Abstract

Radiation balanced lasing (RBL) is an attractive pathway towards the development of high power and good beam quality lasers because heat removal via anti-Stokes luminescence (optical refrigeration) does not require additional connections and components and the heat is dissipated away from the active medium. Optical refrigeration had been demonstrated in the rare-earth doped laser medium but is far more difficult to achieve it in semiconductors laser medium. The main obstacle to achieve RBL in semiconductors is that the most efficient cooling occurs at relatively low carrier densities, while the gain required to sustain laser operation occurs at much higher densities. In this study, we explore the means of resolving this conundrum by separating the optical refrigeration and lasing in temporal, spatial, and/or spectral domains. Time multiplexing involves modulating the pump and operating the laser in pulse modes with lasing and cooling intervals. Space multiplexing involves having separate regions (quantum wells and dots) for lasing and cooling. The spectral multiplexing involves operating with two separate pumps – one for lasing and one for cooling. These methods will be compared in the study with the goal of selecting the optimal path RBL in semiconductor lasers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Radiation-balanced Yb:YAG disk laser

Zhou Yang, Junwei Meng, Alexander R. Albrecht, and Mansoor Sheik-Bahae
Opt. Express 27(2) 1392-1400 (2019)

Q-switched lasers with optical cooling

Xiaofeng Wang, Dingxiang Cao, Mu Zhou, and Jichun Tan
J. Opt. Soc. Am. B 24(9) 2213-2217 (2007)

References

  • View by:
  • |
  • |
  • |

  1. E. Finkeissen, M. Potemski, P. Wyder, L. Viña, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75(9), 1258–1260 (1999).
    [Crossref]
  2. J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97(3), 033001 (2006).
    [Crossref] [PubMed]
  3. J. B. Khurgin, “Band gap engineering for laser cooling of semiconductors,” J. of Appl. Phys. 100(11), 113116 (2006).
    [Crossref]
  4. M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon Rev 3, 67–84 (2009).
    [Crossref]
  5. R. I. Epstein and M. Sheik-Bahae, Optical refrigeration: science and applications of laser cooling of solids (John Wiley and Sons, 2010).
  6. J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493(7433), 504–508 (2013).
    [Crossref] [PubMed]
  7. Z. Vafapour and J. B. Khurgin, “Bandgap engineering and prospects for radiation-balanced vertical-cavity semiconductor lasers (Conference Presentation),” Proc. SPIE 10550, 105500R (2018).
  8. J. B. Khurgin and Z. Vafapour, “Time, space, and spectral multiplexing for radiation-balanced operation of semiconductor lasers,” in Optical and Electronic Cooling of Solids III, International Society for Optics and Photonics, 10550, 105500A (2018).
  9. J. Mende, E. Schmid, J. Speiser, G. Spindler, and A. Giesen, “Thin disk laser: power scaling to the kW regime in fundamental mode operation,” in Solid State Lasers XVIII: Technology and Devices, International Society for Optics and Photonics7193, 71931V (2009).
  10. S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35(1), 115–122 (1999).
    [Crossref]
  11. S. R. Bowman, N. W. Jenkins, B. Feldman, and S. O’Connor, “Demonstration of a radiatively cooled laser,” in IEEE Lasers and Electro-Optics Technical Digest, CLEO’02 (2002) pp. 180.
  12. S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. Sheik-Bahae, “Solid-state optical refrigeration to sub-100 Kelvin regime,” Sci. Rep. 6, 20380 (2016).
    [Crossref] [PubMed]
  13. A. Gragossian, J. Meng, M. Ghasemkhani, A. R Albrecht, and M. Sheik-Bahae, “Astigmatic Herriott cell for optical refrigeration,” Opt. Eng. 56, 011110 (2017).
    [Crossref]
  14. Z. Yang, A. R. Albrecht, J. Meng, and M. Sheik-Bahae, “Radiation Balanced Thin Disk Lasers,” in CLEO: Science and Innovations (Optical Society of America, 2018), pp. SM4N-5.
  15. P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz-und Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
    [Crossref]
  16. S. R. Bowman, N. W. Jenkins, S. P. O’Connor, and B. J. Feldman, “Sensitivity and stability of a radiation-balanced laser system,” IEEE J. Quantum Electron. 38, 1339–1348 (2002).
    [Crossref]
  17. T. D. Germann, “Design and realization of novel GaAs based laser concepts” (Springer Science and Business Media, 2013).
  18. Z. Vafapour and J. B. Khurgin, “Bandgap engineering and prospects for radiation-balanced vertical-external-cavity surface-emitting semiconductor lasers,” Opt. Express 26(10), 12985–13000 (2018).
    [Crossref] [PubMed]
  19. M. Butkus, K. G. Wilcox, J. Rautiainen, O. G. Okhotnikov, S. S. Mikhrin, I. L. Krestnikov, A. R. Kovsh, M. Hoffmann, T. Süedmeyer, U. Keller, and E. U. Rafailov, “High-power quantum-dot-based semiconductor disk laser,” Opt. Lett. 34, 1672–1674 (2009).
    [Crossref] [PubMed]
  20. B. Vaseghi, M. Mousavi, S. Khorshidian, and Z. Vafapour, “Spin-orbit interaction effects on the electronic structure of spherical quantum dot with different confinement potentials,” Superlatic and Microstructure 111, 671–677 (2017).
    [Crossref]
  21. Z. Yang, A. R. Albrecht, J. Meng, and M. Sheik-Bahae, “Investigation of radiation-balanced disk lasers,” in Conference on Optical and Electronic Cooling of Solids III (Vol. 10550, 105500B (2018).

