Abstract

The heterogeneous metal nanostructures have attracted great interest in various applications due to the synergistic effects between two noble metals, especially in surface enhanced Raman scattering (SERS) region. Herein, we prepared a 3D SERS active substrate based on heterogeneous and cross-distributed metal structure hybridized with MoS2by in situ synthesizing gold nanoparticles (AuNPs) on MoS2 membrane. The AuNPs-AgNPs/MoS2/P-Si hybrid SERS substrate were characterized by a scanning electron microscope (SEM), a transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) to investigate the character and the content of elements. In virtue of the heterogeneous and cross-distributed structure and ultra-narrow interparticle gap generating strong electric fields enhancement, the ultra-low concentration of probe molecule were detected (the LOD of 10−12 M for R6G and CV, 10−11 M for MG), serving the optimal SERS performance. The excellent uniformity and reproducibility were achieved by the proposed substrate. Moreover, the flexible MoS2/AuNPs-AgNPs/PMMA pyramidal SERS substrate was applied to detect melamine molecule in liquid milk (the LOD reached 10−9 M), which revealed great potential to be an outstanding SERS substrate for biological and chemical detection.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure

Jihua Xu, Chonghui Li, Haipeng Si, Xiaofei Zhao, Lin Wang, Shouzhen Jiang, Dongmei Wei, Jing Yu, Xianwu Xiu, and Chao Zhang
Opt. Express 26(17) 21546-21557 (2018)

Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis

Zhengyi Lu, Haipeng Si, Zhen Li, Jing Yu, Yanjun Liu, Dejun Feng, Chao Zhang, Wen Yang, Baoyuan Man, and Shouzhen Jiang
Opt. Express 26(17) 21626-21641 (2018)

Controlled-layer and large-area MoS2 films encapsulated Au nanoparticle hybrids for SERS

