Abstract

Direct UV-written waveguides are fabricated in silica-on-silicon with birefringence of (4.9 ± 0.2) × 10−4, much greater than previously reported in this platform. We show that these waveguides are suitable for the generation of heralded single photons at telecommunication wavelengths by spontaneous four-wave mixing. A pulsed pump field at 1060 nm generates pairs of photons in highly detuned, spectrally uncorrelated modes near 1550 nm and 800 nm. Waveguide-to-fiber coupling efficiencies of 78–91 % are achieved for all fields. Waveguide birefringence is controlled through dopant concentration of GeCl4 and BCl3 using the flame hydrolysis deposition process. The technology provides a route towards the scalability of silica-on-silicon integrated components for photonic quantum experiments.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Single-mode direct-ultraviolet-written channel waveguide laser in neodymium-doped silica on silicon

D. A. Guilhot, G. D. Emmerson, C. B. E. Gawith, S. P. Watts, D. P. Shepherd, R. B. Williams, and P. G. R. Smith
Opt. Lett. 29(9) 947-949 (2004)

1.5 μm orthogonally polarized dual-output heralded single photon source based on optical fibers with birefringence

Tianyi Ma, Qiang Zhou, Wei Zhang, Yidong Huang, Xiaowei Cui, Mingquan Lu, and Bingkun Zhou
Opt. Express 21(13) 15364-15372 (2013)

Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion

Fumihiro Kaneda, Karina Garay-Palmett, Alfred B. U’Ren, and Paul G. Kwiat
Opt. Express 24(10) 10733-10747 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Orieux and E. Diamanti, “Recent advances on integrated quantum communications,” J. Opt. 18, 83002 (2016).
  2. M. G. Thompson, A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits, Devices & Syst. 5, 94–102 (2011).
  3. J. B. Spring, P. L. Mennea, B. J. Metcalf, P. C. Humphreys, J. C. Gates, H. L. Rogers, C. Söller, B. J. Smith, W. S. Kolthammer, P. G. R. Smith, and I. A. Walmsley, “Chip-based array of near-identical, pure, heralded single-photon sources,” Optica 4, 90–96 (2017).
  4. Z. Yan, Y. Duan, L. G. Helt, M. Ams, M. J. Withford, and M. J. Steel, “Generation of heralded single photons beyond 1100 nm by spontaneous four-wave mixing in a side-stressed femtosecond laser-written waveguide,” Appl. Phys. Lett. 107, 231106 (2015).
  5. Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).
  6. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
  7. G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12546–12554 (2009).
  8. L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. S. Marques, “Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica,” Opt. Express 20, 24103–24114 (2012).
  9. J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” Opt. Express 21, 13522–13532 (2013).
  10. M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. and Quantum Electron. 22, 391–416 (1990).
  11. X. Dai, S. J. Mihailov, C. L. Callender, R. B. Walker, C. Blanchetiere, and J. Jiang, “Birefringence control and dimension monitoring of silica-based ridge waveguides using Bragg gratings and ultraviolet irradiation,” Opt. Eng. 44, 124602 (2005).
  12. C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21, 15747–15754 (2013).
  13. M. Okuno, A. Sugita, K. Jinguji, and M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch,” J. Light. Tech. 12, 625–633 (1994).
  14. A. Kilian, J. Kirchhof, B. Kuhlow, G. Przyrembel, and W. Wischmann, “Birefringence free planar optical waveguide made by flame hydrolysis deposition through tailoring of the overcladding,” J. Light. Tech. 18, 193–198 (2000).
  15. M. Huang, “Thermal stresses in optical waveguides,” Opt. Lett. 28, 2327–2329 (2003).
  16. S. Sakaguchi, “Consolidation of silica glass soot body prepared by flame hydrolysis reaction,” J. Non-Cryst. Solids 171, 249–258 (1994).
  17. H. L. Rogers, C. Holmes, J. C. Gates, and P. G. R. Smith, “Analysis of dispersion characteristics of planar waveguides via multi-order interrogation of integrated Bragg gratings,” IEEE Photonics J. 4, 310–316 (2012).
  18. A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Rev. 8, 76–80 (2014).
  19. G. Agrawal, Nonlinear Fiber Optics (Academic, Boston, 2013), chap. 10, pp. 397–456, 5th ed.
  20. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: single-photon sources and detectors,” Rev. Sci. Inst. 82, 71101 (2011).
  21. R. H. Stolen, “Nonlinearity in fiber transmission,” Proc. IEEE 68, 1232–1236 (1980).
  22. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).