2018 (2)

Z. Vafapour and J. B. Khurgin, “Bandgap engineering and prospects for radiation-balanced vertical-cavity semiconductor lasers (Conference Presentation),” Proc. SPIE 10550, 105500R (2018).

Z. Vafapour and J. B. Khurgin, “Bandgap engineering and prospects for radiation-balanced vertical-external-cavity surface-emitting semiconductor lasers,” Opt. Express 26(10), 12985–13000 (2018).
[Crossref] [PubMed]

2017 (2)

A. Gragossian, J. Meng, M. Ghasemkhani, A. R Albrecht, and M. Sheik-Bahae, “Astigmatic Herriott cell for optical refrigeration,” Opt. Eng. 56, 011110 (2017).
[Crossref]

B. Vaseghi, M. Mousavi, S. Khorshidian, and Z. Vafapour, “Spin-orbit interaction effects on the electronic structure of spherical quantum dot with different confinement potentials,” Superlatic and Microstructure 111, 671–677 (2017).
[Crossref]

2016 (1)

S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. Sheik-Bahae, “Solid-state optical refrigeration to sub-100 Kelvin regime,” Sci. Rep. 6, 20380 (2016).
[Crossref] [PubMed]

2013 (1)

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493(7433), 504–508 (2013).
[Crossref] [PubMed]

2009 (2)

2006 (2)

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97(3), 033001 (2006).
[Crossref] [PubMed]

J. B. Khurgin, “Band gap engineering for laser cooling of semiconductors,” J. of Appl. Phys. 100(11), 113116 (2006).
[Crossref]

2002 (1)

S. R. Bowman, N. W. Jenkins, S. P. O’Connor, and B. J. Feldman, “Sensitivity and stability of a radiation-balanced laser system,” IEEE J. Quantum Electron. 38, 1339–1348 (2002).
[Crossref]

1999 (2)

E. Finkeissen, M. Potemski, P. Wyder, L. Viña, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75(9), 1258–1260 (1999).
[Crossref]

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35(1), 115–122 (1999).
[Crossref]

1929 (1)

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz-und Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
[Crossref]

Albrecht, A. R

A. Gragossian, J. Meng, M. Ghasemkhani, A. R Albrecht, and M. Sheik-Bahae, “Astigmatic Herriott cell for optical refrigeration,” Opt. Eng. 56, 011110 (2017).
[Crossref]

Albrecht, A. R.

