Abstract

A diode-pumped, passively mode-locked laser emitting at 915 nm with a praseodymium-doped yttrium lithium fluoride (Pr:YLF) crystal was demonstrated for the first time, to the best of our knowledge. Utilizing two polarization-combined blue pumping laser diodes (LDs) and a semiconductor saturable absorber mirror (SESAM), stable continuous-wave (CW) mode-locking operations were achieved with a maximum average output power of 408 mW and a slope efficiency of 10.8%. Laser pulse durations of 15 ps were obtained with a spectral full width at half maximum (FWHM) of 0.15 nm and a repetition rate of 1.53 GHz.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Pr3+:YLF mode-locked laser at 640  nm directly pumped by InGaN-diode lasers

Kodai Iijima, Ryosuke Kariyama, Hiroki Tanaka, and Fumihiko Kannari
Appl. Opt. 55(28) 7782-7787 (2016)

High-power self-mode-locked Pr:YLF visible lasers

Saiyu Luo, Bin Xu, Huiying Xu, and Zhiping Cai
Appl. Opt. 56(34) 9552-9555 (2017)

Diode-pumped passively mode-locked Yb:YLF laser

N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta
Opt. Express 16(5) 2922-2927 (2008)

References

  • View by:
  • |
  • |
  • |

  1. L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophotonics 9(1-2), 38–43 (2016).
    [Crossref] [PubMed]
  2. W. Sibbett, A. A. Lagatsky, and C. T. A. Brown, “The development and application of femtosecond laser systems,” Opt. Express 20(7), 6989–7001 (2012).
    [Crossref] [PubMed]
  3. E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
    [Crossref] [PubMed]
  4. J. Klein and J. D. Kafka, “The Ti:sapphire laser: The flexible research tool,” Nat. Photonics 4(5), 289 (2010).
    [Crossref]
  5. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
    [Crossref] [PubMed]
  6. J. Shi, X. Sun, S. Zheng, J. Li, X. Fu, and H. Zhang, “A new near-infrared persistent luminescence nanoparticle as a multifunctional nanoplatform for multimodal imaging and cancer therapy,” Biomaterials 152, 15–23 (2018).
    [Crossref] [PubMed]
  7. H. Kneipp, J. Kolenda, P. Rairoux, B. Stein, D. Weidauer, J.-P. Wolf, and L. H. Woeste, “Ti:sapphire-laserbased lidar systems,” Proc. SPIE 1714, 270–278 (1992).
    [Crossref]
  8. A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3(1), 745 (2012).
    [Crossref] [PubMed]
  9. R. Ell, U. Morgner, F. X. Kãârtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, “Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,” Opt. Lett. 26(6), 373–375 (2001).
    [Crossref] [PubMed]
  10. A. Bartels, D. Heinecke, and S. A. Diddams, “Passively mode-locked 10 GHz femtosecond Ti:sapphire laser,” Opt. Lett. 33(16), 1905–1907 (2008).
    [Crossref] [PubMed]
  11. K. Gürel, V. J. Wittwer, M. Hoffmann, C. J. Saraceno, S. Hakobyan, B. Resan, A. Rohrbacher, K. Weingarten, S. Schilt, and T. Südmeyer, “Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power,” Opt. Express 23(23), 30043–30048 (2015).
    [Crossref] [PubMed]
  12. S. Backus, M. Kirchner, C. Durfee, M. Murnane, and H. Kapteyn, “Direct diode-pumped Kerr Lens 13 fs Ti:sapphire ultrafast oscillator using a single blue laser diode,” Opt. Express 25(11), 12469–12477 (2017).
    [Crossref] [PubMed]
  13. J. C. E. Coyle, A. J. Kemp, J. M. Hopkins, and A. A. Lagatsky, “Ultrafast diode-pumped Ti:sapphire laser with broad tunability,” Opt. Express 26(6), 6826–6832 (2018).
    [Crossref] [PubMed]
  14. Y. Zhang, H. Yu, R. Zhang, G. Zhao, H. Zhang, Y. Chen, L. Mei, M. Tonelli, and J. Wang, “Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range,” Opt. Lett. 42(3), 547–550 (2017).
    [Crossref] [PubMed]
