Abstract

The nature and magnitude of measurement uncertainties (precision and accuracy) associated with two approaches for measuring absorption by turbid waters (b(532 nm) ranging from 0.20 m−1 to 22.89 m−1) are investigated here: (a) point source integrating cavity absorption meters (PSICAM), and (b) reflective tube absorption meters (AC-9 and AC-s – both WET Labs Inc., USA). Absolute measurement precision at 440 nm was quantified using standard deviations of triplicate measurements for the PSICAM and de-trended, bin averaged time series for the AC-9/s, giving comparable levels (< 0.006 m−1) for both instruments. Using data collected from a wide range of UK coastal waters, PSICAM accuracy was assessed by comparing both total non-water absorption and absorption by coloured dissolved organic material (CDOM) measured on discrete samples by two independent PSICAMs. AC-9/s performance was tested by comparing total non-water absorption measured in situ by an AC-9 and an AC-s mounted on the same frame. Results showed that the PSICAM outperforms AC-9/s instruments with regards to accuracy, with average spread in the PSICAM total absorption data of 0.006 m−1 (RMSE) compared to 0.028 m−1 for the AC-9/s devices. Despite application of a state of the art scattering correction method, the AC-9/s instruments still tend to overestimate absorption compared to PSICAM data by on average 0.014 m−1 RMSE (AC-s) and 0.043 m−1 RMSE (AC-9). This remaining discrepancy can be largely attributed to residual limitations in the correction of AC-9/s data for scattering effects and limitations in the quality of AC-9/s calibration measurements.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Assessing uncertainties in scattering correction algorithms for reflective tube absorption measurements made with a WET Labs ac-9

Nicole D. Stockley, Rüdiger Röttgers, David McKee, Ina Lefering, James M. Sullivan, and Michael S. Twardowski
Opt. Express 25(24) A1139-A1153 (2017)

Improved determination of particulate absorption from combined filter pad and PSICAM measurements

Ina Lefering, Rüdiger Röttgers, Rebecca Weeks, Derek Connor, Christian Utschig, Kerstin Heymann, and David McKee
Opt. Express 24(22) 24805-24823 (2016)

Analysis of a point-source integrating-cavity absorption meter

Robert A. Leathers, T. Valerie Downes, and Curtiss O. Davis
Appl. Opt. 39(33) 6118-6127 (2000)