S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. Sheik-Bahae, “Solid-state optical refrigeration to sub-100 Kelvin regime,” Sci. Rep. 6, 20380 (2016).
[Crossref] [PubMed]

Z. Yang, A. R. Albrecht, J. Meng, and M. Sheik-Bahae, “Radiation Balanced Thin Disk Lasers,” in CLEO: Science and Innovations (Optical Society of America, 2018), pp. SM4N-5.

Z. Yang, A. R. Albrecht, J. Meng, and M. Sheik-Bahae, “Investigation of radiation-balanced disk lasers,” in Conference on Optical and Electronic Cooling of Solids III (Vol. 10550, 105500B (2018).

Balda, R.

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97(3), 033001 (2006).
[Crossref] [PubMed]

Bowman, S. R.

S. R. Bowman, N. W. Jenkins, S. P. O’Connor, and B. J. Feldman, “Sensitivity and stability of a radiation-balanced laser system,” IEEE J. Quantum Electron. 38, 1339–1348 (2002).
[Crossref]

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35(1), 115–122 (1999).
[Crossref]

S. R. Bowman, N. W. Jenkins, B. Feldman, and S. O’Connor, “Demonstration of a radiatively cooled laser,” in IEEE Lasers and Electro-Optics Technical Digest, CLEO’02 (2002) pp. 180.

Butkus, M.

Chen, R.

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493(7433), 504–508 (2013).
[Crossref] [PubMed]

Epstein, R. I.

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon Rev 3, 67–84 (2009).
[Crossref]

R. I. Epstein and M. Sheik-Bahae, Optical refrigeration: science and applications of laser cooling of solids (John Wiley and Sons, 2010).

Feldman, B.

S. R. Bowman, N. W. Jenkins, B. Feldman, and S. O’Connor, “Demonstration of a radiatively cooled laser,” in IEEE Lasers and Electro-Optics Technical Digest, CLEO’02 (2002) pp. 180.

Feldman, B. J.

S. R. Bowman, N. W. Jenkins, S. P. O’Connor, and B. J. Feldman, “Sensitivity and stability of a radiation-balanced laser system,” IEEE J. Quantum Electron. 38, 1339–1348 (2002).
[Crossref]

Fernandez, J.

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97(3), 033001 (2006).
[Crossref] [PubMed]

Finkeissen, E.

E. Finkeissen, M. Potemski, P. Wyder, L. Viña, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75(9), 1258–1260 (1999).
[Crossref]

Garcia-Adeva, A. J.

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97(3), 033001 (2006).
[Crossref] [PubMed]

Germann, T. D.

T. D. Germann, “Design and realization of novel GaAs based laser concepts” (Springer Science and Business Media, 2013).

Ghasemkhani, M.

A. Gragossian, J. Meng, M. Ghasemkhani, A. R Albrecht, and M. Sheik-Bahae, “Astigmatic Herriott cell for optical refrigeration,” Opt. Eng. 56, 011110 (2017).
[Crossref]

Giesen, A.

J. Mende, E. Schmid, J. Speiser, G. Spindler, and A. Giesen, “Thin disk laser: power scaling to the kW regime in fundamental mode operation,” in Solid State Lasers XVIII: Technology and Devices, International Society for Optics and Photonics7193, 71931V (2009).

Gragossian, A.

A. Gragossian, J. Meng, M. Ghasemkhani, A. R Albrecht, and M. Sheik-Bahae, “Astigmatic Herriott cell for optical refrigeration,” Opt. Eng. 56, 011110 (2017).
[Crossref]

Hehlen, M. P.

S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. Sheik-Bahae, “Solid-state optical refrigeration to sub-100 Kelvin regime,” Sci. Rep. 6, 20380 (2016).
[Crossref] [PubMed]

Hoffmann, M.

Jenkins, N. W.