  15. H. Yu, D. P. Jiang, F. Tang, L. B. Su, S. Y. Luo, X. G. Yan, B. Xu, Z. P. Cai, J. Y. Wang, Q. W. Ju, and J. Xu, “Enhanced photoluminescence and initial red laser operation in Pr:CaF2 crystal via co-doping Gd3+ ions,” Mater. Lett. 206(1), 140–142 (2017).
    [Crossref]
  16. B. Xu, P. Camy, J.-L. Doualan, Z. Cai, and R. Moncorgé, “Visible laser operation of Pr3+-doped fluoride crystals pumped by a 469 nm blue laser,” Opt. Express 19(2), 1191–1197 (2011).
    [Crossref] [PubMed]
  17. P. W. Metz, F. Reichert, F. Moglia, S. Müller, D. T. Marzahl, C. Kränkel, and G. Huber, “High-power red, orange, and green Pr3+:LiYF4 lasers,” Opt. Lett. 39(11), 3193–3196 (2014).
    [Crossref] [PubMed]
  18. T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, “Efficient Continuous Wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B 58(2), 149–151 (1994).
    [Crossref]
  19. B. Qu, B. Xu, Y. J. Cheng, S. Y. Luo, H. Y. Xu, Y. K. Bu, P. Camy, J. L. Doualan, R. Moncorge, and Z. P. Cai, “InGaN-LD-pumped Pr3+:LiYF4 continuous-wave laser at 915 nm,” IEEE Photonics J. 6(6), 1502906 (2014).
    [Crossref]
  20. Z. P. Cai, B. Qu, Y. J. Cheng, S. Y. Luo, B. Xu, H. Y. Xu, Z. Q. Luo, P. Camy, J. L. Doualan, and R. Moncorgé, “Emission properties and CW laser operation of Pr:YLF in the 910 nm spectral range,” Opt. Express 22(26), 31722–31728 (2014).
    [Crossref] [PubMed]
  21. B. Qu, R. Moncorgé, Z. Cai, J. L. Doualan, B. Xu, H. Xu, A. Braud, and P. Camy, “Broadband-tunable CW laser operation of Pr3+:LiYF4 around 900 nm,” Opt. Lett. 40(13), 3053–3056 (2015).
    [Crossref] [PubMed]
  22. D. Dagnelund, Y. Q. Huang, C. W. Tu, H. Yonezu, I. A. Buyanova, and W. M. Chen, “Dual-wavelength excited photoluminescence spectroscopy of deep-level hole traps in Ga(In)NP,” J. Appl. Phys. 117(1), 015701 (2015).
    [Crossref]
  23. M. Drobizhev, N. S. Makarov, T. Hughes, and A. Rebane, “Resonance Enhancement of Two-Photon Absorption in Fluorescent Proteins,” J. Phys. Chem. B 111(50), 14051–14054 (2007).
    [Crossref] [PubMed]
  24. M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
    [Crossref] [PubMed]
  25. M. Gaponenko, P. W. Metz, A. Härkönen, A. Heuer, T. Leinonen, M. Guina, T. Südmeyer, G. Huber, and C. Kränkel, “SESAM mode-locked red praseodymium laser,” Opt. Lett. 39(24), 6939–6941 (2014).
    [Crossref] [PubMed]
  26. K. Iijima, R. Kariyama, H. Tanaka, and F. Kannari, “Pr3+:YLF mode-locked laser at 640 nm directly pumped by InGaN-diode lasers,” Appl. Opt. 55(28), 7782–7787 (2016).
    [Crossref] [PubMed]
  27. M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, “Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 18(12), 977–979 (1993).
    [Crossref] [PubMed]
  28. S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
    [Crossref]
  29. Y. Zhang, H. Yu, H. Zhang, A. Di Lieto, M. Tonelli, and J. Wang, “Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate,” Opt. Lett. 41(12), 2692–2695 (2016).
    [Crossref] [PubMed]

2018 (2)

J. Shi, X. Sun, S. Zheng, J. Li, X. Fu, and H. Zhang, “A new near-infrared persistent luminescence nanoparticle as a multifunctional nanoplatform for multimodal imaging and cancer therapy,” Biomaterials 152, 15–23 (2018).
[Crossref] [PubMed]

J. C. E. Coyle, A. J. Kemp, J. M. Hopkins, and A. A. Lagatsky, “Ultrafast diode-pumped Ti:sapphire laser with broad tunability,” Opt. Express 26(6), 6826–6832 (2018).
[Crossref] [PubMed]

2017 (3)

2016 (3)

2015 (3)

2014 (5)

2013 (1)

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

2012 (2)

W. Sibbett, A. A. Lagatsky, and C. T. A. Brown, “The development and application of femtosecond laser systems,” Opt. Express 20(7), 6989–7001 (2012).
[Crossref] [PubMed]

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3(1), 745 (2012).
[Crossref] [PubMed]

2011 (2)

