Abstract

One of the key features of the forthcoming fifth-generation (5G) communications is the deployment of massive multiple-input-multiple-output (MIMO) antennas to support ultra-high mobile traffic density. This scenario will pose a serious challenge on the capacity of mobile fronthaul in the centralized/cloud radio access network (C-RAN) since the required fronthaul bandwidth would linearly increase with number of antennas if conventional fronthaul interfaces (e.g., CPRI) are used. In this paper, we propose an adaptive space-time compression technique to significantly improve bandwidth efficiency of fronthaul. The technique incorporates an adaptive spatial filter to track the signal subspace and reduce the number of spatial channels, followed by adaptive quantizers to compress bandwidth of each channel in time domain. Enabled by the technique, the required fronthaul bandwidth becomes only dependent on the number of users, which is no longer proportional to the number of antennas. Moreover, compared with traditional fronthaul compression schemes in only the time domain, the flexibility of the compressor increases, and joint space-time optimization becomes feasible. On the other hand, optical fronthaul bandwidth is usually limited by cost-effective optical and electronic components. Moreover, increased reach would limit the bandwidth of IM-DD-based fronthaul (due to chromatic dispersion) as well as the received optical power. We experimentally investigate the combined optimization of a proposed space-time compressor with an optical fronthaul link. Experimental results of uplink 256-antenna fronthaul (259.5-Gb/s CPRI-equivalent rate) show that 32 users with 20MHz (30.72MSa/s) OFDM signal with lower-than-1% EVM are supported by 10GBd PAM4 optical interface.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Statistical Data Compression and Differential Coding for Digital Radio-Over-Fiber-Based Mobile Fronthaul

Mu Xu, Zhensheng Jia, Jing Wang, L. Alberto Campos, and Gee-Kung Chang
J. Opt. Commun. Netw. 11(1) A60-A71 (2019)

Digital mobile fronthaul employing differential pulse code modulation with suppressed quantization noise

Lu Zhang, Xiaodan Pang, Oskars Ozolins, Aleksejs Udalcovs, Richard Schatz, Urban Westergren, Gunnar Jacobsen, Sergei Popov, Lena Wosinska, Shilin Xiao, Weisheng Hu, and Jiajia Chen
Opt. Express 25(25) 31921-31936 (2017)

Low-Latency High-Efficiency Mobile Fronthaul With TDM-PON (Mobile-PON)