S. R. Bowman, N. W. Jenkins, S. P. O’Connor, and B. J. Feldman, “Sensitivity and stability of a radiation-balanced laser system,” IEEE J. Quantum Electron. 38, 1339–1348 (2002).
[Crossref]

S. R. Bowman, N. W. Jenkins, B. Feldman, and S. O’Connor, “Demonstration of a radiatively cooled laser,” in IEEE Lasers and Electro-Optics Technical Digest, CLEO’02 (2002) pp. 180.

Keller, U.

Khorshidian, S.

B. Vaseghi, M. Mousavi, S. Khorshidian, and Z. Vafapour, “Spin-orbit interaction effects on the electronic structure of spherical quantum dot with different confinement potentials,” Superlatic and Microstructure 111, 671–677 (2017).
[Crossref]

Khurgin, J. B.

Z. Vafapour and J. B. Khurgin, “Bandgap engineering and prospects for radiation-balanced vertical-external-cavity surface-emitting semiconductor lasers,” Opt. Express 26(10), 12985–13000 (2018).
[Crossref] [PubMed]

Z. Vafapour and J. B. Khurgin, “Bandgap engineering and prospects for radiation-balanced vertical-cavity semiconductor lasers (Conference Presentation),” Proc. SPIE 10550, 105500R (2018).

J. B. Khurgin, “Band gap engineering for laser cooling of semiconductors,” J. of Appl. Phys. 100(11), 113116 (2006).
[Crossref]

J. B. Khurgin and Z. Vafapour, “Time, space, and spectral multiplexing for radiation-balanced operation of semiconductor lasers,” in Optical and Electronic Cooling of Solids III, International Society for Optics and Photonics, 10550, 105500A (2018).

Kovsh, A. R.

Krestnikov, I. L.

Li, D.

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493(7433), 504–508 (2013).
[Crossref] [PubMed]

Melgaard, S. D.

S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. Sheik-Bahae, “Solid-state optical refrigeration to sub-100 Kelvin regime,” Sci. Rep. 6, 20380 (2016).
[Crossref] [PubMed]

Mende, J.

J. Mende, E. Schmid, J. Speiser, G. Spindler, and A. Giesen, “Thin disk laser: power scaling to the kW regime in fundamental mode operation,” in Solid State Lasers XVIII: Technology and Devices, International Society for Optics and Photonics7193, 71931V (2009).

Meng, J.

A. Gragossian, J. Meng, M. Ghasemkhani, A. R Albrecht, and M. Sheik-Bahae, “Astigmatic Herriott cell for optical refrigeration,” Opt. Eng. 56, 011110 (2017).
[Crossref]

Z. Yang, A. R. Albrecht, J. Meng, and M. Sheik-Bahae, “Investigation of radiation-balanced disk lasers,” in Conference on Optical and Electronic Cooling of Solids III (Vol. 10550, 105500B (2018).

Z. Yang, A. R. Albrecht, J. Meng, and M. Sheik-Bahae, “Radiation Balanced Thin Disk Lasers,” in CLEO: Science and Innovations (Optical Society of America, 2018), pp. SM4N-5.

Mikhrin, S. S.

Mousavi, M.

B. Vaseghi, M. Mousavi, S. Khorshidian, and Z. Vafapour, “Spin-orbit interaction effects on the electronic structure of spherical quantum dot with different confinement potentials,” Superlatic and Microstructure 111, 671–677 (2017).
[Crossref]

O’Connor, S.

S. R. Bowman, N. W. Jenkins, B. Feldman, and S. O’Connor, “Demonstration of a radiatively cooled laser,” in IEEE Lasers and Electro-Optics Technical Digest, CLEO’02 (2002) pp. 180.

O’Connor, S. P.

S. R. Bowman, N. W. Jenkins, S. P. O’Connor, and B. J. Feldman, “Sensitivity and stability of a radiation-balanced laser system,” IEEE J. Quantum Electron. 38, 1339–1348 (2002).
[Crossref]

Okhotnikov, O. G.

Potemski, M.

E. Finkeissen, M. Potemski, P. Wyder, L. Viña, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75(9), 1258–1260 (1999).
[Crossref]

Pringsheim, P.

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz-und Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
[Crossref]

Rafailov, E. U.

Rautiainen, J.

