10 mm target aperture in comparison with reference thermometer. Uncertainty with respect to the SI was calculated to be ± 1.7 °C for reference thermometer and estimated to be ± 1.8 °C for single-pixel camera.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

MTF= I max I min I max + I min

Metrics