Abstract

The Raman peaks observed in the ultrafast-laser induced chalcogen-hyperdoped Si are assigned to different configurations of defects formed in crystal Si. The disappearance of the Raman peaks of the chalcogen-hyperdoped Si after thermal annealing is attributed to the formation of polymers, which cannot display any Raman peaks except the strong peak of crystal Si. The imaginary parts of the dielectric functions indicate that sub-bandgap absorptions are also reduced when the chalcogen atoms combine to form a polymer. The reductions of the sub-bandgap absorptions are different for S- and Se-hyperdoped Si, which can give a good explanation for their different variations of infrared absorptance at the same annealing conditions.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Investigating an intermediate-band photovoltaic material based on scandium-hyperdoped silicon through first-principles calculations

Xiao Dong, Yongyong Wang, Xueping Li, and Yingying Li
Opt. Express 25(12) A602-A611 (2017)

Effect of scandium on the optical properties of crystalline silicon material

Xiao Dong, Yongyong Wang, Xueping Li, and Yingying Li
Opt. Express 24(18) A1269-A1275 (2016)

First-principles study: size-dependent optical properties for semiconducting silicon carbide nanotubes

S.-P. Huang, D.-S. Wu, J.-M. Hu, H. Zhang, Z. Xie, H. Hu, and W.-D. Cheng
Opt. Express 15(17) 10947-10957 (2007)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Warrender, “Laser hyperdoping silicon for enhanced infrared optoelectronic properties,” Appl. Phys. Rev. 3(3), 031104 (2016).
    [Crossref]
  2. M. T. Winkler, D. Recht, M. J. Sher, A. J. Said, E. Mazur, and M. J. Aziz, “Insulator-to-metal transition in sulfur-doped silicon,” Phys. Rev. Lett. 106(17), 178701 (2011).
    [Crossref] [PubMed]
  3. E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
    [Crossref] [PubMed]
  4. A. J. Said, D. Recht, J. T. Sullivan, J. M. Warrender, T. Buonassisi, P. D. Persans, and M. J. Aziz, “Extended infrared photoresponse and gain in chalcogen-supersaturated silicon photodiodes,” Appl. Phys. Lett. 99(7), 073503 (2011).
    [Crossref]
  5. L. Du, Z. Wu, R. Li, F. Tang, and Y. Jiang, “Near-infrared photoresponse of femtosecond-laser processed Se-doped silicon n+ - n photodiodes,” Opt. Lett. 41(21), 5031–5034 (2016).
    [Crossref] [PubMed]
  6. H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
    [Crossref]
  7. Z. Y. Zhao and P. Z. Yang, “Insight into insulator-to-metal transition of sulfur-doped silicon by DFT calculations,” Phys. Chem. Chem. Phys. 16(33), 17499–17506 (2014).
    [Crossref] [PubMed]
  8. K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, “Formation of a reliable intermediate band in Si heavily coimplanted with chalcogen (S, Se, Te) and group III element (B, Al),” Phys. Rev. B 82(16), 165201 (2010).
    [Crossref]
  9. H. Jiang and C. Chen, “Analysis and calculation of electronic properties and light absorption of defective sulfur-doped silicon and theoretical photoelectric conversion efficiency,” J. Phys. Chem. A 119(16), 3753–3761 (2015).
    [Crossref] [PubMed]
  10. Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
    [Crossref]
  11. A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
    [Crossref]
  12. M. J. Sher, N. M. Mangan, M. J. Smith, Y. Lin, S. Marbach, T. M. Schneider, S. Gradečak, M. P. Brenner, and E. Mazur, “Femtosecond-laser hyperdoping silicon in an SF6 atmosphere: dopant incorporation mechanism,” J. Appl. Phys. 117(12), 125301 (2015).
    [Crossref]
  13. J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picoseconds and femtosecond laser irradiations,” Appl. Surf. Sci. 245(1-4), 102–108 (2005).
    [Crossref]
  14. K. Wang, H. Shao, K. Liu, S. Qu, Y. Wang, and Z. Wang, “Possible atomic structures responsible for the sub-bandgap absorption of chalcogen-hyperdoped silicon,” Appl. Phys. Lett. 107(11), 112106 (2015).
    [Crossref]
  15. M. A. Sheehy, B. R. Tull, C. M. Friend, and E. Mazur, “Chalcogen doping of silicon via intense femtosecond-laser irradiation,” Mater. Sci. Eng. B 137(1-3), 289–294 (2007).
    [Crossref]
  16. B. R. Tull, M. T. Winkler, and E. Mazur, “The role of diffusion in broadband infrared absorption in chalcogen-doped silicon,” Appl. Phys., A Mater. Sci. Process. 96(2), 327–334 (2009).
    [Crossref]
  17. M. J. Smith, Y. Lin, M. Sher, M. T. Winkler, E. Mazur, and S. Gradečak, “Pressure-induced phase transformations during femtosecond-laser doping of silicon,” J. Appl. Phys. 110(5), 053524 (2011).
    [Crossref]
  18. P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136(3B), B864–B871 (1964).
    [Crossref]
  19. W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).
    [Crossref]
  20. M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clarke, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
    [Crossref]
  21. D. M. Ceperley and B. J. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett. 45(7), 566–569 (1980).
    [Crossref]
  22. J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B 23(10), 5048–5079 (1981).
    [Crossref]
  23. D. R. Hamann, M. Schlüter, and C. Chiang, “Ab initio norm-conserving pseudopotentials,” Phys. Rev. Lett. 43(20), 1494–1497 (1979).
    [Crossref]
  24. B. G. Pfrommer, M. Côté, S. G. Louie, and M. L. Cohen, “Relaxation of crystals with the quasi-Newton method,” J. Comput. Phys. 131(1), 233–240 (1997).
    [Crossref]
  25. J. Sun, X. Zhou, Y. Fan, J. Chen, H. Wang, X. Guo, J. He, and Y. Tian, “First-principles study of electronic structure and optical properties of heterodiamond BC2N,” Phys. Rev. B 73(4), 045108 (2006).
    [Crossref]
  26. M. Khan, J. Xu, N. Chen, and W. Cao, “First principle calculations of the electronic and optical properties of pure and (Mo, N) co-doped anatase TiO2,” J. Alloys Compd. 513, 539–545 (2012).
    [Crossref]
  27. R. Keller, W. B. Holzapfel, and H. Schulz, “Effect of pressure on the atom positions in Se and Te,” Phys. Rev. B 16(10), 4404–4412 (1977).
    [Crossref]
  28. X. Dong, N. Li, C. Liang, H. Sun, G. Feng, Z. Zhu, H. Shao, X. Rong, L. Zhao, and J. Zhuang, “Strong mid-infrared absorption and high crystallinity of microstructured silicon formed by femtosecond laser irradiation in NF3 atmosphere,” Appl. Phys. Express 6(8), 081301 (2013).
    [Crossref]