Schmid, E.

J. Mende, E. Schmid, J. Speiser, G. Spindler, and A. Giesen, “Thin disk laser: power scaling to the kW regime in fundamental mode operation,” in Solid State Lasers XVIII: Technology and Devices, International Society for Optics and Photonics7193, 71931V (2009).

Sheik-Bahae, M.

A. Gragossian, J. Meng, M. Ghasemkhani, A. R Albrecht, and M. Sheik-Bahae, “Astigmatic Herriott cell for optical refrigeration,” Opt. Eng. 56, 011110 (2017).
[Crossref]

S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. Sheik-Bahae, “Solid-state optical refrigeration to sub-100 Kelvin regime,” Sci. Rep. 6, 20380 (2016).
[Crossref] [PubMed]

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon Rev 3, 67–84 (2009).
[Crossref]

R. I. Epstein and M. Sheik-Bahae, Optical refrigeration: science and applications of laser cooling of solids (John Wiley and Sons, 2010).

Z. Yang, A. R. Albrecht, J. Meng, and M. Sheik-Bahae, “Radiation Balanced Thin Disk Lasers,” in CLEO: Science and Innovations (Optical Society of America, 2018), pp. SM4N-5.

Z. Yang, A. R. Albrecht, J. Meng, and M. Sheik-Bahae, “Investigation of radiation-balanced disk lasers,” in Conference on Optical and Electronic Cooling of Solids III (Vol. 10550, 105500B (2018).

Speiser, J.

J. Mende, E. Schmid, J. Speiser, G. Spindler, and A. Giesen, “Thin disk laser: power scaling to the kW regime in fundamental mode operation,” in Solid State Lasers XVIII: Technology and Devices, International Society for Optics and Photonics7193, 71931V (2009).

Spindler, G.

J. Mende, E. Schmid, J. Speiser, G. Spindler, and A. Giesen, “Thin disk laser: power scaling to the kW regime in fundamental mode operation,” in Solid State Lasers XVIII: Technology and Devices, International Society for Optics and Photonics7193, 71931V (2009).

Süedmeyer, T.

Vafapour, Z.

Z. Vafapour and J. B. Khurgin, “Bandgap engineering and prospects for radiation-balanced vertical-external-cavity surface-emitting semiconductor lasers,” Opt. Express 26(10), 12985–13000 (2018).
[Crossref] [PubMed]

Z. Vafapour and J. B. Khurgin, “Bandgap engineering and prospects for radiation-balanced vertical-cavity semiconductor lasers (Conference Presentation),” Proc. SPIE 10550, 105500R (2018).

B. Vaseghi, M. Mousavi, S. Khorshidian, and Z. Vafapour, “Spin-orbit interaction effects on the electronic structure of spherical quantum dot with different confinement potentials,” Superlatic and Microstructure 111, 671–677 (2017).
[Crossref]

J. B. Khurgin and Z. Vafapour, “Time, space, and spectral multiplexing for radiation-balanced operation of semiconductor lasers,” in Optical and Electronic Cooling of Solids III, International Society for Optics and Photonics, 10550, 105500A (2018).

Vaseghi, B.

B. Vaseghi, M. Mousavi, S. Khorshidian, and Z. Vafapour, “Spin-orbit interaction effects on the electronic structure of spherical quantum dot with different confinement potentials,” Superlatic and Microstructure 111, 671–677 (2017).
[Crossref]

Viña, L.

E. Finkeissen, M. Potemski, P. Wyder, L. Viña, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75(9), 1258–1260 (1999).
[Crossref]

Weimann, G.

E. Finkeissen, M. Potemski, P. Wyder, L. Viña, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75(9), 1258–1260 (1999).
[Crossref]

Wilcox, K. G.

Wyder, P.

E. Finkeissen, M. Potemski, P. Wyder, L. Viña, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75(9), 1258–1260 (1999).
[Crossref]

Xiong, Q.

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493(7433), 504–508 (2013).
[Crossref] [PubMed]

Yang, Z.