2017 (1)

2016 (1)

A. Orieux and E. Diamanti, “Recent advances on integrated quantum communications,” J. Opt. 18, 83002 (2016).

2015 (1)

Z. Yan, Y. Duan, L. G. Helt, M. Ams, M. J. Withford, and M. J. Steel, “Generation of heralded single photons beyond 1100 nm by spontaneous four-wave mixing in a side-stressed femtosecond laser-written waveguide,” Appl. Phys. Lett. 107, 231106 (2015).

2014 (1)

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Rev. 8, 76–80 (2014).

2013 (2)

2012 (2)

L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. S. Marques, “Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica,” Opt. Express 20, 24103–24114 (2012).

H. L. Rogers, C. Holmes, J. C. Gates, and P. G. R. Smith, “Analysis of dispersion characteristics of planar waveguides via multi-order interrogation of integrated Bragg gratings,” IEEE Photonics J. 4, 310–316 (2012).

2011 (2)

M. G. Thompson, A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits, Devices & Syst. 5, 94–102 (2011).

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: single-photon sources and detectors,” Rev. Sci. Inst. 82, 71101 (2011).

2009 (1)

2008 (1)

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).

2007 (1)

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).

2005 (1)

X. Dai, S. J. Mihailov, C. L. Callender, R. B. Walker, C. Blanchetiere, and J. Jiang, “Birefringence control and dimension monitoring of silica-based ridge waveguides using Bragg gratings and ultraviolet irradiation,” Opt. Eng. 44, 124602 (2005).

2003 (1)

2001 (1)

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).

2000 (1)

A. Kilian, J. Kirchhof, B. Kuhlow, G. Przyrembel, and W. Wischmann, “Birefringence free planar optical waveguide made by flame hydrolysis deposition through tailoring of the overcladding,” J. Light. Tech. 18, 193–198 (2000).

1994 (2)

M. Okuno, A. Sugita, K. Jinguji, and M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch,” J. Light. Tech. 12, 625–633 (1994).

S. Sakaguchi, “Consolidation of silica glass soot body prepared by flame hydrolysis reaction,” J. Non-Cryst. Solids 171, 249–258 (1994).

1990 (1)

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. and Quantum Electron. 22, 391–416 (1990).

1980 (1)

R. H. Stolen, “Nonlinearity in fiber transmission,” Proc. IEEE 68, 1232–1236 (1980).

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics (Academic, Boston, 2013), chap. 10, pp. 397–456, 5th ed.

Agrawal, G. P.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).

Aitchison, J. S.

Ams, M.

Z. Yan, Y. Duan, L. G. Helt, M. Ams, M. J. Withford, and M. J. Steel, “Generation of heralded single photons beyond 1100 nm by spontaneous four-wave mixing in a side-stressed femtosecond laser-written waveguide,” Appl. Phys. Lett. 107, 231106 (2015).

G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12546–12554 (2009).

Barbieri, M.

Blanchetiere, C.

X. Dai, S. J. Mihailov, C. L. Callender, R. B. Walker, C. Blanchetiere, and J. Jiang, “Birefringence control and dimension monitoring of silica-based ridge waveguides using Bragg gratings and ultraviolet irradiation,” Opt. Eng. 44, 124602 (2005).

Booth, M. J.

Boucher, G.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Rev. 8, 76–80 (2014).

Callender, C. L.

X. Dai, S. J. Mihailov, C. L. Callender, R. B. Walker, C. Blanchetiere, and J. Jiang, “Birefringence control and dimension monitoring of silica-based ridge waveguides using Bragg gratings and ultraviolet irradiation,” Opt. Eng. 44, 124602 (2005).

Cryan, M. J.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).

Dai, X.

X. Dai, S. J. Mihailov, C. L. Callender, R. B. Walker, C. Blanchetiere, and J. Jiang, “Birefringence control and dimension monitoring of silica-based ridge waveguides using Bragg gratings and ultraviolet irradiation,” Opt. Eng. 44, 124602 (2005).