Zhen Li, Shouzhen Jiang, Yanyan Huo, Mei Liu, Cheng Yang, Chao Zhang, Xiaoyun Liu, Yingqing Sheng, Chonghui Li, and Baoyuan Man
Opt. Express 24(23) 26097-26108 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. Inter. 84(1), 1–20 (1977).
    [Crossref]
  2. H. Zhao, J. Jin, W. Tian, R. Li, Z. Yu, W. Song, Q. Cong, B. Zhao, and Y. Ozaki, “Three-dimensional superhydrophobic surface-enhanced Raman spectroscopy substrate for sensitive detection of pollutants in real environments,” J. Mater.Chen. A 3(8), 4330–4337 (2015).
    [Crossref]
  3. M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
    [Crossref]
  4. C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
    [Crossref]
  5. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  6. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 601–626 (2008).
    [Crossref] [PubMed]
  7. Z. Dai, F. Mei, X. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. Guo, X. Zhao, W. Li, F. Ren, and C. Jiang, ““Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
    [Crossref]
  8. Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
    [Crossref] [PubMed]
  9. B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
    [Crossref]
  10. C. M. Aikens, L. R. Madison, and G. C. Schatz, “Raman spectroscopy: The effect of field gradient on SERS,” Nat. Photonics 7(7), 508–510 (2013).
    [Crossref]
  11. C. Li, C. Zhang, S. Xu, Y. Huo, S. Jiang, C. Yang, Z. Li, X. Zhao, S. Zhang, and B. Man, “Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots,” Sens. Actuators B Chem. 263, 408–416 (2018).
    [Crossref]
  12. C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
    [Crossref]
  13. J. M. Romo-Herrera, A. L. González, L. Guerrini, F. R. Castiello, G. Alonso-Nuñez, O. E. Contreras, and R. A. Alvarez-Puebla, “A study of the depth and size of concave cube Au nanoparticles as highly sensitive SERS probes,” Nanoscale 8(13), 7326–7333 (2016).
    [Crossref] [PubMed]
  14. S. K. Vashist, E. M. Schneider, and J. H. Luong, “A rapid sandwich immunoassay for human fetuin A using agarose-3-aminopropyltriethoxysilane modified microtiter plate,” Anal. Chim. Acta 883, 74–80 (2015).
    [Crossref] [PubMed]
  15. N. Michieli, R. Pilot, V. Russo, C. Scian, F. Todescato, R. Signorini, S. Agnoli, T. Cesca, R. Bozio, and G. Mattei, “Oxidation effects on the SERS response of silver nanoprism arrays,” RSC Advances 7(1), 369–378 (2017).
    [Crossref]
  16. Y. Yang, J. Shi, G. Kawamura, and M. Nogami, “Preparation of Au–Ag, Ag–Au core–shell bimetallic nanoparticles for surface-enhanced Raman scattering,” Scr. Mater. 58(10), 862–865 (2008).
    [Crossref]
  17. N. H. T. Tran, B. T. Phan, W. J. Yoon, S. Khym, and H. Ju, “Dielectric Metal-Based Multilayers for Surface Plasmon Resonance with Enhanced Quality Factor of the Plasmonic Waves,” J. Electron. Mater. 46(6), 3654–3659 (2017).
    [Crossref]
  18. M. Fan, F.-J. Lai, H.-L. Chou, W.-T. Lu, B.-J. Hwang, and A. G. Brolo, “Surface-enhanced Raman scattering (SERS) from Au: Ag bimetallic nanoparticles: the effect of the molecular probe,” Chem. Sci. (Camb.) 4(1), 509–515 (2013).
    [Crossref]
  19. K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au–Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
    [Crossref] [PubMed]
  20. S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
    [Crossref] [PubMed]
  21. Z. Li, S. Jiang, S. Xu, C. Zhang, H. Qiu, C. Li, Y. Sheng, Y. Huo, C. Yang, and B. Man, “Few-layer MoS2-encapsulated Cu nanoparticle hybrids fabricated by two-step annealing process for surface enhanced Raman scattering,” Sens. Actuators B Chem. 230, 645–652 (2016).
    [Crossref]
  22. W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, and Z. L. Wang, “Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics,” Nature 514(7523), 470–474 (2014).
    [Crossref] [PubMed]
  23. X. Liang, X. J. Zhang, T. T. You, N. Yang, G. S. Wang, and P. G. Yin, “Three-dimensional MoS2-NS@ Au-NPs hybrids as SERS sensor for quantitative and ultrasensitive detection of melamine in milk,” J. Raman Spectrosc. 49(2), 245–255 (2018).
    [Crossref]
  24. Y. Zhang, M. Wang, E. Zhu, Y. Zheng, Y. Huang, and X. Huang, “Seedless Growth of Palladium Nanocrystals with Tunable Structures: From Tetrahedra to Nanosheets,” Nano Lett. 15(11), 7519–7525 (2015).
    [Crossref] [PubMed]
  25. H. I. Karunadasa, E. Montalvo, Y. Sun, M. Majda, J. R. Long, and C. J. Chang, “A molecular MoS2 edge site mimic for catalytic hydrogen generation,” Science 335(6069), 698–702 (2012).
    [Crossref] [PubMed]
  26. T. S. Sreeprasad, P. Nguyen, N. Kim, and V. Berry, “Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties,” Nano Lett. 13(9), 4434–4441 (2013).
    [Crossref] [PubMed]
  27. S. Su, W. Cao, W. Liu, Z. Lu, D. Zhu, J. Chao, L. Weng, L. Wang, C. Fan, and L. Wang, “Dual-mode electrochemical analysis of microRNA-21 using gold nanoparticle-decorated MoS2 nanosheet,” Biosens. Bioelectron. 94, 552–559 (2017).
    [Crossref] [PubMed]
  28. Y. Shi, J.-K. Huang, L. Jin, Y.-T. Hsu, S. F. Yu, L.-J. Li, and H. Y. Yang, “Selective decoration of Au nanoparticles on monolayer MoS2 single crystals,” Sci. Rep. 3(1), 1839 (2013).
    [Crossref] [PubMed]
  29. C. Zhang, B. Man, S. Jiang, C. Yang, M. Liu, C. Chen, S. Xu, H. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
    [Crossref]
  30. C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
    [Crossref] [PubMed]
  31. C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
    [Crossref] [PubMed]
  32. Y. Deng, M. Chen, J. Zhang, Z. Wang, W. Huang, Y. Zhao, J. P. Nshimiyimana, X. Hu, X. Chi, G. Hou, X. Zhang, Y. Guo, and L. Sun, “Thickness-dependent morphologies of Ag on n-layer MoS2 and its surface-enhanced Raman scattering,” Nano Res. 9(6), 1682–1688 (2016).
    [Crossref]
  33. B. Chakraborty, A. Bera, D. Muthu, S. Bhowmick, U. V. Waghmare, and A. Sood, “Symmetry-dependent phonon renormalization in monolayer MoS2 transistor,” Phys. Rev. B 85(16), 161403 (2012).
    [Crossref]
  34. J. Lu, J. H. Lu, H. Liu, B. Liu, L. Gong, E. S. Tok, K. P. Loh, and C. H. Sow, “Microlandscaping of Au nanoparticles on few-layer MoS2 films for chemical sensing,” Small 11(15), 1792–1800 (2015).
    [Crossref] [PubMed]
  35. S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, C. Song, C. Fan, and L. Wang, “Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles,” ACS Appl. Mater. Interfaces 6(21), 18735–18741 (2014).
    [Crossref] [PubMed]
  36. J.-H. Lee, M.-H. You, G.-H. Kim, and J.-M. Nam, “Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes,” Nano Lett. 14(11), 6217–6225 (2014).
    [Crossref] [PubMed]
  37. C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
    [Crossref] [PubMed]
  38. L. Hu, Y. J. Liu, Y. Han, P. Chen, C. Zhang, C. Li, Z. Lu, D. Luo, and S. Jiang, “Graphene oxide-decorated silver dendrites for high-performance surface-enhanced Raman scattering applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(16), 3908–3915 (2017).
    [Crossref]
  39. C. Li, C. Yang, S. Xu, C. Zhang, Z. Li, X. Liu, S. Jiang, Y. Huo, A. Liu, and B. Man, “Ag2O@ Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
    [Crossref]
  40. M. J. Natan, “Surface enhanced Raman scattering,” Faraday Discuss. 132, 321–328 (2006).
    [Crossref] [PubMed]
  41. Y. Zheng, A. H. Soeriyadi, L. Rosa, S. H. Ng, U. Bach, and J. Justin Gooding, “Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection,” Nat. Commun. 6(1), 8797 (2015).
    [Crossref] [PubMed]
  42. C. Marcott, G. M. Story, A. E. Dowrey, J. T. Grothaus, D. C. Oertel, I. Noda, E. Margalith, and L. Nguyen, “Mining the Information Content Buried in Infrared and Near-Infrared Band Shapes by Temporal, Spatial, and Other Perturbations,” Appl. Spectrosc. 63(12), 346A–354A (2009).
    [Crossref] [PubMed]
  43. N. E. Mircescu, M. Oltean, V. Chiş, and N. Leopold, “FTIR, FT-Raman, SERS and DFT study on melamine,” Vib. Spectrosc. 62, 165–171 (2012).
    [Crossref]