Z. Yang, A. R. Albrecht, J. Meng, and M. Sheik-Bahae, “Investigation of radiation-balanced disk lasers,” in Conference on Optical and Electronic Cooling of Solids III (Vol. 10550, 105500B (2018).

Z. Yang, A. R. Albrecht, J. Meng, and M. Sheik-Bahae, “Radiation Balanced Thin Disk Lasers,” in CLEO: Science and Innovations (Optical Society of America, 2018), pp. SM4N-5.

Zhang, J.

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493(7433), 504–508 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

E. Finkeissen, M. Potemski, P. Wyder, L. Viña, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75(9), 1258–1260 (1999).
[Crossref]

IEEE J. Quantum Electron. (2)

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35(1), 115–122 (1999).
[Crossref]

S. R. Bowman, N. W. Jenkins, S. P. O’Connor, and B. J. Feldman, “Sensitivity and stability of a radiation-balanced laser system,” IEEE J. Quantum Electron. 38, 1339–1348 (2002).
[Crossref]

J. of Appl. Phys. (1)

J. B. Khurgin, “Band gap engineering for laser cooling of semiconductors,” J. of Appl. Phys. 100(11), 113116 (2006).
[Crossref]

Laser Photon Rev (1)

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon Rev 3, 67–84 (2009).
[Crossref]

Nature (1)

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493(7433), 504–508 (2013).
[Crossref] [PubMed]

Opt. Eng. (1)

A. Gragossian, J. Meng, M. Ghasemkhani, A. R Albrecht, and M. Sheik-Bahae, “Astigmatic Herriott cell for optical refrigeration,” Opt. Eng. 56, 011110 (2017).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97(3), 033001 (2006).
[Crossref] [PubMed]

Proc. SPIE (1)

Z. Vafapour and J. B. Khurgin, “Bandgap engineering and prospects for radiation-balanced vertical-cavity semiconductor lasers (Conference Presentation),” Proc. SPIE 10550, 105500R (2018).

Sci. Rep. (1)

S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. Sheik-Bahae, “Solid-state optical refrigeration to sub-100 Kelvin regime,” Sci. Rep. 6, 20380 (2016).
[Crossref] [PubMed]

Superlatic and Microstructure (1)

B. Vaseghi, M. Mousavi, S. Khorshidian, and Z. Vafapour, “Spin-orbit interaction effects on the electronic structure of spherical quantum dot with different confinement potentials,” Superlatic and Microstructure 111, 671–677 (2017).
[Crossref]

Z. Phys. (1)

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz-und Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
[Crossref]

Other (7)

T. D. Germann, “Design and realization of novel GaAs based laser concepts” (Springer Science and Business Media, 2013).

Z. Yang, A. R. Albrecht, J. Meng, and M. Sheik-Bahae, “Radiation Balanced Thin Disk Lasers,” in CLEO: Science and Innovations (Optical Society of America, 2018), pp. SM4N-5.

S. R. Bowman, N. W. Jenkins, B. Feldman, and S. O’Connor, “Demonstration of a radiatively cooled laser,” in IEEE Lasers and Electro-Optics Technical Digest, CLEO’02 (2002) pp. 180.

J. B. Khurgin and Z. Vafapour, “Time, space, and spectral multiplexing for radiation-balanced operation of semiconductor lasers,” in Optical and Electronic Cooling of Solids III, International Society for Optics and Photonics, 10550, 105500A (2018).

J. Mende, E. Schmid, J. Speiser, G. Spindler, and A. Giesen, “Thin disk laser: power scaling to the kW regime in fundamental mode operation,” in Solid State Lasers XVIII: Technology and Devices, International Society for Optics and Photonics7193, 71931V (2009).

R. I. Epstein and M. Sheik-Bahae, Optical refrigeration: science and applications of laser cooling of solids (John Wiley and Sons, 2010).