Dekker, P.

Diamanti, E.

A. Orieux and E. Diamanti, “Recent advances on integrated quantum communications,” J. Opt. 18, 83002 (2016).

Duan, Y.

Z. Yan, Y. Duan, L. G. Helt, M. Ams, M. J. Withford, and M. J. Steel, “Generation of heralded single photons beyond 1100 nm by spontaneous four-wave mixing in a side-stressed femtosecond laser-written waveguide,” Appl. Phys. Lett. 107, 231106 (2015).

Ducci, S.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Rev. 8, 76–80 (2014).

Eckstein, A.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Rev. 8, 76–80 (2014).

Eisaman, M. D.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: single-photon sources and detectors,” Rev. Sci. Inst. 82, 71101 (2011).

Fan, J.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: single-photon sources and detectors,” Rev. Sci. Inst. 82, 71101 (2011).

Favero, I.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Rev. 8, 76–80 (2014).

Fernandes, L. A.

Filloux, P.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Rev. 8, 76–80 (2014).

Gates, J. C.

Grenier, J. R.

Grice, W. P.

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).

Helt, L. G.

Z. Yan, Y. Duan, L. G. Helt, M. Ams, M. J. Withford, and M. J. Steel, “Generation of heralded single photons beyond 1100 nm by spontaneous four-wave mixing in a side-stressed femtosecond laser-written waveguide,” Appl. Phys. Lett. 107, 231106 (2015).

Herman, P. R.

Holmes, C.

C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21, 15747–15754 (2013).

H. L. Rogers, C. Holmes, J. C. Gates, and P. G. R. Smith, “Analysis of dispersion characteristics of planar waveguides via multi-order interrogation of integrated Bragg gratings,” IEEE Photonics J. 4, 310–316 (2012).

Huang, M.

Humphreys, P. C.

Jiang, J.

X. Dai, S. J. Mihailov, C. L. Callender, R. B. Walker, C. Blanchetiere, and J. Jiang, “Birefringence control and dimension monitoring of silica-based ridge waveguides using Bragg gratings and ultraviolet irradiation,” Opt. Eng. 44, 124602 (2005).

Jin, X.-M.

Jinguji, K.

M. Okuno, A. Sugita, K. Jinguji, and M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch,” J. Light. Tech. 12, 625–633 (1994).

Kawachi, M.

M. Okuno, A. Sugita, K. Jinguji, and M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch,” J. Light. Tech. 12, 625–633 (1994).

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. and Quantum Electron. 22, 391–416 (1990).

Kilian, A.

A. Kilian, J. Kirchhof, B. Kuhlow, G. Przyrembel, and W. Wischmann, “Birefringence free planar optical waveguide made by flame hydrolysis deposition through tailoring of the overcladding,” J. Light. Tech. 18, 193–198 (2000).

Kirchhof, J.

A. Kilian, J. Kirchhof, B. Kuhlow, G. Przyrembel, and W. Wischmann, “Birefringence free planar optical waveguide made by flame hydrolysis deposition through tailoring of the overcladding,” J. Light. Tech. 18, 193–198 (2000).

Kolthammer, W. S.

Kuhlow, B.

A. Kilian, J. Kirchhof, B. Kuhlow, G. Przyrembel, and W. Wischmann, “Birefringence free planar optical waveguide made by flame hydrolysis deposition through tailoring of the overcladding,” J. Light. Tech. 18, 193–198 (2000).

Langford, N. K.

Lemaître, A.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Rev. 8, 76–80 (2014).

Leo, G.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Rev. 8, 76–80 (2014).

Lin, Q.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).

Liscidini, M.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Rev. 8, 76–80 (2014).

Marques, P. V. S.

Marshall, G. D.

Matthews, J. C. F.

M. G. Thompson, A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits, Devices & Syst. 5, 94–102 (2011).

G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12546–12554 (2009).

Mennea, P. L.

Metcalf, B. J.

Migdall, A.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: single-photon sources and detectors,” Rev. Sci. Inst. 82, 71101 (2011).

Mihailov, S. J.