2016 (2)

2015 (4)

H. Jiang and C. Chen, “Analysis and calculation of electronic properties and light absorption of defective sulfur-doped silicon and theoretical photoelectric conversion efficiency,” J. Phys. Chem. A 119(16), 3753–3761 (2015).
[Crossref] [PubMed]

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

M. J. Sher, N. M. Mangan, M. J. Smith, Y. Lin, S. Marbach, T. M. Schneider, S. Gradečak, M. P. Brenner, and E. Mazur, “Femtosecond-laser hyperdoping silicon in an SF6 atmosphere: dopant incorporation mechanism,” J. Appl. Phys. 117(12), 125301 (2015).
[Crossref]

K. Wang, H. Shao, K. Liu, S. Qu, Y. Wang, and Z. Wang, “Possible atomic structures responsible for the sub-bandgap absorption of chalcogen-hyperdoped silicon,” Appl. Phys. Lett. 107(11), 112106 (2015).
[Crossref]

2014 (1)

Z. Y. Zhao and P. Z. Yang, “Insight into insulator-to-metal transition of sulfur-doped silicon by DFT calculations,” Phys. Chem. Chem. Phys. 16(33), 17499–17506 (2014).
[Crossref] [PubMed]

2013 (1)

X. Dong, N. Li, C. Liang, H. Sun, G. Feng, Z. Zhu, H. Shao, X. Rong, L. Zhao, and J. Zhuang, “Strong mid-infrared absorption and high crystallinity of microstructured silicon formed by femtosecond laser irradiation in NF3 atmosphere,” Appl. Phys. Express 6(8), 081301 (2013).
[Crossref]

2012 (3)

M. Khan, J. Xu, N. Chen, and W. Cao, “First principle calculations of the electronic and optical properties of pure and (Mo, N) co-doped anatase TiO2,” J. Alloys Compd. 513, 539–545 (2012).
[Crossref]

E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
[Crossref] [PubMed]

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

2011 (3)

M. J. Smith, Y. Lin, M. Sher, M. T. Winkler, E. Mazur, and S. Gradečak, “Pressure-induced phase transformations during femtosecond-laser doping of silicon,” J. Appl. Phys. 110(5), 053524 (2011).
[Crossref]

A. J. Said, D. Recht, J. T. Sullivan, J. M. Warrender, T. Buonassisi, P. D. Persans, and M. J. Aziz, “Extended infrared photoresponse and gain in chalcogen-supersaturated silicon photodiodes,” Appl. Phys. Lett. 99(7), 073503 (2011).
[Crossref]

M. T. Winkler, D. Recht, M. J. Sher, A. J. Said, E. Mazur, and M. J. Aziz, “Insulator-to-metal transition in sulfur-doped silicon,” Phys. Rev. Lett. 106(17), 178701 (2011).
[Crossref] [PubMed]

2010 (1)

K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, “Formation of a reliable intermediate band in Si heavily coimplanted with chalcogen (S, Se, Te) and group III element (B, Al),” Phys. Rev. B 82(16), 165201 (2010).
[Crossref]

2009 (1)

B. R. Tull, M. T. Winkler, and E. Mazur, “The role of diffusion in broadband infrared absorption in chalcogen-doped silicon,” Appl. Phys., A Mater. Sci. Process. 96(2), 327–334 (2009).
[Crossref]

2007 (1)

M. A. Sheehy, B. R. Tull, C. M. Friend, and E. Mazur, “Chalcogen doping of silicon via intense femtosecond-laser irradiation,” Mater. Sci. Eng. B 137(1-3), 289–294 (2007).
[Crossref]

2006 (1)

J. Sun, X. Zhou, Y. Fan, J. Chen, H. Wang, X. Guo, J. He, and Y. Tian, “First-principles study of electronic structure and optical properties of heterodiamond BC2N,” Phys. Rev. B 73(4), 045108 (2006).
[Crossref]

2005 (1)

J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picoseconds and femtosecond laser irradiations,” Appl. Surf. Sci. 245(1-4), 102–108 (2005).
[Crossref]

2002 (1)

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clarke, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
[Crossref]

1997 (2)

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

B. G. Pfrommer, M. Côté, S. G. Louie, and M. L. Cohen, “Relaxation of crystals with the quasi-Newton method,” J. Comput. Phys. 131(1), 233–240 (1997).
[Crossref]

1981 (1)

J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B 23(10), 5048–5079 (1981).
[Crossref]

1980 (1)

D. M. Ceperley and B. J. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett. 45(7), 566–569 (1980).
[Crossref]

1979 (1)

D. R. Hamann, M. Schlüter, and C. Chiang, “Ab initio norm-conserving pseudopotentials,” Phys. Rev. Lett. 43(20), 1494–1497 (1979).
[Crossref]

1977 (1)

R. Keller, W. B. Holzapfel, and H. Schulz, “Effect of pressure on the atom positions in Se and Te,” Phys. Rev. B 16(10), 4404–4412 (1977).
[Crossref]

1965 (1)

W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).
[Crossref]

1964 (1)

P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136(3B), B864–B871 (1964).
[Crossref]

Aguilera, I.