References

  • View by:
  • |
  • |
  • |

  1. M. R. Lewis, M. E. Carr, G. C. Feldman, W. Esaias, and C. McClain, “Influence of penetrating solar-radiation on the heat budget of the equatorial pacific-ocean,” Nature 347(6293), 543–545 (1990).
    [Crossref]
  2. A. Morel and L. Prieur, “Analysis of variation in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
    [Crossref]
  3. S. Sathyendranath and T. Platt, “Computation of aquatic primary production - extended formalism to include effect of angular and spectral distribution of light,” Limnol. Oceanogr. 34(1), 188–198 (1989).
    [Crossref]
  4. A. Morel, “Optical Modeling of the upper ocean in relation to its biogenous matter content (Case-1 waters),” J. Geophys. Res. Oceans 93(C9), 10749–10768 (1988).
    [Crossref]
  5. L. Prieur and S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic-matter and other particulate materials,” Limnol. Oceanogr. 26(4), 671–689 (1981).
    [Crossref]
  6. H. R. Gordon, “Diffuse reflectance of the ocean: influence of nonuniform phytoplankton pigment profile,” Appl. Opt. 31(12), 2116–2129 (1992).
    [Crossref] [PubMed]
  7. J. R. V. Zaneveld, R. Bartz, and J. C. Kitchen, “A reflective-tube absorption meter,” Proc. SPIE 1302, 124–136 (1990).
    [Crossref]
  8. M. Twardowski, S. Freeman, S. Pegau, J. R. V. Zaneveld, J. Mueller, and E. Boss, “Chapter 2: Reflective tube absorption meters,” in NASA Ocean Optics Protocols, Vol I, Inherent Optical Property Measurements and Protocols, A. Neely eds. In press (2018).
  9. M. Twardowski, S. Freeman, S. Pegau, J. R. V. Zaneveld, J. Mueller, and E. Boss, “Chapter 1: The absorption coefficient, an overview,” in NASA Ocean Optics Protocols, Vol I, Inherent Optical Property Measurements and Protocols, A. Neely eds. (2018).
  10. G. Chang, A. Barnard, J. R. Zaneveld, and V. Zaneveld, “Optical closure in a complex coastal environment: particle effects,” Appl. Opt. 46(31), 7679–7692 (2007).
    [Crossref] [PubMed]
  11. M. Tzortziou, J. R. Herman, C. L. Gallegos, P. J. Neale, A. Subramaniam, L. W. Harding, and Z. Ahmad, “Bio-optics of the Chesapeake Bay from measurements and radiative transfer closure,” Estuar. Coast. Shelf Sci. 68(1-2), 348–362 (2006).
    [Crossref]
  12. C. Mitchell, A. Cunningham, and D. McKee, “Remote sensing of shelf sea optical properties: Evaluation of a quasi-analytical approach for the Irish Sea,” Remote Sens. Environ. 143, 142–153 (2014).
    [Crossref]
  13. A. Tonizzo, M. Twardowski, S. McLean, K. Voss, M. Lewis, and C. Trees, “Closure and uncertainty assessment for ocean color reflectance using measured volume scattering functions and reflective tube absorption coefficients with novel correction for scattering,” Appl. Opt. 56(1), 130–146 (2017).
    [Crossref]
  14. E. Boss, W. H. Slade, M. Behrenfeld, and G. Dall’Olmo, “Acceptance angle effects on the beam attenuation in the ocean,” Opt. Express 17(3), 1535–1550 (2009).
    [Crossref] [PubMed]
  15. R. V. Zaneveld, J. C. Kitchen, and C. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258, 44–55 (1994).
    [Crossref]
  16. R. Röttgers, D. McKee, and S. B. Wozniak, “Evaluation of scatter corrections for ac-9 absorption measurements in coastal waters,” Methods Oceanogr. 7, 21–39 (2013).
    [Crossref]
  17. N. D. Stockley, R. Röttgers, D. McKee, I. Lefering, J. M. Sullivan, and M. S. Twardowski, “Assessing uncertainties in scattering correction algorithms for reflective tube absorption measurements made with a WET Labs ac-9,” Opt. Express 25(24), A1139–A1153 (2017).
    [Crossref] [PubMed]
  18. D. McKee, J. Piskozub, R. Röttgers, and R. A. Reynolds, “Evaluation and Improvement of an Iterative Scattering Correction Scheme for in situ Absorption and Attenuation Measurements,” J. Atmos. Ocean. Technol. 30(7), 1527–1541 (2013).
    [Crossref]
  19. R. Röttgers, “Chapter 4: Point-Source Integrating-Cavity Absorption Meter (PSICAM),” in NASA Ocean Optics Protocols, Vol I, Inherent Optical Property Measurements and Protocols, A. Neely ed. (2018).
  20. E. S. Fry, G. W. Kattawar, and R. M. Pope, “Integrating cavity absorption meter,” Appl. Opt. 31(12), 2055–2065 (1992).
    [Crossref] [PubMed]
  21. R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36(33), 8710–8723 (1997).
    [Crossref] [PubMed]
  22. R. M. Pope, A. D. Weidemann, and E. S. Fry, “Integrating Cavity Absorption Meter measurements of dissolved substances and suspended particles in ocean water,” Dyn. Atmos. Oceans 31(1-4), 307–320 (2000).
    [Crossref]
  23. L. Peperzak, H. J. van der Woerd, and K. R. Timmermans, “Disparities between in situ and optically derived carbon biomass and growth rates of the prymnesiophyte Phaeocystis globosa,” Biogeosci. 12(6), 1659–1670 (2015).
    [Crossref]
  24. S. Pinet, J.-M. Martinez, S. Ouillon, B. Lartiges, and R. E. Villar, “Variability of apparent and inherent optical properties of sediment-laden waters in large river basins - lessons from in situ measurements and bio-optical modeling,” Opt. Express 25(8), A283–A310 (2017).
    [Crossref] [PubMed]
  25. J. T. O. Kirk, “Point-source integrating-cavity absorption meter: theoretical principles and numerical modeling,” Appl. Opt. 36(24), 6123–6128 (1997).
    [Crossref] [PubMed]
  26. R. A. Leathers, T. V. Downes, and C. O. Davis, “Analysis of a point-source integrating-cavity absorption meter,” Appl. Opt. 39(33), 6118–6127 (2000).
    [Crossref] [PubMed]
  27. C. J. Y. Lerebourg, D. A. Pilgrim, G. D. Ludbrook, and R. Neal, “Development of a point source integrating cavity absorption meter,” J. Opt. A, Pure Appl. Opt. 4(4), S56–S65 (2002).
    [Crossref]
  28. R. Röttgers, W. Schönfeld, P. R. Kipp, and R. Doerffer, “Practical test of a point-source integrating cavity absorption meter: the performance of different collector assemblies,” Appl. Opt. 44(26), 5549–5560 (2005).
    [Crossref] [PubMed]
  29. R. Röttgers, C. Häse, and R. Doerffer, “Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence,” Limnol. Oceanogr. Methods 5(1), 1–12 (2007).
    [Crossref]
  30. R. Röttgers, D. McKee, and C. Utschig, “Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region,” Opt. Express 22(21), 25093–25108 (2014).
    [Crossref] [PubMed]
  31. I. Lefering, R. Röttgers, R. Weeks, D. Connor, C. Utschig, K. Heymann, and D. McKee, “Improved determination of particulate absorption from combined filter pad and PSICAM measurements,” Opt. Express 24(22), 24805–24823 (2016).
    [Crossref] [PubMed]
  32. I. Lefering, F. Bengil, C. Trees, R. Röttgers, D. Bowers, A. Nimmo-Smith, J. Schwarz, and D. McKee, “Optical closure in marine waters from in situ inherent optical property measurements,” Opt. Express 24(13), 14036–14052 (2016).
    [Crossref] [PubMed]
  33. R. Röttgers, D. Doxaran, and C. Dupouy, “Quantitative filter technique measurements of spectral light absorption by aquatic particles using a portable integrating cavity absorption meter (QFT-ICAM),” Opt. Express 24(2), A1–A20 (2016).
    [Crossref] [PubMed]
  34. I. Lefering, R. Röttgers, C. Utschig, and D. McKee, “Uncertainty budgets for liquid waveguide CDOM absorption measurements,” Appl. Opt. 56(22), 6357–6366 (2017).
    [Crossref] [PubMed]
  35. R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5(5), 126–135 (2007).
    [Crossref]
  36. J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range,” Appl. Opt. 45(21), 5294–5309 (2006).
    [Crossref] [PubMed]
  37. M. S. Twardowski, J. M. Sullivan, P. L. Donaghay, and J. R. V. Zaneveld, “Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9,” J. Atmos. Ocean. Technol. 16(6), 691–707 (1999).
    [Crossref]
  38. C. Moore, J. R. V. Zaneveld, and J. C. Kitchen, “Preliminary results from an insitu spectral absorption meter,” Proc. SPIE 1750, 330–337 (1992).
    [Crossref]
  39. R. V. Zaneveld, J. C. Kitchen, A. Bricaud, and C. Moore, “Analysis of insitu spectral absorption meter data,” Proc. SPIE 1750, 187–200 (1992).
    [Crossref]

2017 (4)

2016 (3)

2015 (1)

L. Peperzak, H. J. van der Woerd, and K. R. Timmermans, “Disparities between in situ and optically derived carbon biomass and growth rates of the prymnesiophyte Phaeocystis globosa,” Biogeosci. 12(6), 1659–1670 (2015).
[Crossref]

2014 (2)

C. Mitchell, A. Cunningham, and D. McKee, “Remote sensing of shelf sea optical properties: Evaluation of a quasi-analytical approach for the Irish Sea,” Remote Sens. Environ. 143, 142–153 (2014).
[Crossref]

R. Röttgers, D. McKee, and C. Utschig, “Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region,” Opt. Express 22(21), 25093–25108 (2014).
[Crossref] [PubMed]

2013 (2)