Siyu Zhou, Xiang Liu, Frank Effenberger, and Jonathan Chao
J. Opt. Commun. Netw. 10(1) A20-A26 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. Yoshida, “Mobile xHaul evolution: enabling tools for a flexible 5G xHaul network,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Tu2K.1 (Tutorial).
    [Crossref]
  2. J. Kani, J. Terada, K.-I. Suzuki, and A. Otaka, “Solutions for future mobile fronthaul and access-network convergence,” J. Lightwave Technol. 35(3), 527–534 (2017).
  3. CPRI Specification v7.0, Technical Report (2015).
  4. M. Xu, X. Liu, N. Chand, F. Effenberger, and G.-K. Chang, “Fast statistical estimation in highly compressed digital RoF systems for efficient 5G wireless signal delivery,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper M3E.7.
    [Crossref]
  5. L. Zhang, X. Pang, O. Ozolins, A. Udalcovs, R. Schatz, U. Westergren, G. Jacobsen, S. Popov, L. Wosinska, S. Xiao, W. Hu, and J. Chen, “Digital mobile fronthaul employing differential pulse code modulation with suppressed quantization noise,” Opt. Express 25(25), 31921–31936 (2017).
    [Crossref] [PubMed]
  6. ETSI standard, GS Open Radio Interface (ORI) 002–1 V4.1.1, Oct. 2014.
  7. C.-L. IH. Li, J. Korhonen, J. Huang, and L. Han, “RAN revolution with NGFI (xhaul) for 5G,” J. Lightwave Technol. 36(2), 541–550 (2018).
    [Crossref]
  8. K. Miyamoto, S. Kuwano, J. Terada, and A. Otaka, “Analysis of mobile fronthaul bandwidth and wireless transmission performance in split-PHY processing architecture,” Opt. Express 24(2), 1261–1268 (2016).
    [Crossref] [PubMed]
  9. X. Liu, N. Chand, F. Effenberger, L. Zhou, and H. Lin, “Demonstration of bandwidth-efficient mobile fronthaul enabling seamless aggregation of 36 E-UTRA-like wireless signals in a single 1.1-GHz wavelength channel,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper M2J.2.
    [Crossref]
  10. D. Che, F. Yuan, and W. Shieh, “High-fidelity angle-modulated analog optical link,” Opt. Express 24(15), 16320–16328 (2016).
    [Crossref] [PubMed]
  11. E. Bjornson, E. G. Larsson, and M. Debbah, “Massive MIMO for maximal spectral efficiency: how many users and pilots should be allocated?” IEEE Trans. Wirel. Commun. 15(2), 1293–1308 (2016).
    [Crossref]
  12. J. Choi, B. L. Evans, and A. Gatherer, “Space-time fronthaul compression of complex baseband uplink LTE signals,” in Proceedings of IEEE International Conference on Communications (ICC) (IEEE, 2016), pp. 1–6.
    [Crossref]
  13. P. Comon and G. H. Golub, “Tracking a few extreme singular values and vectors in signal processing,” Proc. IEEE 78(8), 1327–1343 (1990).
    [Crossref]
  14. B. Yang, “Projection approximation subspace tracking,” IEEE Trans. Signal Process. 43(1), 96–108 (1995).
  15. R. Badeau, B. David, and G. Richard, “Fast approximated power iteration subspace tracking,” IEEE Trans. Signal Process. 53(8), 2931–2941 (2005).
    [Crossref]
  16. ITU-T Recommendation G.722, 1988.
  17. ITU-T Recommendation G.726, 1990.
  18. H. Benvenuto, G. Bertocci, and W. Daumer, “The 32-kb/s ADPCM coding standard,” Bell Labs Tech. J. 65(5), 12–22 (1986).
  19. ETSI standard, “Digital Enhanced Cordless Telecommunications (DECT); Common Interface (CI); Part 8: Speech coding and transmission,” ETSI EN 300 175–8 V2.0.1, Mar. 2007.
  20. N. Jayant, “Variable rate ADPCM based on explicit noise coding,” Bell Syst. Tech. J. 62(3), 657–677 (1983).
    [Crossref]
  21. J. Abdoli, M. Jia, and J. Ma, “Filtered OFDM: a new waveform for future wireless systems,” in Proceedings of IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (IEEE, 2015), pp. 66–70.
    [Crossref]
  22. H. Zeng, X. Liu, S. Megeed, N. Chand, and F. Effenberger, “Real-time demonstration of CPRI-compatible efficient mobile fronthaul using FPGA,” J. Lightwave Technol. 35(6), 1241–1247 (2017).
    [Crossref]
  23. B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A signal compression on the CPRI interface,” Bell Labs Tech. J. 18(2), 117–133 (2013).
    [Crossref]
  24. L. Ramalho, I. Freire, C. Lu, M. Berg, and A. Klautau, “Improved LPC-Based fronthaul compression with high rate adaptation resolution,” IEEE Commun. Lett. 22(3), 458–461 (2018).
    [Crossref]
  25. J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, L. Cheng, X. Ma, and G.-K. Chang, “Digital mobile fronthaul based on delta–sigma modulation for 32 LTE carrier aggregation and FBMC signals,” J. Opt. Commun. Netw. 9(2), A233–A244 (2017).
    [Crossref]
  26. C.-X. Wang, S. Wu, L. Bai, X. You, and J. Wang, “Recent advances and future challenges for massive MIMO channel measurements and models,” Sci. China Inf. Sci. 59(2), 1–16 (2016).
  27. 3GPP, “Radio access architecture and interfaces,” TR 38.801, V14.0.0, Mar. 2017.
  28. A. Ghosh, J. Zhang, J. Andrews, and R. Muhamed, “Fundamentals of LTE,” Pearson Education, 2010.
  29. ITU-T Technical Report, “Transport network support of IMT-2020/5G,” Feb. 2018.
  30. X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Efficient mobile fronthaul via DSP-based channel aggregation,” J. Lightwave Technol. 34(6), 1556–1564 (2016).
    [Crossref]
  31. CableLabs, “DOCSIS 3.1 physical Layer Specification,” CM-SP-PHYv3.1–I14–180509, 2018.