B. Xu, P. Camy, J.-L. Doualan, Z. Cai, and R. Moncorgé, “Visible laser operation of Pr3+-doped fluoride crystals pumped by a 469 nm blue laser,” Opt. Express 19(2), 1191–1197 (2011).
[Crossref] [PubMed]

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

2010 (1)

J. Klein and J. D. Kafka, “The Ti:sapphire laser: The flexible research tool,” Nat. Photonics 4(5), 289 (2010).
[Crossref]

2008 (1)

2007 (1)

M. Drobizhev, N. S. Makarov, T. Hughes, and A. Rebane, “Resonance Enhancement of Two-Photon Absorption in Fluorescent Proteins,” J. Phys. Chem. B 111(50), 14051–14054 (2007).
[Crossref] [PubMed]

2001 (2)

1994 (1)

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, “Efficient Continuous Wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B 58(2), 149–151 (1994).
[Crossref]

1993 (1)

1992 (1)

H. Kneipp, J. Kolenda, P. Rairoux, B. Stein, D. Weidauer, J.-P. Wolf, and L. H. Woeste, “Ti:sapphire-laserbased lidar systems,” Proc. SPIE 1714, 270–278 (1992).
[Crossref]

Alfano, R.

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophotonics 9(1-2), 38–43 (2016).
[Crossref] [PubMed]

Angelow, G.

Asaki, M. T.

Backus, S.

Bartels, A.

Bawendi, M. G.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3(1), 745 (2012).
[Crossref] [PubMed]

Boiko, A.

Braud, A.

Brown, C. T. A.

Bu, Y. K.

B. Qu, B. Xu, Y. J. Cheng, S. Y. Luo, H. Y. Xu, Y. K. Bu, P. Camy, J. L. Doualan, R. Moncorge, and Z. P. Cai, “InGaN-LD-pumped Pr3+:LiYF4 continuous-wave laser at 915 nm,” IEEE Photonics J. 6(6), 1502906 (2014).
[Crossref]

Buyanova, I. A.

D. Dagnelund, Y. Q. Huang, C. W. Tu, H. Yonezu, I. A. Buyanova, and W. M. Chen, “Dual-wavelength excited photoluminescence spectroscopy of deep-level hole traps in Ga(In)NP,” J. Appl. Phys. 117(1), 015701 (2015).
[Crossref]

Cai, Z.

Cai, Z. P.

H. Yu, D. P. Jiang, F. Tang, L. B. Su, S. Y. Luo, X. G. Yan, B. Xu, Z. P. Cai, J. Y. Wang, Q. W. Ju, and J. Xu, “Enhanced photoluminescence and initial red laser operation in Pr:CaF2 crystal via co-doping Gd3+ ions,” Mater. Lett. 206(1), 140–142 (2017).
[Crossref]

B. Qu, B. Xu, Y. J. Cheng, S. Y. Luo, H. Y. Xu, Y. K. Bu, P. Camy, J. L. Doualan, R. Moncorge, and Z. P. Cai, “InGaN-LD-pumped Pr3+:LiYF4 continuous-wave laser at 915 nm,” IEEE Photonics J. 6(6), 1502906 (2014).
[Crossref]

Z. P. Cai, B. Qu, Y. J. Cheng, S. Y. Luo, B. Xu, H. Y. Xu, Z. Q. Luo, P. Camy, J. L. Doualan, and R. Moncorgé, “Emission properties and CW laser operation of Pr:YLF in the 910 nm spectral range,” Opt. Express 22(26), 31722–31728 (2014).
[Crossref] [PubMed]

Camy, P.

Chai, B. H. T.

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, “Efficient Continuous Wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B 58(2), 149–151 (1994).
[Crossref]

Chen, W. M.

D. Dagnelund, Y. Q. Huang, C. W. Tu, H. Yonezu, I. A. Buyanova, and W. M. Chen, “Dual-wavelength excited photoluminescence spectroscopy of deep-level hole traps in Ga(In)NP,” J. Appl. Phys. 117(1), 015701 (2015).
[Crossref]

Chen, Y.

Cheng, Y. J.

B. Qu, B. Xu, Y. J. Cheng, S. Y. Luo, H. Y. Xu, Y. K. Bu, P. Camy, J. L. Doualan, R. Moncorge, and Z. P. Cai, “InGaN-LD-pumped Pr3+:LiYF4 continuous-wave laser at 915 nm,” IEEE Photonics J. 6(6), 1502906 (2014).
[Crossref]

Z. P. Cai, B. Qu, Y. J. Cheng, S. Y. Luo, B. Xu, H. Y. Xu, Z. Q. Luo, P. Camy, J. L. Doualan, and R. Moncorgé, “Emission properties and CW laser operation of Pr:YLF in the 910 nm spectral range,” Opt. Express 22(26), 31722–31728 (2014).
[Crossref] [PubMed]

Coyle, J. C. E.