2018 (4)

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. Li, C. Zhang, S. Xu, Y. Huo, S. Jiang, C. Yang, Z. Li, X. Zhao, S. Zhang, and B. Man, “Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots,” Sens. Actuators B Chem. 263, 408–416 (2018).
[Crossref]

X. Liang, X. J. Zhang, T. T. You, N. Yang, G. S. Wang, and P. G. Yin, “Three-dimensional MoS2-NS@ Au-NPs hybrids as SERS sensor for quantitative and ultrasensitive detection of melamine in milk,” J. Raman Spectrosc. 49(2), 245–255 (2018).
[Crossref]

2017 (7)

N. H. T. Tran, B. T. Phan, W. J. Yoon, S. Khym, and H. Ju, “Dielectric Metal-Based Multilayers for Surface Plasmon Resonance with Enhanced Quality Factor of the Plasmonic Waves,” J. Electron. Mater. 46(6), 3654–3659 (2017).
[Crossref]

S. Su, W. Cao, W. Liu, Z. Lu, D. Zhu, J. Chao, L. Weng, L. Wang, C. Fan, and L. Wang, “Dual-mode electrochemical analysis of microRNA-21 using gold nanoparticle-decorated MoS2 nanosheet,” Biosens. Bioelectron. 94, 552–559 (2017).
[Crossref] [PubMed]

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

N. Michieli, R. Pilot, V. Russo, C. Scian, F. Todescato, R. Signorini, S. Agnoli, T. Cesca, R. Bozio, and G. Mattei, “Oxidation effects on the SERS response of silver nanoprism arrays,” RSC Advances 7(1), 369–378 (2017).
[Crossref]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

L. Hu, Y. J. Liu, Y. Han, P. Chen, C. Zhang, C. Li, Z. Lu, D. Luo, and S. Jiang, “Graphene oxide-decorated silver dendrites for high-performance surface-enhanced Raman scattering applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(16), 3908–3915 (2017).
[Crossref]