R. Röttgers, D. McKee, and S. B. Wozniak, “Evaluation of scatter corrections for ac-9 absorption measurements in coastal waters,” Methods Oceanogr. 7, 21–39 (2013).
[Crossref]

D. McKee, J. Piskozub, R. Röttgers, and R. A. Reynolds, “Evaluation and Improvement of an Iterative Scattering Correction Scheme for in situ Absorption and Attenuation Measurements,” J. Atmos. Ocean. Technol. 30(7), 1527–1541 (2013).
[Crossref]

2009 (1)

2007 (3)

G. Chang, A. Barnard, J. R. Zaneveld, and V. Zaneveld, “Optical closure in a complex coastal environment: particle effects,” Appl. Opt. 46(31), 7679–7692 (2007).
[Crossref] [PubMed]

R. Röttgers, C. Häse, and R. Doerffer, “Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence,” Limnol. Oceanogr. Methods 5(1), 1–12 (2007).
[Crossref]

R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5(5), 126–135 (2007).
[Crossref]

2006 (2)

M. Tzortziou, J. R. Herman, C. L. Gallegos, P. J. Neale, A. Subramaniam, L. W. Harding, and Z. Ahmad, “Bio-optics of the Chesapeake Bay from measurements and radiative transfer closure,” Estuar. Coast. Shelf Sci. 68(1-2), 348–362 (2006).
[Crossref]

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range,” Appl. Opt. 45(21), 5294–5309 (2006).
[Crossref] [PubMed]

2005 (1)

2002 (1)

C. J. Y. Lerebourg, D. A. Pilgrim, G. D. Ludbrook, and R. Neal, “Development of a point source integrating cavity absorption meter,” J. Opt. A, Pure Appl. Opt. 4(4), S56–S65 (2002).
[Crossref]

2000 (2)

R. M. Pope, A. D. Weidemann, and E. S. Fry, “Integrating Cavity Absorption Meter measurements of dissolved substances and suspended particles in ocean water,” Dyn. Atmos. Oceans 31(1-4), 307–320 (2000).
[Crossref]

R. A. Leathers, T. V. Downes, and C. O. Davis, “Analysis of a point-source integrating-cavity absorption meter,” Appl. Opt. 39(33), 6118–6127 (2000).
[Crossref] [PubMed]

1999 (1)

M. S. Twardowski, J. M. Sullivan, P. L. Donaghay, and J. R. V. Zaneveld, “Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9,” J. Atmos. Ocean. Technol. 16(6), 691–707 (1999).
[Crossref]

1997 (2)

1994 (1)

R. V. Zaneveld, J. C. Kitchen, and C. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258, 44–55 (1994).
[Crossref]

1992 (4)

C. Moore, J. R. V. Zaneveld, and J. C. Kitchen, “Preliminary results from an insitu spectral absorption meter,” Proc. SPIE 1750, 330–337 (1992).
[Crossref]

R. V. Zaneveld, J. C. Kitchen, A. Bricaud, and C. Moore, “Analysis of insitu spectral absorption meter data,” Proc. SPIE 1750, 187–200 (1992).
[Crossref]

E. S. Fry, G. W. Kattawar, and R. M. Pope, “Integrating cavity absorption meter,” Appl. Opt. 31(12), 2055–2065 (1992).
[Crossref] [PubMed]

H. R. Gordon, “Diffuse reflectance of the ocean: influence of nonuniform phytoplankton pigment profile,” Appl. Opt. 31(12), 2116–2129 (1992).
[Crossref] [PubMed]

1990 (2)

J. R. V. Zaneveld, R. Bartz, and J. C. Kitchen, “A reflective-tube absorption meter,” Proc. SPIE 1302, 124–136 (1990).
[Crossref]

M. R. Lewis, M. E. Carr, G. C. Feldman, W. Esaias, and C. McClain, “Influence of penetrating solar-radiation on the heat budget of the equatorial pacific-ocean,” Nature 347(6293), 543–545 (1990).
[Crossref]

1989 (1)

S. Sathyendranath and T. Platt, “Computation of aquatic primary production - extended formalism to include effect of angular and spectral distribution of light,” Limnol. Oceanogr. 34(1), 188–198 (1989).
[Crossref]

1988 (1)

A. Morel, “Optical Modeling of the upper ocean in relation to its biogenous matter content (Case-1 waters),” J. Geophys. Res. Oceans 93(C9), 10749–10768 (1988).
[Crossref]

1981 (1)

L. Prieur and S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic-matter and other particulate materials,” Limnol. Oceanogr. 26(4), 671–689 (1981).
[Crossref]

1977 (1)

A. Morel and L. Prieur, “Analysis of variation in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
[Crossref]

Ahmad, Z.

M. Tzortziou, J. R. Herman, C. L. Gallegos, P. J. Neale, A. Subramaniam, L. W. Harding, and Z. Ahmad, “Bio-optics of the Chesapeake Bay from measurements and radiative transfer closure,” Estuar. Coast. Shelf Sci. 68(1-2), 348–362 (2006).
[Crossref]

Barnard, A.

Barnard, A. H.

Bartz, R.

J. R. V. Zaneveld, R. Bartz, and J. C. Kitchen, “A reflective-tube absorption meter,” Proc. SPIE 1302, 124–136 (1990).
[Crossref]

Behrenfeld, M.

Bengil, F.

Boss, E.

Bowers, D.

Bricaud, A.

R. V. Zaneveld, J. C. Kitchen, A. Bricaud, and C. Moore, “Analysis of insitu spectral absorption meter data,” Proc. SPIE 1750, 187–200 (1992).
[Crossref]

Carr, M. E.

M. R. Lewis, M. E. Carr, G. C. Feldman, W. Esaias, and C. McClain, “Influence of penetrating solar-radiation on the heat budget of the equatorial pacific-ocean,” Nature 347(6293), 543–545 (1990).
[Crossref]

Chang, G.

Connor, D.

Cunningham, A.

C. Mitchell, A. Cunningham, and D. McKee, “Remote sensing of shelf sea optical properties: Evaluation of a quasi-analytical approach for the Irish Sea,” Remote Sens. Environ. 143, 142–153 (2014).
[Crossref]

Dall’Olmo, G.

Davis, C. O.