Dagnelund, D.

D. Dagnelund, Y. Q. Huang, C. W. Tu, H. Yonezu, I. A. Buyanova, and W. M. Chen, “Dual-wavelength excited photoluminescence spectroscopy of deep-level hole traps in Ga(In)NP,” J. Appl. Phys. 117(1), 015701 (2015).
[Crossref]

Danger, T.

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, “Efficient Continuous Wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B 58(2), 149–151 (1994).
[Crossref]

Di Lieto, A.

Diddams, S. A.

Doualan, J. L.

Doualan, J.-L.

Drexler, W.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Drobizhev, M.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

M. Drobizhev, N. S. Makarov, T. Hughes, and A. Rebane, “Resonance Enhancement of Two-Photon Absorption in Fluorescent Proteins,” J. Phys. Chem. B 111(50), 14051–14054 (2007).
[Crossref] [PubMed]

Durfee, C.

Ell, R.

Fu, X.

J. Shi, X. Sun, S. Zheng, J. Li, X. Fu, and H. Zhang, “A new near-infrared persistent luminescence nanoparticle as a multifunctional nanoplatform for multimodal imaging and cancer therapy,” Biomaterials 152, 15–23 (2018).
[Crossref] [PubMed]

Fujimoto, J. G.

Gaponenko, M.

Garvey, D.

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Guina, M.

Gupta, O.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3(1), 745 (2012).
[Crossref] [PubMed]

Gürel, K.

Hakobyan, S.

Härkönen, A.

Heinecke, D.

Heuer, A.

Heumann, E.

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, “Efficient Continuous Wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B 58(2), 149–151 (1994).
[Crossref]

Hirosawa, K.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

Hoffmann, M.

Hoover, E. E.

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

Hopkins, J. M.

Hosaka, A.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

Huang, C. P.

Huang, Y. Q.

D. Dagnelund, Y. Q. Huang, C. W. Tu, H. Yonezu, I. A. Buyanova, and W. M. Chen, “Dual-wavelength excited photoluminescence spectroscopy of deep-level hole traps in Ga(In)NP,” J. Appl. Phys. 117(1), 015701 (2015).
[Crossref]

Huber, G.

Hughes, T.

M. Drobizhev, N. S. Makarov, T. Hughes, and A. Rebane, “Resonance Enhancement of Two-Photon Absorption in Fluorescent Proteins,” J. Phys. Chem. B 111(50), 14051–14054 (2007).
[Crossref] [PubMed]

Hughes, T. E.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

Iijima, K.

Ippen, E. P.

Jiang, D. P.

H. Yu, D. P. Jiang, F. Tang, L. B. Su, S. Y. Luo, X. G. Yan, B. Xu, Z. P. Cai, J. Y. Wang, Q. W. Ju, and J. Xu, “Enhanced photoluminescence and initial red laser operation in Pr:CaF2 crystal via co-doping Gd3+ ions,” Mater. Lett. 206(1), 140–142 (2017).
[Crossref]

Ju, Q. W.

H. Yu, D. P. Jiang, F. Tang, L. B. Su, S. Y. Luo, X. G. Yan, B. Xu, Z. P. Cai, J. Y. Wang, Q. W. Ju, and J. Xu, “Enhanced photoluminescence and initial red laser operation in Pr:CaF2 crystal via co-doping Gd3+ ions,” Mater. Lett. 206(1), 140–142 (2017).
[Crossref]

Kãârtner, F. X.

Kafka, J. D.

J. Klein and J. D. Kafka, “The Ti:sapphire laser: The flexible research tool,” Nat. Photonics 4(5), 289 (2010).
[Crossref]

Kannari, F.

K. Iijima, R. Kariyama, H. Tanaka, and F. Kannari, “Pr3+:YLF mode-locked laser at 640 nm directly pumped by InGaN-diode lasers,” Appl. Opt. 55(28), 7782–7787 (2016).
[Crossref] [PubMed]

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

Kapteyn, H.

Kapteyn, H. C.

Kariyama, R.

Kärtner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Kawauchi, H.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

Kemp, A. J.

Kirchner, M.

Klein, J.

J. Klein and J. D. Kafka, “The Ti:sapphire laser: The flexible research tool,” Nat. Photonics 4(5), 289 (2010).
[Crossref]

Kneipp, H.