2018 (2)

C.-L. IH. Li, J. Korhonen, J. Huang, and L. Han, “RAN revolution with NGFI (xhaul) for 5G,” J. Lightwave Technol. 36(2), 541–550 (2018).
[Crossref]

L. Ramalho, I. Freire, C. Lu, M. Berg, and A. Klautau, “Improved LPC-Based fronthaul compression with high rate adaptation resolution,” IEEE Commun. Lett. 22(3), 458–461 (2018).
[Crossref]

2017 (4)

2016 (5)

K. Miyamoto, S. Kuwano, J. Terada, and A. Otaka, “Analysis of mobile fronthaul bandwidth and wireless transmission performance in split-PHY processing architecture,” Opt. Express 24(2), 1261–1268 (2016).
[Crossref] [PubMed]

D. Che, F. Yuan, and W. Shieh, “High-fidelity angle-modulated analog optical link,” Opt. Express 24(15), 16320–16328 (2016).
[Crossref] [PubMed]

E. Bjornson, E. G. Larsson, and M. Debbah, “Massive MIMO for maximal spectral efficiency: how many users and pilots should be allocated?” IEEE Trans. Wirel. Commun. 15(2), 1293–1308 (2016).
[Crossref]

C.-X. Wang, S. Wu, L. Bai, X. You, and J. Wang, “Recent advances and future challenges for massive MIMO channel measurements and models,” Sci. China Inf. Sci. 59(2), 1–16 (2016).

X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Efficient mobile fronthaul via DSP-based channel aggregation,” J. Lightwave Technol. 34(6), 1556–1564 (2016).
[Crossref]

2013 (1)

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A signal compression on the CPRI interface,” Bell Labs Tech. J. 18(2), 117–133 (2013).
[Crossref]

2005 (1)

R. Badeau, B. David, and G. Richard, “Fast approximated power iteration subspace tracking,” IEEE Trans. Signal Process. 53(8), 2931–2941 (2005).
[Crossref]

1995 (1)

B. Yang, “Projection approximation subspace tracking,” IEEE Trans. Signal Process. 43(1), 96–108 (1995).

1990 (1)

P. Comon and G. H. Golub, “Tracking a few extreme singular values and vectors in signal processing,” Proc. IEEE 78(8), 1327–1343 (1990).
[Crossref]

1986 (1)

H. Benvenuto, G. Bertocci, and W. Daumer, “The 32-kb/s ADPCM coding standard,” Bell Labs Tech. J. 65(5), 12–22 (1986).

1983 (1)

N. Jayant, “Variable rate ADPCM based on explicit noise coding,” Bell Syst. Tech. J. 62(3), 657–677 (1983).
[Crossref]

Abdoli, J.

J. Abdoli, M. Jia, and J. Ma, “Filtered OFDM: a new waveform for future wireless systems,” in Proceedings of IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (IEEE, 2015), pp. 66–70.
[Crossref]

Andrews, J.

A. Ghosh, J. Zhang, J. Andrews, and R. Muhamed, “Fundamentals of LTE,” Pearson Education, 2010.

Badeau, R.

R. Badeau, B. David, and G. Richard, “Fast approximated power iteration subspace tracking,” IEEE Trans. Signal Process. 53(8), 2931–2941 (2005).
[Crossref]

Bai, L.

C.-X. Wang, S. Wu, L. Bai, X. You, and J. Wang, “Recent advances and future challenges for massive MIMO channel measurements and models,” Sci. China Inf. Sci. 59(2), 1–16 (2016).

Benvenuto, H.

H. Benvenuto, G. Bertocci, and W. Daumer, “The 32-kb/s ADPCM coding standard,” Bell Labs Tech. J. 65(5), 12–22 (1986).

Berg, M.