Doerffer, R.

R. Röttgers, C. Häse, and R. Doerffer, “Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence,” Limnol. Oceanogr. Methods 5(1), 1–12 (2007).
[Crossref]

R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5(5), 126–135 (2007).
[Crossref]

R. Röttgers, W. Schönfeld, P. R. Kipp, and R. Doerffer, “Practical test of a point-source integrating cavity absorption meter: the performance of different collector assemblies,” Appl. Opt. 44(26), 5549–5560 (2005).
[Crossref] [PubMed]

Donaghay, P. L.

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range,” Appl. Opt. 45(21), 5294–5309 (2006).
[Crossref] [PubMed]

M. S. Twardowski, J. M. Sullivan, P. L. Donaghay, and J. R. V. Zaneveld, “Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9,” J. Atmos. Ocean. Technol. 16(6), 691–707 (1999).
[Crossref]

Downes, T. V.

Doxaran, D.

Dupouy, C.

Esaias, W.

M. R. Lewis, M. E. Carr, G. C. Feldman, W. Esaias, and C. McClain, “Influence of penetrating solar-radiation on the heat budget of the equatorial pacific-ocean,” Nature 347(6293), 543–545 (1990).
[Crossref]

Feldman, G. C.

M. R. Lewis, M. E. Carr, G. C. Feldman, W. Esaias, and C. McClain, “Influence of penetrating solar-radiation on the heat budget of the equatorial pacific-ocean,” Nature 347(6293), 543–545 (1990).
[Crossref]

Fry, E. S.

Gallegos, C. L.

M. Tzortziou, J. R. Herman, C. L. Gallegos, P. J. Neale, A. Subramaniam, L. W. Harding, and Z. Ahmad, “Bio-optics of the Chesapeake Bay from measurements and radiative transfer closure,” Estuar. Coast. Shelf Sci. 68(1-2), 348–362 (2006).
[Crossref]

Gordon, H. R.

Harding, L. W.

M. Tzortziou, J. R. Herman, C. L. Gallegos, P. J. Neale, A. Subramaniam, L. W. Harding, and Z. Ahmad, “Bio-optics of the Chesapeake Bay from measurements and radiative transfer closure,” Estuar. Coast. Shelf Sci. 68(1-2), 348–362 (2006).
[Crossref]

Häse, C.

R. Röttgers, C. Häse, and R. Doerffer, “Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence,” Limnol. Oceanogr. Methods 5(1), 1–12 (2007).
[Crossref]

Herman, J. R.

M. Tzortziou, J. R. Herman, C. L. Gallegos, P. J. Neale, A. Subramaniam, L. W. Harding, and Z. Ahmad, “Bio-optics of the Chesapeake Bay from measurements and radiative transfer closure,” Estuar. Coast. Shelf Sci. 68(1-2), 348–362 (2006).
[Crossref]

Heymann, K.

Kattawar, G. W.

Kipp, P. R.

Kirk, J. T. O.

Kitchen, J. C.

R. V. Zaneveld, J. C. Kitchen, and C. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258, 44–55 (1994).
[Crossref]

C. Moore, J. R. V. Zaneveld, and J. C. Kitchen, “Preliminary results from an insitu spectral absorption meter,” Proc. SPIE 1750, 330–337 (1992).
[Crossref]

R. V. Zaneveld, J. C. Kitchen, A. Bricaud, and C. Moore, “Analysis of insitu spectral absorption meter data,” Proc. SPIE 1750, 187–200 (1992).
[Crossref]

J. R. V. Zaneveld, R. Bartz, and J. C. Kitchen, “A reflective-tube absorption meter,” Proc. SPIE 1302, 124–136 (1990).
[Crossref]

Lartiges, B.

Leathers, R. A.

Lefering, I.

Lerebourg, C. J. Y.

C. J. Y. Lerebourg, D. A. Pilgrim, G. D. Ludbrook, and R. Neal, “Development of a point source integrating cavity absorption meter,” J. Opt. A, Pure Appl. Opt. 4(4), S56–S65 (2002).
[Crossref]

Lewis, M.

Lewis, M. R.

M. R. Lewis, M. E. Carr, G. C. Feldman, W. Esaias, and C. McClain, “Influence of penetrating solar-radiation on the heat budget of the equatorial pacific-ocean,” Nature 347(6293), 543–545 (1990).
[Crossref]

Ludbrook, G. D.

C. J. Y. Lerebourg, D. A. Pilgrim, G. D. Ludbrook, and R. Neal, “Development of a point source integrating cavity absorption meter,” J. Opt. A, Pure Appl. Opt. 4(4), S56–S65 (2002).
[Crossref]

Martinez, J.-M.

McClain, C.

M. R. Lewis, M. E. Carr, G. C. Feldman, W. Esaias, and C. McClain, “Influence of penetrating solar-radiation on the heat budget of the equatorial pacific-ocean,” Nature 347(6293), 543–545 (1990).
[Crossref]

McKee, D.

I. Lefering, R. Röttgers, C. Utschig, and D. McKee, “Uncertainty budgets for liquid waveguide CDOM absorption measurements,” Appl. Opt. 56(22), 6357–6366 (2017).
[Crossref] [PubMed]

N. D. Stockley, R. Röttgers, D. McKee, I. Lefering, J. M. Sullivan, and M. S. Twardowski, “Assessing uncertainties in scattering correction algorithms for reflective tube absorption measurements made with a WET Labs ac-9,” Opt. Express 25(24), A1139–A1153 (2017).
[Crossref] [PubMed]

I. Lefering, F. Bengil, C. Trees, R. Röttgers, D. Bowers, A. Nimmo-Smith, J. Schwarz, and D. McKee, “Optical closure in marine waters from in situ inherent optical property measurements,” Opt. Express 24(13), 14036–14052 (2016).
[Crossref] [PubMed]

I. Lefering, R. Röttgers, R. Weeks, D. Connor, C. Utschig, K. Heymann, and D. McKee, “Improved determination of particulate absorption from combined filter pad and PSICAM measurements,” Opt. Express 24(22), 24805–24823 (2016).
[Crossref] [PubMed]

R. Röttgers, D. McKee, and C. Utschig, “Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region,” Opt. Express 22(21), 25093–25108 (2014).
[Crossref] [PubMed]

C. Mitchell, A. Cunningham, and D. McKee, “Remote sensing of shelf sea optical properties: Evaluation of a quasi-analytical approach for the Irish Sea,” Remote Sens. Environ. 143, 142–153 (2014).
[Crossref]

R. Röttgers, D. McKee, and S. B. Wozniak, “Evaluation of scatter corrections for ac-9 absorption measurements in coastal waters,” Methods Oceanogr. 7, 21–39 (2013).
[Crossref]

D. McKee, J. Piskozub, R. Röttgers, and R. A. Reynolds, “Evaluation and Improvement of an Iterative Scattering Correction Scheme for in situ Absorption and Attenuation Measurements,” J. Atmos. Ocean. Technol. 30(7), 1527–1541 (2013).
[Crossref]

McLean, S.