X. Dai, S. J. Mihailov, C. L. Callender, R. B. Walker, C. Blanchetiere, and J. Jiang, “Birefringence control and dimension monitoring of silica-based ridge waveguides using Bragg gratings and ultraviolet irradiation,” Opt. Eng. 44, 124602 (2005).

Moore, M.

O’Brien, J. L.

M. G. Thompson, A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits, Devices & Syst. 5, 94–102 (2011).

G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12546–12554 (2009).

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).

Okuno, M.

M. Okuno, A. Sugita, K. Jinguji, and M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch,” J. Light. Tech. 12, 625–633 (1994).

Orieux, A.

A. Orieux and E. Diamanti, “Recent advances on integrated quantum communications,” J. Opt. 18, 83002 (2016).

Politi, A.

M. G. Thompson, A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits, Devices & Syst. 5, 94–102 (2011).

G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12546–12554 (2009).

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).

Polyakov, S. V.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: single-photon sources and detectors,” Rev. Sci. Inst. 82, 71101 (2011).

Przyrembel, G.

A. Kilian, J. Kirchhof, B. Kuhlow, G. Przyrembel, and W. Wischmann, “Birefringence free planar optical waveguide made by flame hydrolysis deposition through tailoring of the overcladding,” J. Light. Tech. 18, 193–198 (2000).

Rarity, J. G.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).

Rogers, H. L.

Sakaguchi, S.

S. Sakaguchi, “Consolidation of silica glass soot body prepared by flame hydrolysis reaction,” J. Non-Cryst. Solids 171, 249–258 (1994).

Salter, P. S.

Sima, C.

Sipe, J. E.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Rev. 8, 76–80 (2014).

Smith, B. J.

Smith, P. G. R.

Söller, C.

Spring, J. B.

Steel, M. J.

Z. Yan, Y. Duan, L. G. Helt, M. Ams, M. J. Withford, and M. J. Steel, “Generation of heralded single photons beyond 1100 nm by spontaneous four-wave mixing in a side-stressed femtosecond laser-written waveguide,” Appl. Phys. Lett. 107, 231106 (2015).

Stolen, R. H.

R. H. Stolen, “Nonlinearity in fiber transmission,” Proc. IEEE 68, 1232–1236 (1980).

Sugita, A.

M. Okuno, A. Sugita, K. Jinguji, and M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch,” J. Light. Tech. 12, 625–633 (1994).

Thomas-Peter, N.

Thompson, M. G.

M. G. Thompson, A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits, Devices & Syst. 5, 94–102 (2011).

U’Ren, A. B.

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).

Walker, R. B.

X. Dai, S. J. Mihailov, C. L. Callender, R. B. Walker, C. Blanchetiere, and J. Jiang, “Birefringence control and dimension monitoring of silica-based ridge waveguides using Bragg gratings and ultraviolet irradiation,” Opt. Eng. 44, 124602 (2005).

Walmsley, I. A.

Wischmann, W.

A. Kilian, J. Kirchhof, B. Kuhlow, G. Przyrembel, and W. Wischmann, “Birefringence free planar optical waveguide made by flame hydrolysis deposition through tailoring of the overcladding,” J. Light. Tech. 18, 193–198 (2000).

Withford, M. J.

Z. Yan, Y. Duan, L. G. Helt, M. Ams, M. J. Withford, and M. J. Steel, “Generation of heralded single photons beyond 1100 nm by spontaneous four-wave mixing in a side-stressed femtosecond laser-written waveguide,” Appl. Phys. Lett. 107, 231106 (2015).

G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12546–12554 (2009).

Yaman, F.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).

Yan, Z.

Z. Yan, Y. Duan, L. G. Helt, M. Ams, M. J. Withford, and M. J. Steel, “Generation of heralded single photons beyond 1100 nm by spontaneous four-wave mixing in a side-stressed femtosecond laser-written waveguide,” Appl. Phys. Lett. 107, 231106 (2015).

Yu, S.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).

Zervas, M. N.

Appl. Phys. Lett. (1)

Z. Yan, Y. Duan, L. G. Helt, M. Ams, M. J. Withford, and M. J. Steel, “Generation of heralded single photons beyond 1100 nm by spontaneous four-wave mixing in a side-stressed femtosecond laser-written waveguide,” Appl. Phys. Lett. 107, 231106 (2015).