Z. Yang, A. R. Albrecht, J. Meng, and M. Sheik-Bahae, “Investigation of radiation-balanced disk lasers,” in Conference on Optical and Electronic Cooling of Solids III (Vol. 10550, 105500B (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) The Schematics of VECSEL for RBL. (b) The density of state of different structures of MQWs and QDs, (c) cooling power, and (d) the peak gain for round-trip QWs, respectively.
Fig. 2
Fig. 2 (a) The four relevant frequencies in radiation balanced (RB)-VECSELs; (a) Cooling power, and (c) the peak gain for round-trip QWs.
Fig. 3
Fig. 3 The schematic of photon frequency and carrier density vs time indicating separate lasing and cooling intervals.
Fig. 4
Fig. 4 (a) The density of state of MQWs incorporating QDs of impurities, (b,c) cooling power and the peak gain for round-trip QWs, respectively; And the spectra of the fluorescence and gain of the structure with carrier density of (d,e) n2D ≈ 1 × 1012cm−2 and (f,g) n2D ≈ 1.6 × 1012cm−2, respectively.
Fig. 5
Fig. 5 (a) The average of cooling power, (b) the average of outside laser power, (c) the peak of outside laser power, (d) the energy ratio of single pass efficiency, (e) the absorbed power, and (f) the energy ratio of potential multi-pass efficiency vs duty cycle.
Fig. 6
Fig. 6 One period of the space-multiplexing structure to show separate quasi-Fermi levels in cooling and lasing QWs structure.
Fig. 7
Fig. 7 (a) The absorbed power, (b) cooling power, (c) carrier density of best cooling, (d) carrier density of best lasing, (e) emitted power, and (f) lasing efficiency vs pump power.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E P = ( P P , 1 T C + P P , 2 T L )
P ¯ P = E P T = ( P P , 1 T C T + P P , 2 T L T )
P C , 1 ( 2 ) = α 1 ( 2 ) P P , 1 ( 2 ) ν F , 1 ( 2 ) ν P , 1 ( 2 ) ν P , 1 ( 2 )
E C = ( P C , 1 T C + P C , 2 T L ) N QW
P ¯ C = E C T = ( P C , 1 T C T + P C , 2 T L T ) N QW
E L , out = 1 2 E C ν L ν P , 2 ν L = 1 2 P ¯ C T ν L ν P , 2 ν L
P ¯ L , out = E L , out T = 1 2 P ¯ C ν L ν P , 2 ν L
P L , out = E L , out T = 1 2 P ¯ C T T L ν L ν P , 2 ν L
η = E L , out E P = P ¯ L , out P ¯ P = E C ν L ν P , 2 ν L P P , 1 T C + P P , 2 T L = N QW 2 α 1 P P , 1 ν F , 1 ν P , 1 ν P , 1 T C ν L ν P , 2 ν L + α 2 P P , 2 ν F , 2 ν P , 2 ν P , 2 T L ν L ν P , 2 ν L P P , 1 T C + P P , 2 T L
η N QW 2 α 1 P P , 1 ν F , 1 ν P , 1 ν P , 2 ν L T C + α 2 P P , 2 ν F , 2 ν P , 2 ν P , 2 ν L T L P P , 1 T C + P P , 2 T L
η N QW 2 α 1 ν F , 1 ν P , 1 ν P , 2 ν L T C T C + T L
E abs = ( α 1 P P , 1 T C + α 2 P P , 2 T L ) N QW
P abs = E abs T = ( α 1 P P , 1 T C + α 2 P P , 2 T L ) N QW T C + T L = N QW α 1 P P , 1 T C T C + T L + N QW α 2 P P , 2 T L T C + T L
η = E L , out E abs = 1 2 E C ν L ν P , 2 ν L α 1 P P , 1 T C + α 2 P P , 2 T L = 1 2 α 1 P P , 1 ν F , 1 ν P , 1 ν P , 1 T C ν L ν P , 2 ν L + α 2 P P , 2 ν F , 2 ν P , 2 ν P , 2 T L ν L ν P , 2 ν L α 1 P P , 1 T C + α 2 P P , 2 T L
η 1 2 α 1 ν F , 1 ν P , 1 ν P , 2 ν L T C α 1 T C + α 2 T L

Metrics