C. Li, C. Yang, S. Xu, C. Zhang, Z. Li, X. Liu, S. Jiang, Y. Huo, A. Liu, and B. Man, “Ag2O@ Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

2016 (5)

J. M. Romo-Herrera, A. L. González, L. Guerrini, F. R. Castiello, G. Alonso-Nuñez, O. E. Contreras, and R. A. Alvarez-Puebla, “A study of the depth and size of concave cube Au nanoparticles as highly sensitive SERS probes,” Nanoscale 8(13), 7326–7333 (2016).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

Y. Deng, M. Chen, J. Zhang, Z. Wang, W. Huang, Y. Zhao, J. P. Nshimiyimana, X. Hu, X. Chi, G. Hou, X. Zhang, Y. Guo, and L. Sun, “Thickness-dependent morphologies of Ag on n-layer MoS2 and its surface-enhanced Raman scattering,” Nano Res. 9(6), 1682–1688 (2016).
[Crossref]

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au–Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Z. Li, S. Jiang, S. Xu, C. Zhang, H. Qiu, C. Li, Y. Sheng, Y. Huo, C. Yang, and B. Man, “Few-layer MoS2-encapsulated Cu nanoparticle hybrids fabricated by two-step annealing process for surface enhanced Raman scattering,” Sens. Actuators B Chem. 230, 645–652 (2016).
[Crossref]

2015 (8)

Y. Zhang, M. Wang, E. Zhu, Y. Zheng, Y. Huang, and X. Huang, “Seedless Growth of Palladium Nanocrystals with Tunable Structures: From Tetrahedra to Nanosheets,” Nano Lett. 15(11), 7519–7525 (2015).
[Crossref] [PubMed]

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

C. Zhang, B. Man, S. Jiang, C. Yang, M. Liu, C. Chen, S. Xu, H. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

S. K. Vashist, E. M. Schneider, and J. H. Luong, “A rapid sandwich immunoassay for human fetuin A using agarose-3-aminopropyltriethoxysilane modified microtiter plate,” Anal. Chim. Acta 883, 74–80 (2015).
[Crossref] [PubMed]

H. Zhao, J. Jin, W. Tian, R. Li, Z. Yu, W. Song, Q. Cong, B. Zhao, and Y. Ozaki, “Three-dimensional superhydrophobic surface-enhanced Raman spectroscopy substrate for sensitive detection of pollutants in real environments,” J. Mater.Chen. A 3(8), 4330–4337 (2015).
[Crossref]

J. Lu, J. H. Lu, H. Liu, B. Liu, L. Gong, E. S. Tok, K. P. Loh, and C. H. Sow, “Microlandscaping of Au nanoparticles on few-layer MoS2 films for chemical sensing,” Small 11(15), 1792–1800 (2015).
[Crossref] [PubMed]

Y. Zheng, A. H. Soeriyadi, L. Rosa, S. H. Ng, U. Bach, and J. Justin Gooding, “Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection,” Nat. Commun. 6(1), 8797 (2015).
[Crossref] [PubMed]

2014 (4)

S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, C. Song, C. Fan, and L. Wang, “Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles,” ACS Appl. Mater. Interfaces 6(21), 18735–18741 (2014).
[Crossref] [PubMed]

J.-H. Lee, M.-H. You, G.-H. Kim, and J.-M. Nam, “Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes,” Nano Lett. 14(11), 6217–6225 (2014).
[Crossref] [PubMed]

Z. Dai, F. Mei, X. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. Guo, X. Zhao, W. Li, F. Ren, and C. Jiang, ““Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
[Crossref]

W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, and Z. L. Wang, “Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics,” Nature 514(7523), 470–474 (2014).
[Crossref] [PubMed]

2013 (4)

M. Fan, F.-J. Lai, H.-L. Chou, W.-T. Lu, B.-J. Hwang, and A. G. Brolo, “Surface-enhanced Raman scattering (SERS) from Au: Ag bimetallic nanoparticles: the effect of the molecular probe,” Chem. Sci. (Camb.) 4(1), 509–515 (2013).
[Crossref]

T. S. Sreeprasad, P. Nguyen, N. Kim, and V. Berry, “Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties,” Nano Lett. 13(9), 4434–4441 (2013).
[Crossref] [PubMed]