K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, “Formation of a reliable intermediate band in Si heavily coimplanted with chalcogen (S, Se, Te) and group III element (B, Al),” Phys. Rev. B 82(16), 165201 (2010).
[Crossref]

Ahsan, N.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

Alder, B. J.

D. M. Ceperley and B. J. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett. 45(7), 566–569 (1980).
[Crossref]

Aziz, M. J.

E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
[Crossref] [PubMed]

M. T. Winkler, D. Recht, M. J. Sher, A. J. Said, E. Mazur, and M. J. Aziz, “Insulator-to-metal transition in sulfur-doped silicon,” Phys. Rev. Lett. 106(17), 178701 (2011).
[Crossref] [PubMed]

A. J. Said, D. Recht, J. T. Sullivan, J. M. Warrender, T. Buonassisi, P. D. Persans, and M. J. Aziz, “Extended infrared photoresponse and gain in chalcogen-supersaturated silicon photodiodes,” Appl. Phys. Lett. 99(7), 073503 (2011).
[Crossref]

Brenner, M. P.

M. J. Sher, N. M. Mangan, M. J. Smith, Y. Lin, S. Marbach, T. M. Schneider, S. Gradečak, M. P. Brenner, and E. Mazur, “Femtosecond-laser hyperdoping silicon in an SF6 atmosphere: dopant incorporation mechanism,” J. Appl. Phys. 117(12), 125301 (2015).
[Crossref]

Buonassisi, T.

E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
[Crossref] [PubMed]

A. J. Said, D. Recht, J. T. Sullivan, J. M. Warrender, T. Buonassisi, P. D. Persans, and M. J. Aziz, “Extended infrared photoresponse and gain in chalcogen-supersaturated silicon photodiodes,” Appl. Phys. Lett. 99(7), 073503 (2011).
[Crossref]

Cao, W.

M. Khan, J. Xu, N. Chen, and W. Cao, “First principle calculations of the electronic and optical properties of pure and (Mo, N) co-doped anatase TiO2,” J. Alloys Compd. 513, 539–545 (2012).
[Crossref]

Ceperley, D. M.

D. M. Ceperley and B. J. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett. 45(7), 566–569 (1980).
[Crossref]

Chen, C.

H. Jiang and C. Chen, “Analysis and calculation of electronic properties and light absorption of defective sulfur-doped silicon and theoretical photoelectric conversion efficiency,” J. Phys. Chem. A 119(16), 3753–3761 (2015).
[Crossref] [PubMed]

Chen, D.

J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picoseconds and femtosecond laser irradiations,” Appl. Surf. Sci. 245(1-4), 102–108 (2005).
[Crossref]

Chen, J.

J. Sun, X. Zhou, Y. Fan, J. Chen, H. Wang, X. Guo, J. He, and Y. Tian, “First-principles study of electronic structure and optical properties of heterodiamond BC2N,” Phys. Rev. B 73(4), 045108 (2006).
[Crossref]

Chen, N.

M. Khan, J. Xu, N. Chen, and W. Cao, “First principle calculations of the electronic and optical properties of pure and (Mo, N) co-doped anatase TiO2,” J. Alloys Compd. 513, 539–545 (2012).
[Crossref]

Chiang, C.

D. R. Hamann, M. Schlüter, and C. Chiang, “Ab initio norm-conserving pseudopotentials,” Phys. Rev. Lett. 43(20), 1494–1497 (1979).
[Crossref]

Clarke, S. J.

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clarke, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
[Crossref]

Cohen, M. L.

B. G. Pfrommer, M. Côté, S. G. Louie, and M. L. Cohen, “Relaxation of crystals with the quasi-Newton method,” J. Comput. Phys. 131(1), 233–240 (1997).
[Crossref]

Côté, M.

B. G. Pfrommer, M. Côté, S. G. Louie, and M. L. Cohen, “Relaxation of crystals with the quasi-Newton method,” J. Comput. Phys. 131(1), 233–240 (1997).
[Crossref]

Dong, X.

X. Dong, N. Li, C. Liang, H. Sun, G. Feng, Z. Zhu, H. Shao, X. Rong, L. Zhao, and J. Zhuang, “Strong mid-infrared absorption and high crystallinity of microstructured silicon formed by femtosecond laser irradiation in NF3 atmosphere,” Appl. Phys. Express 6(8), 081301 (2013).
[Crossref]

Du, L.

Ekins-Daukes, N. J.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

Ertekin, E.

E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
[Crossref] [PubMed]

Fan, Y.

J. Sun, X. Zhou, Y. Fan, J. Chen, H. Wang, X. Guo, J. He, and Y. Tian, “First-principles study of electronic structure and optical properties of heterodiamond BC2N,” Phys. Rev. B 73(4), 045108 (2006).
[Crossref]

Farrell, D. J.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

Feng, G.

X. Dong, N. Li, C. Liang, H. Sun, G. Feng, Z. Zhu, H. Shao, X. Rong, L. Zhao, and J. Zhuang, “Strong mid-infrared absorption and high crystallinity of microstructured silicon formed by femtosecond laser irradiation in NF3 atmosphere,” Appl. Phys. Express 6(8), 081301 (2013).
[Crossref]

Friend, C. M.

M. A. Sheehy, B. R. Tull, C. M. Friend, and E. Mazur, “Chalcogen doping of silicon via intense femtosecond-laser irradiation,” Mater. Sci. Eng. B 137(1-3), 289–294 (2007).
[Crossref]

Gradecak, S.