L. Ramalho, I. Freire, C. Lu, M. Berg, and A. Klautau, “Improved LPC-Based fronthaul compression with high rate adaptation resolution,” IEEE Commun. Lett. 22(3), 458–461 (2018).
[Crossref]

Bertocci, G.

H. Benvenuto, G. Bertocci, and W. Daumer, “The 32-kb/s ADPCM coding standard,” Bell Labs Tech. J. 65(5), 12–22 (1986).

Bjornson, E.

E. Bjornson, E. G. Larsson, and M. Debbah, “Massive MIMO for maximal spectral efficiency: how many users and pilots should be allocated?” IEEE Trans. Wirel. Commun. 15(2), 1293–1308 (2016).
[Crossref]

Cao, W.

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A signal compression on the CPRI interface,” Bell Labs Tech. J. 18(2), 117–133 (2013).
[Crossref]

Chand, N.

Chang, G.-K.

Che, D.

Chen, J.

Cheng, L.

Choi, J.

J. Choi, B. L. Evans, and A. Gatherer, “Space-time fronthaul compression of complex baseband uplink LTE signals,” in Proceedings of IEEE International Conference on Communications (ICC) (IEEE, 2016), pp. 1–6.
[Crossref]

Comon, P.

P. Comon and G. H. Golub, “Tracking a few extreme singular values and vectors in signal processing,” Proc. IEEE 78(8), 1327–1343 (1990).
[Crossref]

Daumer, W.

H. Benvenuto, G. Bertocci, and W. Daumer, “The 32-kb/s ADPCM coding standard,” Bell Labs Tech. J. 65(5), 12–22 (1986).

David, B.

R. Badeau, B. David, and G. Richard, “Fast approximated power iteration subspace tracking,” IEEE Trans. Signal Process. 53(8), 2931–2941 (2005).
[Crossref]

Debbah, M.

E. Bjornson, E. G. Larsson, and M. Debbah, “Massive MIMO for maximal spectral efficiency: how many users and pilots should be allocated?” IEEE Trans. Wirel. Commun. 15(2), 1293–1308 (2016).
[Crossref]

Effenberger, F.

Evans, B. L.

J. Choi, B. L. Evans, and A. Gatherer, “Space-time fronthaul compression of complex baseband uplink LTE signals,” in Proceedings of IEEE International Conference on Communications (ICC) (IEEE, 2016), pp. 1–6.
[Crossref]

Freire, I.

L. Ramalho, I. Freire, C. Lu, M. Berg, and A. Klautau, “Improved LPC-Based fronthaul compression with high rate adaptation resolution,” IEEE Commun. Lett. 22(3), 458–461 (2018).
[Crossref]

Gatherer, A.

J. Choi, B. L. Evans, and A. Gatherer, “Space-time fronthaul compression of complex baseband uplink LTE signals,” in Proceedings of IEEE International Conference on Communications (ICC) (IEEE, 2016), pp. 1–6.
[Crossref]

Ghosh, A.

A. Ghosh, J. Zhang, J. Andrews, and R. Muhamed, “Fundamentals of LTE,” Pearson Education, 2010.

Golub, G. H.

P. Comon and G. H. Golub, “Tracking a few extreme singular values and vectors in signal processing,” Proc. IEEE 78(8), 1327–1343 (1990).
[Crossref]

Guo, B.

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A signal compression on the CPRI interface,” Bell Labs Tech. J. 18(2), 117–133 (2013).
[Crossref]

Han, L.

Hu, W.

Huang, J.

Jacobsen, G.

Jayant, N.

N. Jayant, “Variable rate ADPCM based on explicit noise coding,” Bell Syst. Tech. J. 62(3), 657–677 (1983).
[Crossref]

Jia, M.

J. Abdoli, M. Jia, and J. Ma, “Filtered OFDM: a new waveform for future wireless systems,” in Proceedings of IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (IEEE, 2015), pp. 66–70.
[Crossref]

Kani, J.

Klautau, A.

L. Ramalho, I. Freire, C. Lu, M. Berg, and A. Klautau, “Improved LPC-Based fronthaul compression with high rate adaptation resolution,” IEEE Commun. Lett. 22(3), 458–461 (2018).
[Crossref]

Korhonen, J.