Mitchell, C.

C. Mitchell, A. Cunningham, and D. McKee, “Remote sensing of shelf sea optical properties: Evaluation of a quasi-analytical approach for the Irish Sea,” Remote Sens. Environ. 143, 142–153 (2014).
[Crossref]

Moore, C.

R. V. Zaneveld, J. C. Kitchen, and C. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258, 44–55 (1994).
[Crossref]

C. Moore, J. R. V. Zaneveld, and J. C. Kitchen, “Preliminary results from an insitu spectral absorption meter,” Proc. SPIE 1750, 330–337 (1992).
[Crossref]

R. V. Zaneveld, J. C. Kitchen, A. Bricaud, and C. Moore, “Analysis of insitu spectral absorption meter data,” Proc. SPIE 1750, 187–200 (1992).
[Crossref]

Moore, C. M.

Morel, A.

A. Morel, “Optical Modeling of the upper ocean in relation to its biogenous matter content (Case-1 waters),” J. Geophys. Res. Oceans 93(C9), 10749–10768 (1988).
[Crossref]

A. Morel and L. Prieur, “Analysis of variation in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
[Crossref]

Neal, R.

C. J. Y. Lerebourg, D. A. Pilgrim, G. D. Ludbrook, and R. Neal, “Development of a point source integrating cavity absorption meter,” J. Opt. A, Pure Appl. Opt. 4(4), S56–S65 (2002).
[Crossref]

Neale, P. J.

M. Tzortziou, J. R. Herman, C. L. Gallegos, P. J. Neale, A. Subramaniam, L. W. Harding, and Z. Ahmad, “Bio-optics of the Chesapeake Bay from measurements and radiative transfer closure,” Estuar. Coast. Shelf Sci. 68(1-2), 348–362 (2006).
[Crossref]

Nimmo-Smith, A.

Ouillon, S.

Peperzak, L.

L. Peperzak, H. J. van der Woerd, and K. R. Timmermans, “Disparities between in situ and optically derived carbon biomass and growth rates of the prymnesiophyte Phaeocystis globosa,” Biogeosci. 12(6), 1659–1670 (2015).
[Crossref]

Pilgrim, D. A.

C. J. Y. Lerebourg, D. A. Pilgrim, G. D. Ludbrook, and R. Neal, “Development of a point source integrating cavity absorption meter,” J. Opt. A, Pure Appl. Opt. 4(4), S56–S65 (2002).
[Crossref]

Pinet, S.

Piskozub, J.

D. McKee, J. Piskozub, R. Röttgers, and R. A. Reynolds, “Evaluation and Improvement of an Iterative Scattering Correction Scheme for in situ Absorption and Attenuation Measurements,” J. Atmos. Ocean. Technol. 30(7), 1527–1541 (2013).
[Crossref]

Platt, T.

S. Sathyendranath and T. Platt, “Computation of aquatic primary production - extended formalism to include effect of angular and spectral distribution of light,” Limnol. Oceanogr. 34(1), 188–198 (1989).
[Crossref]

Pope, R. M.

Prieur, L.

L. Prieur and S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic-matter and other particulate materials,” Limnol. Oceanogr. 26(4), 671–689 (1981).
[Crossref]

A. Morel and L. Prieur, “Analysis of variation in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
[Crossref]

Reynolds, R. A.

D. McKee, J. Piskozub, R. Röttgers, and R. A. Reynolds, “Evaluation and Improvement of an Iterative Scattering Correction Scheme for in situ Absorption and Attenuation Measurements,” J. Atmos. Ocean. Technol. 30(7), 1527–1541 (2013).
[Crossref]

Rhoades, B.

Röttgers, R.

N. D. Stockley, R. Röttgers, D. McKee, I. Lefering, J. M. Sullivan, and M. S. Twardowski, “Assessing uncertainties in scattering correction algorithms for reflective tube absorption measurements made with a WET Labs ac-9,” Opt. Express 25(24), A1139–A1153 (2017).
[Crossref] [PubMed]

I. Lefering, R. Röttgers, C. Utschig, and D. McKee, “Uncertainty budgets for liquid waveguide CDOM absorption measurements,” Appl. Opt. 56(22), 6357–6366 (2017).
[Crossref] [PubMed]

R. Röttgers, D. Doxaran, and C. Dupouy, “Quantitative filter technique measurements of spectral light absorption by aquatic particles using a portable integrating cavity absorption meter (QFT-ICAM),” Opt. Express 24(2), A1–A20 (2016).
[Crossref] [PubMed]

I. Lefering, F. Bengil, C. Trees, R. Röttgers, D. Bowers, A. Nimmo-Smith, J. Schwarz, and D. McKee, “Optical closure in marine waters from in situ inherent optical property measurements,” Opt. Express 24(13), 14036–14052 (2016).
[Crossref] [PubMed]

I. Lefering, R. Röttgers, R. Weeks, D. Connor, C. Utschig, K. Heymann, and D. McKee, “Improved determination of particulate absorption from combined filter pad and PSICAM measurements,” Opt. Express 24(22), 24805–24823 (2016).
[Crossref] [PubMed]

R. Röttgers, D. McKee, and C. Utschig, “Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region,” Opt. Express 22(21), 25093–25108 (2014).
[Crossref] [PubMed]