H. Kneipp, J. Kolenda, P. Rairoux, B. Stein, D. Weidauer, J.-P. Wolf, and L. H. Woeste, “Ti:sapphire-laserbased lidar systems,” Proc. SPIE 1714, 270–278 (1992).
[Crossref]

Kolenda, J.

H. Kneipp, J. Kolenda, P. Rairoux, B. Stein, D. Weidauer, J.-P. Wolf, and L. H. Woeste, “Ti:sapphire-laserbased lidar systems,” Proc. SPIE 1714, 270–278 (1992).
[Crossref]

Kränkel, C.

Lagatsky, A. A.

Lederer, M. J.

Leinonen, T.

Li, J.

J. Shi, X. Sun, S. Zheng, J. Li, X. Fu, and H. Zhang, “A new near-infrared persistent luminescence nanoparticle as a multifunctional nanoplatform for multimodal imaging and cancer therapy,” Biomaterials 152, 15–23 (2018).
[Crossref] [PubMed]

Luo, S. Y.

H. Yu, D. P. Jiang, F. Tang, L. B. Su, S. Y. Luo, X. G. Yan, B. Xu, Z. P. Cai, J. Y. Wang, Q. W. Ju, and J. Xu, “Enhanced photoluminescence and initial red laser operation in Pr:CaF2 crystal via co-doping Gd3+ ions,” Mater. Lett. 206(1), 140–142 (2017).
[Crossref]

B. Qu, B. Xu, Y. J. Cheng, S. Y. Luo, H. Y. Xu, Y. K. Bu, P. Camy, J. L. Doualan, R. Moncorge, and Z. P. Cai, “InGaN-LD-pumped Pr3+:LiYF4 continuous-wave laser at 915 nm,” IEEE Photonics J. 6(6), 1502906 (2014).
[Crossref]

Z. P. Cai, B. Qu, Y. J. Cheng, S. Y. Luo, B. Xu, H. Y. Xu, Z. Q. Luo, P. Camy, J. L. Doualan, and R. Moncorgé, “Emission properties and CW laser operation of Pr:YLF in the 910 nm spectral range,” Opt. Express 22(26), 31722–31728 (2014).
[Crossref] [PubMed]

Luo, Z. Q.

Luther-Davies, B.

Makarov, N. S.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

M. Drobizhev, N. S. Makarov, T. Hughes, and A. Rebane, “Resonance Enhancement of Two-Photon Absorption in Fluorescent Proteins,” J. Phys. Chem. B 111(50), 14051–14054 (2007).
[Crossref] [PubMed]

Marzahl, D. T.

Mei, L.

Metz, P. W.

Moglia, F.

Moncorge, R.

B. Qu, B. Xu, Y. J. Cheng, S. Y. Luo, H. Y. Xu, Y. K. Bu, P. Camy, J. L. Doualan, R. Moncorge, and Z. P. Cai, “InGaN-LD-pumped Pr3+:LiYF4 continuous-wave laser at 915 nm,” IEEE Photonics J. 6(6), 1502906 (2014).
[Crossref]

Moncorgé, R.

Morgner, U.

Müller, S.

Murnane, M.

Murnane, M. M.

Qu, B.

Rairoux, P.

H. Kneipp, J. Kolenda, P. Rairoux, B. Stein, D. Weidauer, J.-P. Wolf, and L. H. Woeste, “Ti:sapphire-laserbased lidar systems,” Proc. SPIE 1714, 270–278 (1992).
[Crossref]

Raskar, R.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3(1), 745 (2012).
[Crossref] [PubMed]

Rebane, A.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

M. Drobizhev, N. S. Makarov, T. Hughes, and A. Rebane, “Resonance Enhancement of Two-Photon Absorption in Fluorescent Proteins,” J. Phys. Chem. B 111(50), 14051–14054 (2007).
[Crossref] [PubMed]

Reichert, F.

Resan, B.

Rodríguez-Contreras, A.

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophotonics 9(1-2), 38–43 (2016).
[Crossref] [PubMed]

Rohrbacher, A.

Sandrock, T.

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, “Efficient Continuous Wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B 58(2), 149–151 (1994).
[Crossref]

Saraceno, C. J.

Sawai, S.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

Scheuer, V.

Schilt, S.

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Shi, J.

J. Shi, X. Sun, S. Zheng, J. Li, X. Fu, and H. Zhang, “A new near-infrared persistent luminescence nanoparticle as a multifunctional nanoplatform for multimodal imaging and cancer therapy,” Biomaterials 152, 15–23 (2018).
[Crossref] [PubMed]

Shi, L.