Kuwano, S.

Larsson, E. G.

E. Bjornson, E. G. Larsson, and M. Debbah, “Massive MIMO for maximal spectral efficiency: how many users and pilots should be allocated?” IEEE Trans. Wirel. Commun. 15(2), 1293–1308 (2016).
[Crossref]

Li, H.

Liu, X.

Lu, C.

L. Ramalho, I. Freire, C. Lu, M. Berg, and A. Klautau, “Improved LPC-Based fronthaul compression with high rate adaptation resolution,” IEEE Commun. Lett. 22(3), 458–461 (2018).
[Crossref]

Lu, F.

Ma, J.

J. Abdoli, M. Jia, and J. Ma, “Filtered OFDM: a new waveform for future wireless systems,” in Proceedings of IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (IEEE, 2015), pp. 66–70.
[Crossref]

Ma, X.

Megeed, S.

Miyamoto, K.

Muhamed, R.

A. Ghosh, J. Zhang, J. Andrews, and R. Muhamed, “Fundamentals of LTE,” Pearson Education, 2010.

Otaka, A.

Ozolins, O.

Pang, X.

Popov, S.

Ramalho, L.

L. Ramalho, I. Freire, C. Lu, M. Berg, and A. Klautau, “Improved LPC-Based fronthaul compression with high rate adaptation resolution,” IEEE Commun. Lett. 22(3), 458–461 (2018).
[Crossref]

Richard, G.

R. Badeau, B. David, and G. Richard, “Fast approximated power iteration subspace tracking,” IEEE Trans. Signal Process. 53(8), 2931–2941 (2005).
[Crossref]

Samardzija, D.

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A signal compression on the CPRI interface,” Bell Labs Tech. J. 18(2), 117–133 (2013).
[Crossref]

Schatz, R.

Shieh, W.

Suzuki, K.-I.

Tao, A.

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A signal compression on the CPRI interface,” Bell Labs Tech. J. 18(2), 117–133 (2013).
[Crossref]

Terada, J.

Udalcovs, A.

Wang, C.-X.

C.-X. Wang, S. Wu, L. Bai, X. You, and J. Wang, “Recent advances and future challenges for massive MIMO channel measurements and models,” Sci. China Inf. Sci. 59(2), 1–16 (2016).

Wang, J.

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, L. Cheng, X. Ma, and G.-K. Chang, “Digital mobile fronthaul based on delta–sigma modulation for 32 LTE carrier aggregation and FBMC signals,” J. Opt. Commun. Netw. 9(2), A233–A244 (2017).
[Crossref]

C.-X. Wang, S. Wu, L. Bai, X. You, and J. Wang, “Recent advances and future challenges for massive MIMO channel measurements and models,” Sci. China Inf. Sci. 59(2), 1–16 (2016).

Westergren, U.

Wosinska, L.

Wu, S.

C.-X. Wang, S. Wu, L. Bai, X. You, and J. Wang, “Recent advances and future challenges for massive MIMO channel measurements and models,” Sci. China Inf. Sci. 59(2), 1–16 (2016).

Xiao, S.

Xu, M.

Yang, B.

B. Yang, “Projection approximation subspace tracking,” IEEE Trans. Signal Process. 43(1), 96–108 (1995).

Ying, K.

You, X.

C.-X. Wang, S. Wu, L. Bai, X. You, and J. Wang, “Recent advances and future challenges for massive MIMO channel measurements and models,” Sci. China Inf. Sci. 59(2), 1–16 (2016).

Yu, Z.

Yuan, F.

Zeng, H.

Zhang, J.

Zhang, L.