Y. Shi, J.-K. Huang, L. Jin, Y.-T. Hsu, S. F. Yu, L.-J. Li, and H. Y. Yang, “Selective decoration of Au nanoparticles on monolayer MoS2 single crystals,” Sci. Rep. 3(1), 1839 (2013).
[Crossref] [PubMed]

C. M. Aikens, L. R. Madison, and G. C. Schatz, “Raman spectroscopy: The effect of field gradient on SERS,” Nat. Photonics 7(7), 508–510 (2013).
[Crossref]

2012 (4)

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

B. Chakraborty, A. Bera, D. Muthu, S. Bhowmick, U. V. Waghmare, and A. Sood, “Symmetry-dependent phonon renormalization in monolayer MoS2 transistor,” Phys. Rev. B 85(16), 161403 (2012).
[Crossref]

H. I. Karunadasa, E. Montalvo, Y. Sun, M. Majda, J. R. Long, and C. J. Chang, “A molecular MoS2 edge site mimic for catalytic hydrogen generation,” Science 335(6069), 698–702 (2012).
[Crossref] [PubMed]

N. E. Mircescu, M. Oltean, V. Chiş, and N. Leopold, “FTIR, FT-Raman, SERS and DFT study on melamine,” Vib. Spectrosc. 62, 165–171 (2012).
[Crossref]

2009 (1)

2008 (2)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 601–626 (2008).
[Crossref] [PubMed]

Y. Yang, J. Shi, G. Kawamura, and M. Nogami, “Preparation of Au–Ag, Ag–Au core–shell bimetallic nanoparticles for surface-enhanced Raman scattering,” Scr. Mater. 58(10), 862–865 (2008).
[Crossref]

2006 (1)

M. J. Natan, “Surface enhanced Raman scattering,” Faraday Discuss. 132, 321–328 (2006).
[Crossref] [PubMed]

1997 (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

1977 (2)

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
[Crossref]

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. Inter. 84(1), 1–20 (1977).
[Crossref]

Agnoli, S.

N. Michieli, R. Pilot, V. Russo, C. Scian, F. Todescato, R. Signorini, S. Agnoli, T. Cesca, R. Bozio, and G. Mattei, “Oxidation effects on the SERS response of silver nanoprism arrays,” RSC Advances 7(1), 369–378 (2017).
[Crossref]

Aikens, C. M.

C. M. Aikens, L. R. Madison, and G. C. Schatz, “Raman spectroscopy: The effect of field gradient on SERS,” Nat. Photonics 7(7), 508–510 (2013).
[Crossref]

Albrecht, M. G.

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
[Crossref]

Alonso-Nuñez, G.

J. M. Romo-Herrera, A. L. González, L. Guerrini, F. R. Castiello, G. Alonso-Nuñez, O. E. Contreras, and R. A. Alvarez-Puebla, “A study of the depth and size of concave cube Au nanoparticles as highly sensitive SERS probes,” Nanoscale 8(13), 7326–7333 (2016).
[Crossref] [PubMed]

Alvarez-Puebla, R. A.

J. M. Romo-Herrera, A. L. González, L. Guerrini, F. R. Castiello, G. Alonso-Nuñez, O. E. Contreras, and R. A. Alvarez-Puebla, “A study of the depth and size of concave cube Au nanoparticles as highly sensitive SERS probes,” Nanoscale 8(13), 7326–7333 (2016).
[Crossref] [PubMed]

Bach, U.

Y. Zheng, A. H. Soeriyadi, L. Rosa, S. H. Ng, U. Bach, and J. Justin Gooding, “Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection,” Nat. Commun. 6(1), 8797 (2015).
[Crossref] [PubMed]

Bai, Y.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au–Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Bera, A.

B. Chakraborty, A. Bera, D. Muthu, S. Bhowmick, U. V. Waghmare, and A. Sood, “Symmetry-dependent phonon renormalization in monolayer MoS2 transistor,” Phys. Rev. B 85(16), 161403 (2012).
[Crossref]

Berry, V.

T. S. Sreeprasad, P. Nguyen, N. Kim, and V. Berry, “Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties,” Nano Lett. 13(9), 4434–4441 (2013).
[Crossref] [PubMed]

Bhowmick, S.