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophotonics 9(1-2), 38–43 (2016).
[Crossref] [PubMed]

Sibbett, W.

Sordillo, L. A.

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophotonics 9(1-2), 38–43 (2016).
[Crossref] [PubMed]

Squier, J. A.

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

Stein, B.

H. Kneipp, J. Kolenda, P. Rairoux, B. Stein, D. Weidauer, J.-P. Wolf, and L. H. Woeste, “Ti:sapphire-laserbased lidar systems,” Proc. SPIE 1714, 270–278 (1992).
[Crossref]

Su, L. B.

H. Yu, D. P. Jiang, F. Tang, L. B. Su, S. Y. Luo, X. G. Yan, B. Xu, Z. P. Cai, J. Y. Wang, Q. W. Ju, and J. Xu, “Enhanced photoluminescence and initial red laser operation in Pr:CaF2 crystal via co-doping Gd3+ ions,” Mater. Lett. 206(1), 140–142 (2017).
[Crossref]

Südmeyer, T.

Sun, X.

J. Shi, X. Sun, S. Zheng, J. Li, X. Fu, and H. Zhang, “A new near-infrared persistent luminescence nanoparticle as a multifunctional nanoplatform for multimodal imaging and cancer therapy,” Biomaterials 152, 15–23 (2018).
[Crossref] [PubMed]

Tanaka, H.

Tang, F.

H. Yu, D. P. Jiang, F. Tang, L. B. Su, S. Y. Luo, X. G. Yan, B. Xu, Z. P. Cai, J. Y. Wang, Q. W. Ju, and J. Xu, “Enhanced photoluminescence and initial red laser operation in Pr:CaF2 crystal via co-doping Gd3+ ions,” Mater. Lett. 206(1), 140–142 (2017).
[Crossref]

Tillo, S. E.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

Tonelli, M.

Tschudi, T.

Tu, C. W.

D. Dagnelund, Y. Q. Huang, C. W. Tu, H. Yonezu, I. A. Buyanova, and W. M. Chen, “Dual-wavelength excited photoluminescence spectroscopy of deep-level hole traps in Ga(In)NP,” J. Appl. Phys. 117(1), 015701 (2015).
[Crossref]

Veeraraghavan, A.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3(1), 745 (2012).
[Crossref] [PubMed]

Velten, A.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3(1), 745 (2012).
[Crossref] [PubMed]

Wang, J.

Wang, J. Y.

H. Yu, D. P. Jiang, F. Tang, L. B. Su, S. Y. Luo, X. G. Yan, B. Xu, Z. P. Cai, J. Y. Wang, Q. W. Ju, and J. Xu, “Enhanced photoluminescence and initial red laser operation in Pr:CaF2 crystal via co-doping Gd3+ ions,” Mater. Lett. 206(1), 140–142 (2017).
[Crossref]

Weidauer, D.

H. Kneipp, J. Kolenda, P. Rairoux, B. Stein, D. Weidauer, J.-P. Wolf, and L. H. Woeste, “Ti:sapphire-laserbased lidar systems,” Proc. SPIE 1714, 270–278 (1992).
[Crossref]

Weingarten, K.

Willwacher, T.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3(1), 745 (2012).
[Crossref] [PubMed]

Wittwer, V. J.

Woeste, L. H.

H. Kneipp, J. Kolenda, P. Rairoux, B. Stein, D. Weidauer, J.-P. Wolf, and L. H. Woeste, “Ti:sapphire-laserbased lidar systems,” Proc. SPIE 1714, 270–278 (1992).
[Crossref]

Wolf, J.-P.

H. Kneipp, J. Kolenda, P. Rairoux, B. Stein, D. Weidauer, J.-P. Wolf, and L. H. Woeste, “Ti:sapphire-laserbased lidar systems,” Proc. SPIE 1714, 270–278 (1992).
[Crossref]

Xu, B.