M. J. Sher, N. M. Mangan, M. J. Smith, Y. Lin, S. Marbach, T. M. Schneider, S. Gradečak, M. P. Brenner, and E. Mazur, “Femtosecond-laser hyperdoping silicon in an SF6 atmosphere: dopant incorporation mechanism,” J. Appl. Phys. 117(12), 125301 (2015).
[Crossref]

M. J. Smith, Y. Lin, M. Sher, M. T. Winkler, E. Mazur, and S. Gradečak, “Pressure-induced phase transformations during femtosecond-laser doping of silicon,” J. Appl. Phys. 110(5), 053524 (2011).
[Crossref]

Grossman, J. C.

E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
[Crossref] [PubMed]

Guillemoles, J.-F.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

Guo, X.

J. Sun, X. Zhou, Y. Fan, J. Chen, H. Wang, X. Guo, J. He, and Y. Tian, “First-principles study of electronic structure and optical properties of heterodiamond BC2N,” Phys. Rev. B 73(4), 045108 (2006).
[Crossref]

Hamann, D. R.

D. R. Hamann, M. Schlüter, and C. Chiang, “Ab initio norm-conserving pseudopotentials,” Phys. Rev. Lett. 43(20), 1494–1497 (1979).
[Crossref]

Hasnip, P. J.

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clarke, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
[Crossref]

He, J.

J. Sun, X. Zhou, Y. Fan, J. Chen, H. Wang, X. Guo, J. He, and Y. Tian, “First-principles study of electronic structure and optical properties of heterodiamond BC2N,” Phys. Rev. B 73(4), 045108 (2006).
[Crossref]

Hess, O.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

Hohenberg, P.

P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136(3B), B864–B871 (1964).
[Crossref]

Holzapfel, W. B.

R. Keller, W. B. Holzapfel, and H. Schulz, “Effect of pressure on the atom positions in Se and Te,” Phys. Rev. B 16(10), 4404–4412 (1977).
[Crossref]

Jiang, H.

H. Jiang and C. Chen, “Analysis and calculation of electronic properties and light absorption of defective sulfur-doped silicon and theoretical photoelectric conversion efficiency,” J. Phys. Chem. A 119(16), 3753–3761 (2015).
[Crossref] [PubMed]

Jiang, Y.

Keller, R.

R. Keller, W. B. Holzapfel, and H. Schulz, “Effect of pressure on the atom positions in Se and Te,” Phys. Rev. B 16(10), 4404–4412 (1977).
[Crossref]

Khan, M.

M. Khan, J. Xu, N. Chen, and W. Cao, “First principle calculations of the electronic and optical properties of pure and (Mo, N) co-doped anatase TiO2,” J. Alloys Compd. 513, 539–545 (2012).
[Crossref]

Kita, T.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

Kohn, W.

W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).
[Crossref]

P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136(3B), B864–B871 (1964).
[Crossref]

Li, N.

X. Dong, N. Li, C. Liang, H. Sun, G. Feng, Z. Zhu, H. Shao, X. Rong, L. Zhao, and J. Zhuang, “Strong mid-infrared absorption and high crystallinity of microstructured silicon formed by femtosecond laser irradiation in NF3 atmosphere,” Appl. Phys. Express 6(8), 081301 (2013).
[Crossref]

Li, R.

Li, Y.

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

Liang, C.

X. Dong, N. Li, C. Liang, H. Sun, G. Feng, Z. Zhu, H. Shao, X. Rong, L. Zhao, and J. Zhuang, “Strong mid-infrared absorption and high crystallinity of microstructured silicon formed by femtosecond laser irradiation in NF3 atmosphere,” Appl. Phys. Express 6(8), 081301 (2013).
[Crossref]

Lin, Y.

M. J. Sher, N. M. Mangan, M. J. Smith, Y. Lin, S. Marbach, T. M. Schneider, S. Gradečak, M. P. Brenner, and E. Mazur, “Femtosecond-laser hyperdoping silicon in an SF6 atmosphere: dopant incorporation mechanism,” J. Appl. Phys. 117(12), 125301 (2015).
[Crossref]

M. J. Smith, Y. Lin, M. Sher, M. T. Winkler, E. Mazur, and S. Gradečak, “Pressure-induced phase transformations during femtosecond-laser doping of silicon,” J. Appl. Phys. 110(5), 053524 (2011).
[Crossref]

Lindan, P. J. D.

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clarke, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
[Crossref]

Liu, K.

K. Wang, H. Shao, K. Liu, S. Qu, Y. Wang, and Z. Wang, “Possible atomic structures responsible for the sub-bandgap absorption of chalcogen-hyperdoped silicon,” Appl. Phys. Lett. 107(11), 112106 (2015).
[Crossref]

Louie, S. G.

B. G. Pfrommer, M. Côté, S. G. Louie, and M. L. Cohen, “Relaxation of crystals with the quasi-Newton method,” J. Comput. Phys. 131(1), 233–240 (1997).
[Crossref]

Luque, A.

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

Mangan, N. M.

M. J. Sher, N. M. Mangan, M. J. Smith, Y. Lin, S. Marbach, T. M. Schneider, S. Gradečak, M. P. Brenner, and E. Mazur, “Femtosecond-laser hyperdoping silicon in an SF6 atmosphere: dopant incorporation mechanism,” J. Appl. Phys. 117(12), 125301 (2015).
[Crossref]

Marbach, S.

M. J. Sher, N. M. Mangan, M. J. Smith, Y. Lin, S. Marbach, T. M. Schneider, S. Gradečak, M. P. Brenner, and E. Mazur, “Femtosecond-laser hyperdoping silicon in an SF6 atmosphere: dopant incorporation mechanism,” J. Appl. Phys. 117(12), 125301 (2015).
[Crossref]

Martí, A.

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

Mazur, E.