B. Chakraborty, A. Bera, D. Muthu, S. Bhowmick, U. V. Waghmare, and A. Sood, “Symmetry-dependent phonon renormalization in monolayer MoS2 transistor,” Phys. Rev. B 85(16), 161403 (2012).
[Crossref]

Bozio, R.

N. Michieli, R. Pilot, V. Russo, C. Scian, F. Todescato, R. Signorini, S. Agnoli, T. Cesca, R. Bozio, and G. Mattei, “Oxidation effects on the SERS response of silver nanoprism arrays,” RSC Advances 7(1), 369–378 (2017).
[Crossref]

Brolo, A. G.

M. Fan, F.-J. Lai, H.-L. Chou, W.-T. Lu, B.-J. Hwang, and A. G. Brolo, “Surface-enhanced Raman scattering (SERS) from Au: Ag bimetallic nanoparticles: the effect of the molecular probe,” Chem. Sci. (Camb.) 4(1), 509–515 (2013).
[Crossref]

Cao, W.

S. Su, W. Cao, W. Liu, Z. Lu, D. Zhu, J. Chao, L. Weng, L. Wang, C. Fan, and L. Wang, “Dual-mode electrochemical analysis of microRNA-21 using gold nanoparticle-decorated MoS2 nanosheet,” Biosens. Bioelectron. 94, 552–559 (2017).
[Crossref] [PubMed]

Castiello, F. R.

J. M. Romo-Herrera, A. L. González, L. Guerrini, F. R. Castiello, G. Alonso-Nuñez, O. E. Contreras, and R. A. Alvarez-Puebla, “A study of the depth and size of concave cube Au nanoparticles as highly sensitive SERS probes,” Nanoscale 8(13), 7326–7333 (2016).
[Crossref] [PubMed]

Cesca, T.

N. Michieli, R. Pilot, V. Russo, C. Scian, F. Todescato, R. Signorini, S. Agnoli, T. Cesca, R. Bozio, and G. Mattei, “Oxidation effects on the SERS response of silver nanoprism arrays,” RSC Advances 7(1), 369–378 (2017).
[Crossref]

Chakraborty, B.

B. Chakraborty, A. Bera, D. Muthu, S. Bhowmick, U. V. Waghmare, and A. Sood, “Symmetry-dependent phonon renormalization in monolayer MoS2 transistor,” Phys. Rev. B 85(16), 161403 (2012).
[Crossref]

Chang, C. J.

H. I. Karunadasa, E. Montalvo, Y. Sun, M. Majda, J. R. Long, and C. J. Chang, “A molecular MoS2 edge site mimic for catalytic hydrogen generation,” Science 335(6069), 698–702 (2012).
[Crossref] [PubMed]

Chao, J.

S. Su, W. Cao, W. Liu, Z. Lu, D. Zhu, J. Chao, L. Weng, L. Wang, C. Fan, and L. Wang, “Dual-mode electrochemical analysis of microRNA-21 using gold nanoparticle-decorated MoS2 nanosheet,” Biosens. Bioelectron. 94, 552–559 (2017).
[Crossref] [PubMed]

S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, C. Song, C. Fan, and L. Wang, “Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles,” ACS Appl. Mater. Interfaces 6(21), 18735–18741 (2014).
[Crossref] [PubMed]

Chen, C.

C. Zhang, B. Man, S. Jiang, C. Yang, M. Liu, C. Chen, S. Xu, H. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

Chen, M.

Y. Deng, M. Chen, J. Zhang, Z. Wang, W. Huang, Y. Zhao, J. P. Nshimiyimana, X. Hu, X. Chi, G. Hou, X. Zhang, Y. Guo, and L. Sun, “Thickness-dependent morphologies of Ag on n-layer MoS2 and its surface-enhanced Raman scattering,” Nano Res. 9(6), 1682–1688 (2016).
[Crossref]

Chen, P.

L. Hu, Y. J. Liu, Y. Han, P. Chen, C. Zhang, C. Li, Z. Lu, D. Luo, and S. Jiang, “Graphene oxide-decorated silver dendrites for high-performance surface-enhanced Raman scattering applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(16), 3908–3915 (2017).
[Crossref]

Chenet, D.

W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, and Z. L. Wang, “Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics,” Nature 514(7523), 470–474 (2014).
[Crossref] [PubMed]

Chi, X.