H. Yu, D. P. Jiang, F. Tang, L. B. Su, S. Y. Luo, X. G. Yan, B. Xu, Z. P. Cai, J. Y. Wang, Q. W. Ju, and J. Xu, “Enhanced photoluminescence and initial red laser operation in Pr:CaF2 crystal via co-doping Gd3+ ions,” Mater. Lett. 206(1), 140–142 (2017).
[Crossref]

B. Qu, R. Moncorgé, Z. Cai, J. L. Doualan, B. Xu, H. Xu, A. Braud, and P. Camy, “Broadband-tunable CW laser operation of Pr3+:LiYF4 around 900 nm,” Opt. Lett. 40(13), 3053–3056 (2015).
[Crossref] [PubMed]

Z. P. Cai, B. Qu, Y. J. Cheng, S. Y. Luo, B. Xu, H. Y. Xu, Z. Q. Luo, P. Camy, J. L. Doualan, and R. Moncorgé, “Emission properties and CW laser operation of Pr:YLF in the 910 nm spectral range,” Opt. Express 22(26), 31722–31728 (2014).
[Crossref] [PubMed]

B. Qu, B. Xu, Y. J. Cheng, S. Y. Luo, H. Y. Xu, Y. K. Bu, P. Camy, J. L. Doualan, R. Moncorge, and Z. P. Cai, “InGaN-LD-pumped Pr3+:LiYF4 continuous-wave laser at 915 nm,” IEEE Photonics J. 6(6), 1502906 (2014).
[Crossref]

B. Xu, P. Camy, J.-L. Doualan, Z. Cai, and R. Moncorgé, “Visible laser operation of Pr3+-doped fluoride crystals pumped by a 469 nm blue laser,” Opt. Express 19(2), 1191–1197 (2011).
[Crossref] [PubMed]

Xu, H.

Xu, H. Y.

Z. P. Cai, B. Qu, Y. J. Cheng, S. Y. Luo, B. Xu, H. Y. Xu, Z. Q. Luo, P. Camy, J. L. Doualan, and R. Moncorgé, “Emission properties and CW laser operation of Pr:YLF in the 910 nm spectral range,” Opt. Express 22(26), 31722–31728 (2014).
[Crossref] [PubMed]

B. Qu, B. Xu, Y. J. Cheng, S. Y. Luo, H. Y. Xu, Y. K. Bu, P. Camy, J. L. Doualan, R. Moncorge, and Z. P. Cai, “InGaN-LD-pumped Pr3+:LiYF4 continuous-wave laser at 915 nm,” IEEE Photonics J. 6(6), 1502906 (2014).
[Crossref]

Xu, J.

H. Yu, D. P. Jiang, F. Tang, L. B. Su, S. Y. Luo, X. G. Yan, B. Xu, Z. P. Cai, J. Y. Wang, Q. W. Ju, and J. Xu, “Enhanced photoluminescence and initial red laser operation in Pr:CaF2 crystal via co-doping Gd3+ ions,” Mater. Lett. 206(1), 140–142 (2017).
[Crossref]

Yan, X. G.

H. Yu, D. P. Jiang, F. Tang, L. B. Su, S. Y. Luo, X. G. Yan, B. Xu, Z. P. Cai, J. Y. Wang, Q. W. Ju, and J. Xu, “Enhanced photoluminescence and initial red laser operation in Pr:CaF2 crystal via co-doping Gd3+ ions,” Mater. Lett. 206(1), 140–142 (2017).
[Crossref]

Yonezu, H.

D. Dagnelund, Y. Q. Huang, C. W. Tu, H. Yonezu, I. A. Buyanova, and W. M. Chen, “Dual-wavelength excited photoluminescence spectroscopy of deep-level hole traps in Ga(In)NP,” J. Appl. Phys. 117(1), 015701 (2015).
[Crossref]

Yu, H.

Zhang, H.

Zhang, R.

Zhang, Y.

Zhao, G.

Zheng, S.

J. Shi, X. Sun, S. Zheng, J. Li, X. Fu, and H. Zhang, “A new near-infrared persistent luminescence nanoparticle as a multifunctional nanoplatform for multimodal imaging and cancer therapy,” Biomaterials 152, 15–23 (2018).
[Crossref] [PubMed]

Zhou, J.

Appl. Opt. (1)

Appl. Phys. B (1)

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, “Efficient Continuous Wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B 58(2), 149–151 (1994).
[Crossref]

Appl. Phys. Express (1)

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

Biomaterials (1)

J. Shi, X. Sun, S. Zheng, J. Li, X. Fu, and H. Zhang, “A new near-infrared persistent luminescence nanoparticle as a multifunctional nanoplatform for multimodal imaging and cancer therapy,” Biomaterials 152, 15–23 (2018).
[Crossref] [PubMed]

IEEE Photonics J. (1)

B. Qu, B. Xu, Y. J. Cheng, S. Y. Luo, H. Y. Xu, Y. K. Bu, P. Camy, J. L. Doualan, R. Moncorge, and Z. P. Cai, “InGaN-LD-pumped Pr3+:LiYF4 continuous-wave laser at 915 nm,” IEEE Photonics J. 6(6), 1502906 (2014).
[Crossref]