D. McKee, J. Piskozub, R. Röttgers, and R. A. Reynolds, “Evaluation and Improvement of an Iterative Scattering Correction Scheme for in situ Absorption and Attenuation Measurements,” J. Atmos. Ocean. Technol. 30(7), 1527–1541 (2013).
[Crossref]

R. Röttgers, D. McKee, and S. B. Wozniak, “Evaluation of scatter corrections for ac-9 absorption measurements in coastal waters,” Methods Oceanogr. 7, 21–39 (2013).
[Crossref]

R. Röttgers, C. Häse, and R. Doerffer, “Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence,” Limnol. Oceanogr. Methods 5(1), 1–12 (2007).
[Crossref]

R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5(5), 126–135 (2007).
[Crossref]

R. Röttgers, W. Schönfeld, P. R. Kipp, and R. Doerffer, “Practical test of a point-source integrating cavity absorption meter: the performance of different collector assemblies,” Appl. Opt. 44(26), 5549–5560 (2005).
[Crossref] [PubMed]

Sathyendranath, S.

S. Sathyendranath and T. Platt, “Computation of aquatic primary production - extended formalism to include effect of angular and spectral distribution of light,” Limnol. Oceanogr. 34(1), 188–198 (1989).
[Crossref]

L. Prieur and S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic-matter and other particulate materials,” Limnol. Oceanogr. 26(4), 671–689 (1981).
[Crossref]

Schönfeld, W.

Schwarz, J.

Slade, W. H.

Stockley, N. D.

Subramaniam, A.

M. Tzortziou, J. R. Herman, C. L. Gallegos, P. J. Neale, A. Subramaniam, L. W. Harding, and Z. Ahmad, “Bio-optics of the Chesapeake Bay from measurements and radiative transfer closure,” Estuar. Coast. Shelf Sci. 68(1-2), 348–362 (2006).
[Crossref]

Sullivan, J. M.

Timmermans, K. R.

L. Peperzak, H. J. van der Woerd, and K. R. Timmermans, “Disparities between in situ and optically derived carbon biomass and growth rates of the prymnesiophyte Phaeocystis globosa,” Biogeosci. 12(6), 1659–1670 (2015).
[Crossref]

Tonizzo, A.

Trees, C.

Twardowski, M.

Twardowski, M. S.

Tzortziou, M.

M. Tzortziou, J. R. Herman, C. L. Gallegos, P. J. Neale, A. Subramaniam, L. W. Harding, and Z. Ahmad, “Bio-optics of the Chesapeake Bay from measurements and radiative transfer closure,” Estuar. Coast. Shelf Sci. 68(1-2), 348–362 (2006).
[Crossref]

Utschig, C.

van der Woerd, H. J.

L. Peperzak, H. J. van der Woerd, and K. R. Timmermans, “Disparities between in situ and optically derived carbon biomass and growth rates of the prymnesiophyte Phaeocystis globosa,” Biogeosci. 12(6), 1659–1670 (2015).
[Crossref]

Villar, R. E.

Voss, K.

Weeks, R.

Weidemann, A. D.

R. M. Pope, A. D. Weidemann, and E. S. Fry, “Integrating Cavity Absorption Meter measurements of dissolved substances and suspended particles in ocean water,” Dyn. Atmos. Oceans 31(1-4), 307–320 (2000).
[Crossref]

Wozniak, S. B.

R. Röttgers, D. McKee, and S. B. Wozniak, “Evaluation of scatter corrections for ac-9 absorption measurements in coastal waters,” Methods Oceanogr. 7, 21–39 (2013).
[Crossref]

Zaneveld, J. R.

Zaneveld, J. R. V.

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range,” Appl. Opt. 45(21), 5294–5309 (2006).
[Crossref] [PubMed]

M. S. Twardowski, J. M. Sullivan, P. L. Donaghay, and J. R. V. Zaneveld, “Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9,” J. Atmos. Ocean. Technol. 16(6), 691–707 (1999).
[Crossref]

C. Moore, J. R. V. Zaneveld, and J. C. Kitchen, “Preliminary results from an insitu spectral absorption meter,” Proc. SPIE 1750, 330–337 (1992).
[Crossref]

J. R. V. Zaneveld, R. Bartz, and J. C. Kitchen, “A reflective-tube absorption meter,” Proc. SPIE 1302, 124–136 (1990).
[Crossref]

Zaneveld, R. V.

R. V. Zaneveld, J. C. Kitchen, and C. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258, 44–55 (1994).
[Crossref]

R. V. Zaneveld, J. C. Kitchen, A. Bricaud, and C. Moore, “Analysis of insitu spectral absorption meter data,” Proc. SPIE 1750, 187–200 (1992).
[Crossref]

Zaneveld, V.

Appl. Opt. (10)

H. R. Gordon, “Diffuse reflectance of the ocean: influence of nonuniform phytoplankton pigment profile,” Appl. Opt. 31(12), 2116–2129 (1992).
[Crossref] [PubMed]

G. Chang, A. Barnard, J. R. Zaneveld, and V. Zaneveld, “Optical closure in a complex coastal environment: particle effects,” Appl. Opt. 46(31), 7679–7692 (2007).
[Crossref] [PubMed]

A. Tonizzo, M. Twardowski, S. McLean, K. Voss, M. Lewis, and C. Trees, “Closure and uncertainty assessment for ocean color reflectance using measured volume scattering functions and reflective tube absorption coefficients with novel correction for scattering,” Appl. Opt. 56(1), 130–146 (2017).
[Crossref]

E. S. Fry, G. W. Kattawar, and R. M. Pope, “Integrating cavity absorption meter,” Appl. Opt. 31(12), 2055–2065 (1992).
[Crossref] [PubMed]

R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36(33), 8710–8723 (1997).
[Crossref] [PubMed]

R. Röttgers, W. Schönfeld, P. R. Kipp, and R. Doerffer, “Practical test of a point-source integrating cavity absorption meter: the performance of different collector assemblies,” Appl. Opt. 44(26), 5549–5560 (2005).
[Crossref] [PubMed]

J. T. O. Kirk, “Point-source integrating-cavity absorption meter: theoretical principles and numerical modeling,” Appl. Opt. 36(24), 6123–6128 (1997).
[Crossref] [PubMed]