M. J. Sher, N. M. Mangan, M. J. Smith, Y. Lin, S. Marbach, T. M. Schneider, S. Gradečak, M. P. Brenner, and E. Mazur, “Femtosecond-laser hyperdoping silicon in an SF6 atmosphere: dopant incorporation mechanism,” J. Appl. Phys. 117(12), 125301 (2015).
[Crossref]

M. J. Smith, Y. Lin, M. Sher, M. T. Winkler, E. Mazur, and S. Gradečak, “Pressure-induced phase transformations during femtosecond-laser doping of silicon,” J. Appl. Phys. 110(5), 053524 (2011).
[Crossref]

M. T. Winkler, D. Recht, M. J. Sher, A. J. Said, E. Mazur, and M. J. Aziz, “Insulator-to-metal transition in sulfur-doped silicon,” Phys. Rev. Lett. 106(17), 178701 (2011).
[Crossref] [PubMed]

B. R. Tull, M. T. Winkler, and E. Mazur, “The role of diffusion in broadband infrared absorption in chalcogen-doped silicon,” Appl. Phys., A Mater. Sci. Process. 96(2), 327–334 (2009).
[Crossref]

M. A. Sheehy, B. R. Tull, C. M. Friend, and E. Mazur, “Chalcogen doping of silicon via intense femtosecond-laser irradiation,” Mater. Sci. Eng. B 137(1-3), 289–294 (2007).
[Crossref]

Ning, B.

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

Ning, X.

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

Okada, Y.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

Palacios, P.

K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, “Formation of a reliable intermediate band in Si heavily coimplanted with chalcogen (S, Se, Te) and group III element (B, Al),” Phys. Rev. B 82(16), 165201 (2010).
[Crossref]

Payne, M. C.

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clarke, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
[Crossref]

Perdew, J. P.

J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B 23(10), 5048–5079 (1981).
[Crossref]

Persans, P. D.

A. J. Said, D. Recht, J. T. Sullivan, J. M. Warrender, T. Buonassisi, P. D. Persans, and M. J. Aziz, “Extended infrared photoresponse and gain in chalcogen-supersaturated silicon photodiodes,” Appl. Phys. Lett. 99(7), 073503 (2011).
[Crossref]

Pfrommer, B. G.

B. G. Pfrommer, M. Côté, S. G. Louie, and M. L. Cohen, “Relaxation of crystals with the quasi-Newton method,” J. Comput. Phys. 131(1), 233–240 (1997).
[Crossref]

Phillips, C. C.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

Pickard, C. J.

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clarke, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
[Crossref]

Probert, M. J.

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clarke, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
[Crossref]

Pusch, A.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

Qu, S.

K. Wang, H. Shao, K. Liu, S. Qu, Y. Wang, and Z. Wang, “Possible atomic structures responsible for the sub-bandgap absorption of chalcogen-hyperdoped silicon,” Appl. Phys. Lett. 107(11), 112106 (2015).
[Crossref]

Recht, D.

E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
[Crossref] [PubMed]

A. J. Said, D. Recht, J. T. Sullivan, J. M. Warrender, T. Buonassisi, P. D. Persans, and M. J. Aziz, “Extended infrared photoresponse and gain in chalcogen-supersaturated silicon photodiodes,” Appl. Phys. Lett. 99(7), 073503 (2011).
[Crossref]

M. T. Winkler, D. Recht, M. J. Sher, A. J. Said, E. Mazur, and M. J. Aziz, “Insulator-to-metal transition in sulfur-doped silicon,” Phys. Rev. Lett. 106(17), 178701 (2011).
[Crossref] [PubMed]

Rong, X.

X. Dong, N. Li, C. Liang, H. Sun, G. Feng, Z. Zhu, H. Shao, X. Rong, L. Zhao, and J. Zhuang, “Strong mid-infrared absorption and high crystallinity of microstructured silicon formed by femtosecond laser irradiation in NF3 atmosphere,” Appl. Phys. Express 6(8), 081301 (2013).
[Crossref]

Said, A. J.

E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
[Crossref] [PubMed]

A. J. Said, D. Recht, J. T. Sullivan, J. M. Warrender, T. Buonassisi, P. D. Persans, and M. J. Aziz, “Extended infrared photoresponse and gain in chalcogen-supersaturated silicon photodiodes,” Appl. Phys. Lett. 99(7), 073503 (2011).
[Crossref]

M. T. Winkler, D. Recht, M. J. Sher, A. J. Said, E. Mazur, and M. J. Aziz, “Insulator-to-metal transition in sulfur-doped silicon,” Phys. Rev. Lett. 106(17), 178701 (2011).
[Crossref] [PubMed]

Sánchez, K.

K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, “Formation of a reliable intermediate band in Si heavily coimplanted with chalcogen (S, Se, Te) and group III element (B, Al),” Phys. Rev. B 82(16), 165201 (2010).
[Crossref]

Schlüter, M.

D. R. Hamann, M. Schlüter, and C. Chiang, “Ab initio norm-conserving pseudopotentials,” Phys. Rev. Lett. 43(20), 1494–1497 (1979).
[Crossref]

Schneider, T. M.

M. J. Sher, N. M. Mangan, M. J. Smith, Y. Lin, S. Marbach, T. M. Schneider, S. Gradečak, M. P. Brenner, and E. Mazur, “Femtosecond-laser hyperdoping silicon in an SF6 atmosphere: dopant incorporation mechanism,” J. Appl. Phys. 117(12), 125301 (2015).
[Crossref]

Schulz, H.

R. Keller, W. B. Holzapfel, and H. Schulz, “Effect of pressure on the atom positions in Se and Te,” Phys. Rev. B 16(10), 4404–4412 (1977).
[Crossref]

Segall, M. D.

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clarke, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
[Crossref]

Sham, L. J.

W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).
[Crossref]

Shao, H.