Bell Labs Tech. J. (2)

H. Benvenuto, G. Bertocci, and W. Daumer, “The 32-kb/s ADPCM coding standard,” Bell Labs Tech. J. 65(5), 12–22 (1986).

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A signal compression on the CPRI interface,” Bell Labs Tech. J. 18(2), 117–133 (2013).
[Crossref]

Bell Syst. Tech. J. (1)

N. Jayant, “Variable rate ADPCM based on explicit noise coding,” Bell Syst. Tech. J. 62(3), 657–677 (1983).
[Crossref]

IEEE Commun. Lett. (1)

L. Ramalho, I. Freire, C. Lu, M. Berg, and A. Klautau, “Improved LPC-Based fronthaul compression with high rate adaptation resolution,” IEEE Commun. Lett. 22(3), 458–461 (2018).
[Crossref]

IEEE Trans. Signal Process. (2)

B. Yang, “Projection approximation subspace tracking,” IEEE Trans. Signal Process. 43(1), 96–108 (1995).

R. Badeau, B. David, and G. Richard, “Fast approximated power iteration subspace tracking,” IEEE Trans. Signal Process. 53(8), 2931–2941 (2005).
[Crossref]

IEEE Trans. Wirel. Commun. (1)

E. Bjornson, E. G. Larsson, and M. Debbah, “Massive MIMO for maximal spectral efficiency: how many users and pilots should be allocated?” IEEE Trans. Wirel. Commun. 15(2), 1293–1308 (2016).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Commun. Netw. (1)

Opt. Express (3)

Proc. IEEE (1)

P. Comon and G. H. Golub, “Tracking a few extreme singular values and vectors in signal processing,” Proc. IEEE 78(8), 1327–1343 (1990).
[Crossref]

Sci. China Inf. Sci. (1)

C.-X. Wang, S. Wu, L. Bai, X. You, and J. Wang, “Recent advances and future challenges for massive MIMO channel measurements and models,” Sci. China Inf. Sci. 59(2), 1–16 (2016).

Other (14)

3GPP, “Radio access architecture and interfaces,” TR 38.801, V14.0.0, Mar. 2017.

A. Ghosh, J. Zhang, J. Andrews, and R. Muhamed, “Fundamentals of LTE,” Pearson Education, 2010.

ITU-T Technical Report, “Transport network support of IMT-2020/5G,” Feb. 2018.

J. Abdoli, M. Jia, and J. Ma, “Filtered OFDM: a new waveform for future wireless systems,” in Proceedings of IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (IEEE, 2015), pp. 66–70.
[Crossref]

CableLabs, “DOCSIS 3.1 physical Layer Specification,” CM-SP-PHYv3.1–I14–180509, 2018.

ETSI standard, GS Open Radio Interface (ORI) 002–1 V4.1.1, Oct. 2014.

CPRI Specification v7.0, Technical Report (2015).

M. Xu, X. Liu, N. Chand, F. Effenberger, and G.-K. Chang, “Fast statistical estimation in highly compressed digital RoF systems for efficient 5G wireless signal delivery,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper M3E.7.
[Crossref]

Y. Yoshida, “Mobile xHaul evolution: enabling tools for a flexible 5G xHaul network,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Tu2K.1 (Tutorial).
[Crossref]

X. Liu, N. Chand, F. Effenberger, L. Zhou, and H. Lin, “Demonstration of bandwidth-efficient mobile fronthaul enabling seamless aggregation of 36 E-UTRA-like wireless signals in a single 1.1-GHz wavelength channel,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper M2J.2.
[Crossref]

J. Choi, B. L. Evans, and A. Gatherer, “Space-time fronthaul compression of complex baseband uplink LTE signals,” in Proceedings of IEEE International Conference on Communications (ICC) (IEEE, 2016), pp. 1–6.
[Crossref]

ETSI standard, “Digital Enhanced Cordless Telecommunications (DECT); Common Interface (CI); Part 8: Speech coding and transmission,” ETSI EN 300 175–8 V2.0.1, Mar. 2007.

ITU-T Recommendation G.722, 1988.