R. A. Leathers, T. V. Downes, and C. O. Davis, “Analysis of a point-source integrating-cavity absorption meter,” Appl. Opt. 39(33), 6118–6127 (2000).
[Crossref] [PubMed]

I. Lefering, R. Röttgers, C. Utschig, and D. McKee, “Uncertainty budgets for liquid waveguide CDOM absorption measurements,” Appl. Opt. 56(22), 6357–6366 (2017).
[Crossref] [PubMed]

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range,” Appl. Opt. 45(21), 5294–5309 (2006).
[Crossref] [PubMed]

Biogeosci. (1)

L. Peperzak, H. J. van der Woerd, and K. R. Timmermans, “Disparities between in situ and optically derived carbon biomass and growth rates of the prymnesiophyte Phaeocystis globosa,” Biogeosci. 12(6), 1659–1670 (2015).
[Crossref]

Dyn. Atmos. Oceans (1)

R. M. Pope, A. D. Weidemann, and E. S. Fry, “Integrating Cavity Absorption Meter measurements of dissolved substances and suspended particles in ocean water,” Dyn. Atmos. Oceans 31(1-4), 307–320 (2000).
[Crossref]

Estuar. Coast. Shelf Sci. (1)

M. Tzortziou, J. R. Herman, C. L. Gallegos, P. J. Neale, A. Subramaniam, L. W. Harding, and Z. Ahmad, “Bio-optics of the Chesapeake Bay from measurements and radiative transfer closure,” Estuar. Coast. Shelf Sci. 68(1-2), 348–362 (2006).
[Crossref]

J. Atmos. Ocean. Technol. (2)

D. McKee, J. Piskozub, R. Röttgers, and R. A. Reynolds, “Evaluation and Improvement of an Iterative Scattering Correction Scheme for in situ Absorption and Attenuation Measurements,” J. Atmos. Ocean. Technol. 30(7), 1527–1541 (2013).
[Crossref]

M. S. Twardowski, J. M. Sullivan, P. L. Donaghay, and J. R. V. Zaneveld, “Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9,” J. Atmos. Ocean. Technol. 16(6), 691–707 (1999).
[Crossref]

J. Geophys. Res. Oceans (1)

A. Morel, “Optical Modeling of the upper ocean in relation to its biogenous matter content (Case-1 waters),” J. Geophys. Res. Oceans 93(C9), 10749–10768 (1988).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

C. J. Y. Lerebourg, D. A. Pilgrim, G. D. Ludbrook, and R. Neal, “Development of a point source integrating cavity absorption meter,” J. Opt. A, Pure Appl. Opt. 4(4), S56–S65 (2002).
[Crossref]

Limnol. Oceanogr. (3)

L. Prieur and S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic-matter and other particulate materials,” Limnol. Oceanogr. 26(4), 671–689 (1981).
[Crossref]

A. Morel and L. Prieur, “Analysis of variation in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
[Crossref]

S. Sathyendranath and T. Platt, “Computation of aquatic primary production - extended formalism to include effect of angular and spectral distribution of light,” Limnol. Oceanogr. 34(1), 188–198 (1989).
[Crossref]

Limnol. Oceanogr. Methods (2)

R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5(5), 126–135 (2007).
[Crossref]

R. Röttgers, C. Häse, and R. Doerffer, “Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence,” Limnol. Oceanogr. Methods 5(1), 1–12 (2007).
[Crossref]

Methods Oceanogr. (1)

R. Röttgers, D. McKee, and S. B. Wozniak, “Evaluation of scatter corrections for ac-9 absorption measurements in coastal waters,” Methods Oceanogr. 7, 21–39 (2013).
[Crossref]

Nature (1)

M. R. Lewis, M. E. Carr, G. C. Feldman, W. Esaias, and C. McClain, “Influence of penetrating solar-radiation on the heat budget of the equatorial pacific-ocean,” Nature 347(6293), 543–545 (1990).
[Crossref]

Opt. Express (7)

N. D. Stockley, R. Röttgers, D. McKee, I. Lefering, J. M. Sullivan, and M. S. Twardowski, “Assessing uncertainties in scattering correction algorithms for reflective tube absorption measurements made with a WET Labs ac-9,” Opt. Express 25(24), A1139–A1153 (2017).
[Crossref] [PubMed]

E. Boss, W. H. Slade, M. Behrenfeld, and G. Dall’Olmo, “Acceptance angle effects on the beam attenuation in the ocean,” Opt. Express 17(3), 1535–1550 (2009).
[Crossref] [PubMed]

R. Röttgers, D. McKee, and C. Utschig, “Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region,” Opt. Express 22(21), 25093–25108 (2014).
[Crossref] [PubMed]

I. Lefering, R. Röttgers, R. Weeks, D. Connor, C. Utschig, K. Heymann, and D. McKee, “Improved determination of particulate absorption from combined filter pad and PSICAM measurements,” Opt. Express 24(22), 24805–24823 (2016).
[Crossref] [PubMed]

I. Lefering, F. Bengil, C. Trees, R. Röttgers, D. Bowers, A. Nimmo-Smith, J. Schwarz, and D. McKee, “Optical closure in marine waters from in situ inherent optical property measurements,” Opt. Express 24(13), 14036–14052 (2016).
[Crossref] [PubMed]

R. Röttgers, D. Doxaran, and C. Dupouy, “Quantitative filter technique measurements of spectral light absorption by aquatic particles using a portable integrating cavity absorption meter (QFT-ICAM),” Opt. Express 24(2), A1–A20 (2016).
[Crossref] [PubMed]

S. Pinet, J.-M. Martinez, S. Ouillon, B. Lartiges, and R. E. Villar, “Variability of apparent and inherent optical properties of sediment-laden waters in large river basins - lessons from in situ measurements and bio-optical modeling,” Opt. Express 25(8), A283–A310 (2017).
[Crossref] [PubMed]

Proc. SPIE (4)

C. Moore, J. R. V. Zaneveld, and J. C. Kitchen, “Preliminary results from an insitu spectral absorption meter,” Proc. SPIE 1750, 330–337 (1992).
[Crossref]