K. Wang, H. Shao, K. Liu, S. Qu, Y. Wang, and Z. Wang, “Possible atomic structures responsible for the sub-bandgap absorption of chalcogen-hyperdoped silicon,” Appl. Phys. Lett. 107(11), 112106 (2015).
[Crossref]

X. Dong, N. Li, C. Liang, H. Sun, G. Feng, Z. Zhu, H. Shao, X. Rong, L. Zhao, and J. Zhuang, “Strong mid-infrared absorption and high crystallinity of microstructured silicon formed by femtosecond laser irradiation in NF3 atmosphere,” Appl. Phys. Express 6(8), 081301 (2013).
[Crossref]

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

Sheehy, M. A.

M. A. Sheehy, B. R. Tull, C. M. Friend, and E. Mazur, “Chalcogen doping of silicon via intense femtosecond-laser irradiation,” Mater. Sci. Eng. B 137(1-3), 289–294 (2007).
[Crossref]

Sher, M.

M. J. Smith, Y. Lin, M. Sher, M. T. Winkler, E. Mazur, and S. Gradečak, “Pressure-induced phase transformations during femtosecond-laser doping of silicon,” J. Appl. Phys. 110(5), 053524 (2011).
[Crossref]

Sher, M. J.

M. J. Sher, N. M. Mangan, M. J. Smith, Y. Lin, S. Marbach, T. M. Schneider, S. Gradečak, M. P. Brenner, and E. Mazur, “Femtosecond-laser hyperdoping silicon in an SF6 atmosphere: dopant incorporation mechanism,” J. Appl. Phys. 117(12), 125301 (2015).
[Crossref]

M. T. Winkler, D. Recht, M. J. Sher, A. J. Said, E. Mazur, and M. J. Aziz, “Insulator-to-metal transition in sulfur-doped silicon,” Phys. Rev. Lett. 106(17), 178701 (2011).
[Crossref] [PubMed]

Shoji, Y.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

Smith, M. J.

M. J. Sher, N. M. Mangan, M. J. Smith, Y. Lin, S. Marbach, T. M. Schneider, S. Gradečak, M. P. Brenner, and E. Mazur, “Femtosecond-laser hyperdoping silicon in an SF6 atmosphere: dopant incorporation mechanism,” J. Appl. Phys. 117(12), 125301 (2015).
[Crossref]

M. J. Smith, Y. Lin, M. Sher, M. T. Winkler, E. Mazur, and S. Gradečak, “Pressure-induced phase transformations during femtosecond-laser doping of silicon,” J. Appl. Phys. 110(5), 053524 (2011).
[Crossref]

Sogabe, T.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

Sullivan, J. T.

A. J. Said, D. Recht, J. T. Sullivan, J. M. Warrender, T. Buonassisi, P. D. Persans, and M. J. Aziz, “Extended infrared photoresponse and gain in chalcogen-supersaturated silicon photodiodes,” Appl. Phys. Lett. 99(7), 073503 (2011).
[Crossref]

Sun, H.

X. Dong, N. Li, C. Liang, H. Sun, G. Feng, Z. Zhu, H. Shao, X. Rong, L. Zhao, and J. Zhuang, “Strong mid-infrared absorption and high crystallinity of microstructured silicon formed by femtosecond laser irradiation in NF3 atmosphere,” Appl. Phys. Express 6(8), 081301 (2013).
[Crossref]

Sun, J.

J. Sun, X. Zhou, Y. Fan, J. Chen, H. Wang, X. Guo, J. He, and Y. Tian, “First-principles study of electronic structure and optical properties of heterodiamond BC2N,” Phys. Rev. B 73(4), 045108 (2006).
[Crossref]

Tamaki, R.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

Tang, F.

Tian, Y.

J. Sun, X. Zhou, Y. Fan, J. Chen, H. Wang, X. Guo, J. He, and Y. Tian, “First-principles study of electronic structure and optical properties of heterodiamond BC2N,” Phys. Rev. B 73(4), 045108 (2006).
[Crossref]

Tull, B. R.

B. R. Tull, M. T. Winkler, and E. Mazur, “The role of diffusion in broadband infrared absorption in chalcogen-doped silicon,” Appl. Phys., A Mater. Sci. Process. 96(2), 327–334 (2009).
[Crossref]

M. A. Sheehy, B. R. Tull, C. M. Friend, and E. Mazur, “Chalcogen doping of silicon via intense femtosecond-laser irradiation,” Mater. Sci. Eng. B 137(1-3), 289–294 (2007).
[Crossref]

Wahnón, P.

K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, “Formation of a reliable intermediate band in Si heavily coimplanted with chalcogen (S, Se, Te) and group III element (B, Al),” Phys. Rev. B 82(16), 165201 (2010).
[Crossref]

Wang, H.

J. Sun, X. Zhou, Y. Fan, J. Chen, H. Wang, X. Guo, J. He, and Y. Tian, “First-principles study of electronic structure and optical properties of heterodiamond BC2N,” Phys. Rev. B 73(4), 045108 (2006).
[Crossref]

Wang, K.

K. Wang, H. Shao, K. Liu, S. Qu, Y. Wang, and Z. Wang, “Possible atomic structures responsible for the sub-bandgap absorption of chalcogen-hyperdoped silicon,” Appl. Phys. Lett. 107(11), 112106 (2015).
[Crossref]

Wang, Y.

K. Wang, H. Shao, K. Liu, S. Qu, Y. Wang, and Z. Wang, “Possible atomic structures responsible for the sub-bandgap absorption of chalcogen-hyperdoped silicon,” Appl. Phys. Lett. 107(11), 112106 (2015).
[Crossref]

Wang, Z.

K. Wang, H. Shao, K. Liu, S. Qu, Y. Wang, and Z. Wang, “Possible atomic structures responsible for the sub-bandgap absorption of chalcogen-hyperdoped silicon,” Appl. Phys. Lett. 107(11), 112106 (2015).
[Crossref]

Warrender, J. M.