J. Appl. Phys. (1)

D. Dagnelund, Y. Q. Huang, C. W. Tu, H. Yonezu, I. A. Buyanova, and W. M. Chen, “Dual-wavelength excited photoluminescence spectroscopy of deep-level hole traps in Ga(In)NP,” J. Appl. Phys. 117(1), 015701 (2015).
[Crossref]

J. Biophotonics (1)

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophotonics 9(1-2), 38–43 (2016).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

M. Drobizhev, N. S. Makarov, T. Hughes, and A. Rebane, “Resonance Enhancement of Two-Photon Absorption in Fluorescent Proteins,” J. Phys. Chem. B 111(50), 14051–14054 (2007).
[Crossref] [PubMed]

Mater. Lett. (1)

H. Yu, D. P. Jiang, F. Tang, L. B. Su, S. Y. Luo, X. G. Yan, B. Xu, Z. P. Cai, J. Y. Wang, Q. W. Ju, and J. Xu, “Enhanced photoluminescence and initial red laser operation in Pr:CaF2 crystal via co-doping Gd3+ ions,” Mater. Lett. 206(1), 140–142 (2017).
[Crossref]

Nat. Commun. (1)

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3(1), 745 (2012).
[Crossref] [PubMed]

Nat. Med. (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Nat. Methods (1)

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

J. Klein and J. D. Kafka, “The Ti:sapphire laser: The flexible research tool,” Nat. Photonics 4(5), 289 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett. (8)

P. W. Metz, F. Reichert, F. Moglia, S. Müller, D. T. Marzahl, C. Kränkel, and G. Huber, “High-power red, orange, and green Pr3+:LiYF4 lasers,” Opt. Lett. 39(11), 3193–3196 (2014).
[Crossref] [PubMed]

M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, “Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 18(12), 977–979 (1993).
[Crossref] [PubMed]

M. Gaponenko, P. W. Metz, A. Härkönen, A. Heuer, T. Leinonen, M. Guina, T. Südmeyer, G. Huber, and C. Kränkel, “SESAM mode-locked red praseodymium laser,” Opt. Lett. 39(24), 6939–6941 (2014).
[Crossref] [PubMed]

Y. Zhang, H. Yu, H. Zhang, A. Di Lieto, M. Tonelli, and J. Wang, “Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate,” Opt. Lett. 41(12), 2692–2695 (2016).
[Crossref] [PubMed]

Y. Zhang, H. Yu, R. Zhang, G. Zhao, H. Zhang, Y. Chen, L. Mei, M. Tonelli, and J. Wang, “Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range,” Opt. Lett. 42(3), 547–550 (2017).
[Crossref] [PubMed]

B. Qu, R. Moncorgé, Z. Cai, J. L. Doualan, B. Xu, H. Xu, A. Braud, and P. Camy, “Broadband-tunable CW laser operation of Pr3+:LiYF4 around 900 nm,” Opt. Lett. 40(13), 3053–3056 (2015).
[Crossref] [PubMed]

R. Ell, U. Morgner, F. X. Kãârtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, “Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,” Opt. Lett. 26(6), 373–375 (2001).
[Crossref] [PubMed]

A. Bartels, D. Heinecke, and S. A. Diddams, “Passively mode-locked 10 GHz femtosecond Ti:sapphire laser,” Opt. Lett. 33(16), 1905–1907 (2008).
[Crossref] [PubMed]

Proc. SPIE (1)

H. Kneipp, J. Kolenda, P. Rairoux, B. Stein, D. Weidauer, J.-P. Wolf, and L. H. Woeste, “Ti:sapphire-laserbased lidar systems,” Proc. SPIE 1714, 270–278 (1992).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the passively mode-locked Pr:YLF laser with a SESAM and pumped by InGaN blue LDs.
Fig. 2
Fig. 2 Output power characteristics of the CW and CW mode-locking laser operations.
Fig. 3
Fig. 3 Optical spectrum of the mode-locked 915 nm Pr:YLF laser emission, measured at maximum output laser power.
Fig. 4
Fig. 4 CW mode-locked pulse trains in nanosecond and microsecond (inset) time scales.
Fig. 5
Fig. 5 RF spectrum of the mode-locked Pr:YLF laser emission at 915 nm. (a) 7 GHz span, 2 MHz resolution bandwidth (RBW); (b) 5 kHz span, 20 Hz RBW.
Fig. 6
Fig. 6 Autocorrelation trace of the mode-locked 915 nm Pr:YLF laser, measured at maximum output laser power.

Metrics