R. V. Zaneveld, J. C. Kitchen, A. Bricaud, and C. Moore, “Analysis of insitu spectral absorption meter data,” Proc. SPIE 1750, 187–200 (1992).
[Crossref]

R. V. Zaneveld, J. C. Kitchen, and C. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258, 44–55 (1994).
[Crossref]

J. R. V. Zaneveld, R. Bartz, and J. C. Kitchen, “A reflective-tube absorption meter,” Proc. SPIE 1302, 124–136 (1990).
[Crossref]

Remote Sens. Environ. (1)

C. Mitchell, A. Cunningham, and D. McKee, “Remote sensing of shelf sea optical properties: Evaluation of a quasi-analytical approach for the Irish Sea,” Remote Sens. Environ. 143, 142–153 (2014).
[Crossref]

Other (3)

R. Röttgers, “Chapter 4: Point-Source Integrating-Cavity Absorption Meter (PSICAM),” in NASA Ocean Optics Protocols, Vol I, Inherent Optical Property Measurements and Protocols, A. Neely ed. (2018).

M. Twardowski, S. Freeman, S. Pegau, J. R. V. Zaneveld, J. Mueller, and E. Boss, “Chapter 2: Reflective tube absorption meters,” in NASA Ocean Optics Protocols, Vol I, Inherent Optical Property Measurements and Protocols, A. Neely eds. In press (2018).

M. Twardowski, S. Freeman, S. Pegau, J. R. V. Zaneveld, J. Mueller, and E. Boss, “Chapter 1: The absorption coefficient, an overview,” in NASA Ocean Optics Protocols, Vol I, Inherent Optical Property Measurements and Protocols, A. Neely eds. (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Summary of measurements made for an example PSICAM calibration and subsequent sample absorption determination. (a) shows Nigrosine absorption spectra determined with two different LWCC systems; (b) shows light intensity spectra measured inside the PSICAM for transmission calculations (Nigrosine/reference for calibration and sample/reference 2 for sample absorption); (c) shows resulting PSICAM reflectivity spectra calculated using the data shown in (a) and (b); (d) shows the effect of different calibrations shown in (c) on PSICAM absorption data. The dashed line in (c) and (d) shows an idealized reflectivity spectrum and its impact on PSICAM absorption values.
Fig. 2
Fig. 2 Daily averages (grey lines, 18 daily averages) and overall average (black line) of reflectivity spectra obtained for calibration of the HZG PSICAM during a 20-day cruise from 362 to 728 nm.
Fig. 3
Fig. 3 (a) Time series of HZG PSICAM reflectivity (daily averages) at three different wavelengths, 440 nm, 550 nm, and 670 nm. (b) Sensitivity of PSICAM absorption coefficients to variability in the reflectivity. Plot shows the CDOM absorption of a single sample calculated using each of the daily reflectivity shown in (a) at three wavelengths, 440 nm, 550 nm, and 670 nm.
Fig. 4
Fig. 4 Histogram of standard deviation derived from triplicates for Strath PSICAM (a) total non-water and (c) CDOM absorption measurements, both at 440 nm. Standard deviation vs. absorption at 440 nm for Strath PSICAM (b) total non-water and (d) CDOM absorption. Note the different scales for total non-water absorption and CDOM absorption standard deviations.
Fig. 5
Fig. 5 Average spectral standard deviation of all total non-water absorption measurements, made with three different absorption meters (PSICAM, AC-9, AC-s) – (a) absolute and (b) relative compared to average absorption signal. AC-9/s standard deviations were derived from de-trended time series recorded when instruments were held at depth. PSICAM absorption measurements were performed on discrete samples collected at the same depths.
Fig. 6
Fig. 6 Comparison of absorption measurements made with the HZG and Strath PSICAM from 362 – 728 nm. (a) total non-water absorption data (N = 63), (b) CDOM absorption data (N = 59).
Fig. 7
Fig. 7 Wavelength dependency of (a) RMSE and (b) RMS%E derived from comparison of total non-water and CDOM absorption spectra measured with two independent PSICAMs (362 – 728 nm, 2 nm resolution).
Fig. 8
Fig. 8 Time series of on board Milli-Q absorption measurements with (a) an AC-9 and (b) an AC-s at three wavebands (blue, green, red).
Fig. 9
Fig. 9 De-trending time series of (a) AC-9 and (b) AC-s absorption data for standard deviation estimation. Time series were de-trended by subtracting a moving average from time series. (c) & (d) show histograms of standard deviations at 440 nm for AC-9 (N = 60) and AC-s (N = 68), respectively. (e) & (f) show histograms of standard deviations at 440 nm derived for bin-averaged (18 data points per bin), de-trended time series for AC-9 (N = 60) and AC-s (N = 66), respectively.
Fig. 10
Fig. 10 Comparison of absorption data collected at 57 sampling sites around the UK measured with an AC-9 and AC-s device at 9 different wavebands corrected using the semi empirical correction on a log-log scale.
Fig. 11
Fig. 11 Comparison of total non-water absorption data collected at 56 sampling sites around the UK measured with (a) an AC-9 (9 wavebands) and (b) and AC-s (400 – 728 nm, at 2 nm resolution) against HZG PSICAM absorption data on log-log-scales.
Fig. 12
Fig. 12 Wavelength dependency of (a) RMSE and (b) RMS%E derived from comparison of total non-water absorption spectra measured with the Strath PSICAM (362 – 728 nm, 2 nm resolution), AC-9 (9 AC-9 wavebands) and AC-s (400 – 730 nm, 2 nm resolution) against the HZG PSICAM, and of AC-9 absorption vs. AC-s absorption data (at 9 AC-9 wavelengths).

Tables (1)

Tables Icon

Table 1 Statistical descriptors, slope, offset, R2 (all obtained from geometric mean linear regression), RMSE, and RMS%E, of absorption spectra measured with PSICAM (CDOM and total), AC-9 (total) and AC-s (total) compared against each other.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

a ac9 ( λ ) =a m ( λ )-[ a m ( 715 ) -a emp ( 715 ) ] ( 1/ e c ) c m ( λ ) -a m ( λ ) ( 1/ e c ) c m ( 715 ) -a emp ( 715 ),
a emp ( 715 )=0.212 [ a m ( 715 ) ] 1.135 .

Metrics