J. M. Warrender, “Laser hyperdoping silicon for enhanced infrared optoelectronic properties,” Appl. Phys. Rev. 3(3), 031104 (2016).
[Crossref]

A. J. Said, D. Recht, J. T. Sullivan, J. M. Warrender, T. Buonassisi, P. D. Persans, and M. J. Aziz, “Extended infrared photoresponse and gain in chalcogen-supersaturated silicon photodiodes,” Appl. Phys. Lett. 99(7), 073503 (2011).
[Crossref]

Winkler, M. T.

E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
[Crossref] [PubMed]

M. T. Winkler, D. Recht, M. J. Sher, A. J. Said, E. Mazur, and M. J. Aziz, “Insulator-to-metal transition in sulfur-doped silicon,” Phys. Rev. Lett. 106(17), 178701 (2011).
[Crossref] [PubMed]

M. J. Smith, Y. Lin, M. Sher, M. T. Winkler, E. Mazur, and S. Gradečak, “Pressure-induced phase transformations during femtosecond-laser doping of silicon,” J. Appl. Phys. 110(5), 053524 (2011).
[Crossref]

B. R. Tull, M. T. Winkler, and E. Mazur, “The role of diffusion in broadband infrared absorption in chalcogen-doped silicon,” Appl. Phys., A Mater. Sci. Process. 96(2), 327–334 (2009).
[Crossref]

Wu, Z.

Xu, J.

M. Khan, J. Xu, N. Chen, and W. Cao, “First principle calculations of the electronic and optical properties of pure and (Mo, N) co-doped anatase TiO2,” J. Alloys Compd. 513, 539–545 (2012).
[Crossref]

Yang, P. Z.

Z. Y. Zhao and P. Z. Yang, “Insight into insulator-to-metal transition of sulfur-doped silicon by DFT calculations,” Phys. Chem. Chem. Phys. 16(33), 17499–17506 (2014).
[Crossref] [PubMed]

Yin, G.

J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picoseconds and femtosecond laser irradiations,” Appl. Surf. Sci. 245(1-4), 102–108 (2005).
[Crossref]

Yoshida, K.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

Yoshida, M.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

Zhang, J.

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

Zhang, W.

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

Zhao, L.

X. Dong, N. Li, C. Liang, H. Sun, G. Feng, Z. Zhu, H. Shao, X. Rong, L. Zhao, and J. Zhuang, “Strong mid-infrared absorption and high crystallinity of microstructured silicon formed by femtosecond laser irradiation in NF3 atmosphere,” Appl. Phys. Express 6(8), 081301 (2013).
[Crossref]

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picoseconds and femtosecond laser irradiations,” Appl. Surf. Sci. 245(1-4), 102–108 (2005).
[Crossref]

Zhao, M.

J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picoseconds and femtosecond laser irradiations,” Appl. Surf. Sci. 245(1-4), 102–108 (2005).
[Crossref]

Zhao, Z. Y.

Z. Y. Zhao and P. Z. Yang, “Insight into insulator-to-metal transition of sulfur-doped silicon by DFT calculations,” Phys. Chem. Chem. Phys. 16(33), 17499–17506 (2014).
[Crossref] [PubMed]

Zhou, X.

J. Sun, X. Zhou, Y. Fan, J. Chen, H. Wang, X. Guo, J. He, and Y. Tian, “First-principles study of electronic structure and optical properties of heterodiamond BC2N,” Phys. Rev. B 73(4), 045108 (2006).
[Crossref]

Zhu, J.

J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picoseconds and femtosecond laser irradiations,” Appl. Surf. Sci. 245(1-4), 102–108 (2005).
[Crossref]

Zhu, Z.

X. Dong, N. Li, C. Liang, H. Sun, G. Feng, Z. Zhu, H. Shao, X. Rong, L. Zhao, and J. Zhuang, “Strong mid-infrared absorption and high crystallinity of microstructured silicon formed by femtosecond laser irradiation in NF3 atmosphere,” Appl. Phys. Express 6(8), 081301 (2013).
[Crossref]

Zhuang, J.

X. Dong, N. Li, C. Liang, H. Sun, G. Feng, Z. Zhu, H. Shao, X. Rong, L. Zhao, and J. Zhuang, “Strong mid-infrared absorption and high crystallinity of microstructured silicon formed by femtosecond laser irradiation in NF3 atmosphere,” Appl. Phys. Express 6(8), 081301 (2013).
[Crossref]

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

Zunger, A.

J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B 23(10), 5048–5079 (1981).
[Crossref]

Appl. Phys. Express (1)

X. Dong, N. Li, C. Liang, H. Sun, G. Feng, Z. Zhu, H. Shao, X. Rong, L. Zhao, and J. Zhuang, “Strong mid-infrared absorption and high crystallinity of microstructured silicon formed by femtosecond laser irradiation in NF3 atmosphere,” Appl. Phys. Express 6(8), 081301 (2013).
[Crossref]

Appl. Phys. Lett. (2)

A. J. Said, D. Recht, J. T. Sullivan, J. M. Warrender, T. Buonassisi, P. D. Persans, and M. J. Aziz, “Extended infrared photoresponse and gain in chalcogen-supersaturated silicon photodiodes,” Appl. Phys. Lett. 99(7), 073503 (2011).
[Crossref]

K. Wang, H. Shao, K. Liu, S. Qu, Y. Wang, and Z. Wang, “Possible atomic structures responsible for the sub-bandgap absorption of chalcogen-hyperdoped silicon,” Appl. Phys. Lett. 107(11), 112106 (2015).
[Crossref]

Appl. Phys. Rev. (2)

J. M. Warrender, “Laser hyperdoping silicon for enhanced infrared optoelectronic properties,” Appl. Phys. Rev. 3(3), 031104 (2016).
[Crossref]

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: recent progress and future directions,” Appl. Phys. Rev. 2(2), 021302 (2015).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