ITU-T Recommendation G.726, 1990.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Concept of the space-time fronthaul compressor.
Fig. 2
Fig. 2 Schematic of the adaptive spatial filter.
Fig. 3
Fig. 3 Conceptual block diagram of (a) ADPCM encoder and (b) ADPCM decoder. Q: quantizer. Q−1: inverse quantizer. Δ: quantization scale factor adaptor. A(z): pole-part adaptive filter in the predictor. B(z): zero-part adaptive filter in the predictor.
Fig. 4
Fig. 4 PAPR of SC-FDMA, OFDMA and F-OFDMA signals with different bandwidth occupancy ratio.
Fig. 5
Fig. 5 Performance of ADPCM compression for SC-FDMA signal with bandwidth occupancy ratio of (a) 100%, (b) 50%.
Fig. 6
Fig. 6 Performance of ADPCM compression for OFDMA signal with bandwidth occupancy ratio of (a) 100%, (b) 50%.
Fig. 7
Fig. 7 Performance of ADPCM compression for Filtered-OFDMA signal with bandwidth occupancy ratio of (a) 100%, (b) 50%.
Fig. 8
Fig. 8 EVM performance of 6-bit ADPCM and 10-bit ORI’s compressor as a function of relative input power.
Fig. 9
Fig. 9 Simulation results: (a) histogram of power variance among M input channels and K output channels of FAPI-based SF. (b) histogram of power variance among K output channels of PCA. (c) Average power variance versus number of UE.
Fig. 10
Fig. 10 Simulation results: (a) Contour plot of EVM (dB) vs. space and time-domain CR. EVM(dB) = 20log10(EVM). (b) Required FH bit rate vs. number of antennas.
Fig. 11
Fig. 11 (a) Experimental setup. PC: polarization controller. (b) Optical spectra (resolution: 0.02nm) of PAM4 signal at different baud rates, measured at the output of MZM.
Fig. 12
Fig. 12 Experimental results, after 5km FH. (a) BER versus PAM4 baud rate. (b) Wireless EVM vs. PAM4 baud rate, with different number of UE (i.e., P).
Fig. 13
Fig. 13 Experimental results, after 15km FH. (a) BER versus PAM4 baud rate. (b) Wireless EVM vs. PAM4 baud rate, with different number of UE (i.e., P).
Fig. 14
Fig. 14 Simulation results. (a) Evolution of MPA between signal subspaces spanned by columns of FAPI-based W(t) and WOpt. (b) Evolution of normalized square error of decompressed waveform. The simulation setup is the same as that of Fig. 9(a).

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

min J( W )=E{ xWy 2 }.
min J( W(t) )= i=1 t β ti x(i)W(t) W H (t)x(i) 2 .
S e ( k )= i=1 N A a i ( k1 ) S r ( ki ) + j=1 N B b j ( k1 ) d q ( kj )
S r ( ki )= S e ( ki )+ d q ( ki )
e( k )= d q ( k )d(k).
DQNR=E{ d 2 (k)}/E{ e 2 (k)}.
SQNR=E{I n 2 (k)}/E{ e 2 (k)}=DQNR*E{ I n 2 ( k ) }/E{ d 2 ( k ) }=DQNR* G P
CR=(L i=1 K ( B i +1)+MK B SF )/[ML( B CPRI +1)].
BR=CRB R CPRI =CR2M f S ( B CPRI +1) H LC .
CR K/M Spatial CR i=1 K ( B i +1)/K( B CPRI +1) Timedomain CR .
BR=2 f S i=1 K ( B i +1) H LC .
CR K/M Spatial CR (B+1)/( B CPRI +1) Timedomain CR
BR=2 f S K(B+1) H LC .
Baud Rate= f S K(B+1) H LC
h( t )=Z(t1)y(t)
g( t )= h(t) β+y ( t ) H h(t)
ε 2 ( t )= x(t) 2 y(t) 2
τ( t )= ε 2 ( t ) 1+ ε 2 ( t ) g(t) 2 + 1+ ε 2 ( t ) g(t) 2
η( t )=1τ( t ) g(t) 2
y ' ( t )=η( t )y( t )+τ( t )g( t )
h'(t)=Z (t1) H y'(t)
λ( t )= τ( t ) η( t ) [ Z( t1 )h' (t) H g( t ) ]g( t )
Z( t )= 1 β [ Z( t1 )g( t ) h ' ( t ) H +λ( t )g ( t ) H ]
e( t )=η( t )x( t )W(t1) y ' ( t )
W( t )=W( t1 )+e(t)g ( t ) H .
W(0)=[ I K×K 0 (MK)×K ]
Z( 0 )= I K×K

Metrics