IEEE Photonics J. (1)

H. L. Rogers, C. Holmes, J. C. Gates, and P. G. R. Smith, “Analysis of dispersion characteristics of planar waveguides via multi-order interrogation of integrated Bragg gratings,” IEEE Photonics J. 4, 310–316 (2012).

IET Circuits, Devices & Syst. (1)

M. G. Thompson, A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits, Devices & Syst. 5, 94–102 (2011).

J. Light. Tech. (2)

M. Okuno, A. Sugita, K. Jinguji, and M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch,” J. Light. Tech. 12, 625–633 (1994).

A. Kilian, J. Kirchhof, B. Kuhlow, G. Przyrembel, and W. Wischmann, “Birefringence free planar optical waveguide made by flame hydrolysis deposition through tailoring of the overcladding,” J. Light. Tech. 18, 193–198 (2000).

J. Non-Cryst. Solids (1)

S. Sakaguchi, “Consolidation of silica glass soot body prepared by flame hydrolysis reaction,” J. Non-Cryst. Solids 171, 249–258 (1994).

J. Opt. (1)

A. Orieux and E. Diamanti, “Recent advances on integrated quantum communications,” J. Opt. 18, 83002 (2016).

Laser & Photonics Rev. (1)

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Rev. 8, 76–80 (2014).

Opt. and Quantum Electron. (1)

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. and Quantum Electron. 22, 391–416 (1990).

Opt. Eng. (1)

X. Dai, S. J. Mihailov, C. L. Callender, R. B. Walker, C. Blanchetiere, and J. Jiang, “Birefringence control and dimension monitoring of silica-based ridge waveguides using Bragg gratings and ultraviolet irradiation,” Opt. Eng. 44, 124602 (2005).

Opt. Express (4)

Opt. Lett. (1)

Optica (1)

Phys. Rev. A (2)

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).

Proc. IEEE (1)

R. H. Stolen, “Nonlinearity in fiber transmission,” Proc. IEEE 68, 1232–1236 (1980).

Rev. Sci. Inst. (1)

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: single-photon sources and detectors,” Rev. Sci. Inst. 82, 71101 (2011).

Science (1)

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).

Other (1)

G. Agrawal, Nonlinear Fiber Optics (Academic, Boston, 2013), chap. 10, pp. 397–456, 5th ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Phase-matched solutions of Eq. (1) as a function of waveguide birefringence at pump wavelengths λp of 1020 nm, 1060 nm and 1070 nm. The lower and upper branches of the curves represent the signal and idler wavelength λs and λi, respectively. The shaded area indicates the range of Raman noise resulting from the pump wavelengths considered. The blue lines highlight target optimal wavelengths for low-loss telecom fiber compatible idler photons, and near-IR signal photons for heralding with silicon detectors.
Fig. 2
Fig. 2 (a) GeCl4 and BCl3 relative flow rates in wafers relative to near-IR heralded single-photon source wafer used in Spring et al., 2017 [3]. (b) Representative backscattered electron microscope image of end facet of a fabricated chip.
Fig. 3
Fig. 3 Characterization setups for integrated high-birefringent waveguide sources. (a) Fiber-coupled interrogation of TE and TM back-reflected radiation from on-chip DUW waveguide-gratings. (b) Free-space joint spectral intensity measurement for characterization of spectral correlations in the SFWM process. SM: single-mode. PM: polarization-maintaining.
Fig. 4
Fig. 4 Bragg grating characterization results. (a) Representative Bragg grating reflection spectrum for TE and TM modes of high-birefringence DUW waveguides from wafer v2. The six peaks shown each represent a distinct Bragg grating, spaced along the length of the waveguide. (b) Waveguide birefringence as a function of fluence for waveguides on three chips from wafers v1, v2 and v3.
Fig. 5
Fig. 5 Seeded joint spectral intensity for a 40 mm waveguide chip from wafer v2 (left), with Δn = (4.9 ± 0.2) × 10−4, and simulation of the same (right).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ k 2 π = 2 n ( λ p ) λ p n ( λ s ) λ s n ( λ i ) λ i + 2 Δ n λ p ,

Metrics