B. R. Tull, M. T. Winkler, and E. Mazur, “The role of diffusion in broadband infrared absorption in chalcogen-doped silicon,” Appl. Phys., A Mater. Sci. Process. 96(2), 327–334 (2009).
[Crossref]

Appl. Surf. Sci. (1)

J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picoseconds and femtosecond laser irradiations,” Appl. Surf. Sci. 245(1-4), 102–108 (2005).
[Crossref]

Europhys. Lett. (1)

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

J. Alloys Compd. (1)

M. Khan, J. Xu, N. Chen, and W. Cao, “First principle calculations of the electronic and optical properties of pure and (Mo, N) co-doped anatase TiO2,” J. Alloys Compd. 513, 539–545 (2012).
[Crossref]

J. Appl. Phys. (2)

M. J. Smith, Y. Lin, M. Sher, M. T. Winkler, E. Mazur, and S. Gradečak, “Pressure-induced phase transformations during femtosecond-laser doping of silicon,” J. Appl. Phys. 110(5), 053524 (2011).
[Crossref]

M. J. Sher, N. M. Mangan, M. J. Smith, Y. Lin, S. Marbach, T. M. Schneider, S. Gradečak, M. P. Brenner, and E. Mazur, “Femtosecond-laser hyperdoping silicon in an SF6 atmosphere: dopant incorporation mechanism,” J. Appl. Phys. 117(12), 125301 (2015).
[Crossref]

J. Comput. Phys. (1)

B. G. Pfrommer, M. Côté, S. G. Louie, and M. L. Cohen, “Relaxation of crystals with the quasi-Newton method,” J. Comput. Phys. 131(1), 233–240 (1997).
[Crossref]

J. Phys. Chem. A (1)

H. Jiang and C. Chen, “Analysis and calculation of electronic properties and light absorption of defective sulfur-doped silicon and theoretical photoelectric conversion efficiency,” J. Phys. Chem. A 119(16), 3753–3761 (2015).
[Crossref] [PubMed]

J. Phys. Condens. Matter (1)

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clarke, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
[Crossref]

Mater. Sci. Eng. B (1)

M. A. Sheehy, B. R. Tull, C. M. Friend, and E. Mazur, “Chalcogen doping of silicon via intense femtosecond-laser irradiation,” Mater. Sci. Eng. B 137(1-3), 289–294 (2007).
[Crossref]

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

Z. Y. Zhao and P. Z. Yang, “Insight into insulator-to-metal transition of sulfur-doped silicon by DFT calculations,” Phys. Chem. Chem. Phys. 16(33), 17499–17506 (2014).
[Crossref] [PubMed]

Phys. Rev. (2)

P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136(3B), B864–B871 (1964).
[Crossref]

W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).
[Crossref]

Phys. Rev. B (4)

K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, “Formation of a reliable intermediate band in Si heavily coimplanted with chalcogen (S, Se, Te) and group III element (B, Al),” Phys. Rev. B 82(16), 165201 (2010).
[Crossref]

J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B 23(10), 5048–5079 (1981).
[Crossref]

J. Sun, X. Zhou, Y. Fan, J. Chen, H. Wang, X. Guo, J. He, and Y. Tian, “First-principles study of electronic structure and optical properties of heterodiamond BC2N,” Phys. Rev. B 73(4), 045108 (2006).
[Crossref]

R. Keller, W. B. Holzapfel, and H. Schulz, “Effect of pressure on the atom positions in Se and Te,” Phys. Rev. B 16(10), 4404–4412 (1977).
[Crossref]

Phys. Rev. Lett. (5)

D. R. Hamann, M. Schlüter, and C. Chiang, “Ab initio norm-conserving pseudopotentials,” Phys. Rev. Lett. 43(20), 1494–1497 (1979).
[Crossref]

D. M. Ceperley and B. J. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett. 45(7), 566–569 (1980).
[Crossref]

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

M. T. Winkler, D. Recht, M. J. Sher, A. J. Said, E. Mazur, and M. J. Aziz, “Insulator-to-metal transition in sulfur-doped silicon,” Phys. Rev. Lett. 106(17), 178701 (2011).
[Crossref] [PubMed]

E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Configurations of defects in Si after geometry optimization: (a) self-interstitial Si defect; (b) vacancy; (c) quasi-substitutional configuration of chalcogen in Si; (d) bond-center interstitial configuration of chalcogen in Si; (e) substitutional configuration of chalcogen in Si. (f) Experimental Raman spectra of the sulfur-hyperdoped Si (dash-dot) and pure Si (solid) [28]. Blue, yellow, and white balls represent the Si, chalcogen (sulfur), and vacancy, respectively.
Fig. 2
Fig. 2 Calculational Raman spectra of self-interstitial Si (short-dash), vacancy (dash-dot), and diamond crystal structure of Si (solid) in the 2 × 2 × 2 supercell.
Fig. 3
Fig. 3 (a) Calculational Raman spectra of quasi-substitutional (solid), bond-center interstitial (dash), and substitutional (dash-dot) configurations of S in Si. (b) Calculational Raman spectra of quasi-substitutional (solid), bond-center interstitial (dash), and substitutional (dash-dot) configurations of Se in Si.
Fig. 4
Fig. 4 (a) Four polymer configurations of chalcogen (sulfur) in Si after geometry optimization, blue and yellow balls represent the Si and chalcogen (sulfur), respectively. (b) Calculational Raman spectra of the polymer configurations of S and (c) Se.
Fig. 5
Fig. 5 Imaginary parts of the dielectric functions calculated for the pure Si, self-interstitial Si configuration, and vacancy (a); configurations of S-hyperdoped Si (b); configurations of Se-hyperdoped Si (c).

Tables (1)

Tables Icon

Table 1 Formation energies of the paired-configurations for the S- and Se-hyperdoped Si. The superscripts letters D and S represent the dimer and the configuration with separate dopants, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E f = E t (Compound)nE(Si)mE(D),

Metrics