Y. Deng, M. Chen, J. Zhang, Z. Wang, W. Huang, Y. Zhao, J. P. Nshimiyimana, X. Hu, X. Chi, G. Hou, X. Zhang, Y. Guo, and L. Sun, “Thickness-dependent morphologies of Ag on n-layer MoS2 and its surface-enhanced Raman scattering,” Nano Res. 9(6), 1682–1688 (2016).
[Crossref]

Chis, V.

N. E. Mircescu, M. Oltean, V. Chiş, and N. Leopold, “FTIR, FT-Raman, SERS and DFT study on melamine,” Vib. Spectrosc. 62, 165–171 (2012).
[Crossref]

Chou, H.-L.

M. Fan, F.-J. Lai, H.-L. Chou, W.-T. Lu, B.-J. Hwang, and A. G. Brolo, “Surface-enhanced Raman scattering (SERS) from Au: Ag bimetallic nanoparticles: the effect of the molecular probe,” Chem. Sci. (Camb.) 4(1), 509–515 (2013).
[Crossref]

Cong, Q.

H. Zhao, J. Jin, W. Tian, R. Li, Z. Yu, W. Song, Q. Cong, B. Zhao, and Y. Ozaki, “Three-dimensional superhydrophobic surface-enhanced Raman spectroscopy substrate for sensitive detection of pollutants in real environments,” J. Mater.Chen. A 3(8), 4330–4337 (2015).
[Crossref]

Contreras, O. E.

J. M. Romo-Herrera, A. L. González, L. Guerrini, F. R. Castiello, G. Alonso-Nuñez, O. E. Contreras, and R. A. Alvarez-Puebla, “A study of the depth and size of concave cube Au nanoparticles as highly sensitive SERS probes,” Nanoscale 8(13), 7326–7333 (2016).
[Crossref] [PubMed]

Creighton, J. A.

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
[Crossref]

Dai, Z.

Z. Dai, F. Mei, X. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. Guo, X. Zhao, W. Li, F. Ren, and C. Jiang, ““Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
[Crossref]

Deng, Y.

Y. Deng, M. Chen, J. Zhang, Z. Wang, W. Huang, Y. Zhao, J. P. Nshimiyimana, X. Hu, X. Chi, G. Hou, X. Zhang, Y. Guo, and L. Sun, “Thickness-dependent morphologies of Ag on n-layer MoS2 and its surface-enhanced Raman scattering,” Nano Res. 9(6), 1682–1688 (2016).
[Crossref]

Dieringer, J. A.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 601–626 (2008).
[Crossref] [PubMed]

Dowrey, A. E.

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Fan, C.

S. Su, W. Cao, W. Liu, Z. Lu, D. Zhu, J. Chao, L. Weng, L. Wang, C. Fan, and L. Wang, “Dual-mode electrochemical analysis of microRNA-21 using gold nanoparticle-decorated MoS2 nanosheet,” Biosens. Bioelectron. 94, 552–559 (2017).
[Crossref] [PubMed]

S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, C. Song, C. Fan, and L. Wang, “Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles,” ACS Appl. Mater. Interfaces 6(21), 18735–18741 (2014).
[Crossref] [PubMed]

Fan, M.

M. Fan, F.-J. Lai, H.-L. Chou, W.-T. Lu, B.-J. Hwang, and A. G. Brolo, “Surface-enhanced Raman scattering (SERS) from Au: Ag bimetallic nanoparticles: the effect of the molecular probe,” Chem. Sci. (Camb.) 4(1), 509–515 (2013).
[Crossref]

Fan, Q.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au–Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Frontiera, R. R.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Fu, L.

Z. Dai, F. Mei, X. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. Guo, X. Zhao, W. Li, F. Ren, and C. Jiang, ““Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
[Crossref]

Gao, C.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au–Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Gao, S.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Gao, S. S.

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

Gao, X.

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

Gao, X. G.

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

Gong, L.

J. Lu, J. H. Lu, H. Liu, B. Liu, L. Gong, E. S. Tok, K. P. Loh, and C. H. Sow, “Microlandscaping of Au nanoparticles on few-layer MoS2 films for chemical sensing,” Small 11(15), 1792–1800 (2015).
[Crossref] [PubMed]

González, A. L.

J. M. Romo-Herrera, A. L. González, L. Guerrini, F. R. Castiello, G. Alonso-Nuñez, O. E. Contreras, and R. A. Alvarez-Puebla, “A study of the depth and size of concave cube Au nanoparticles as highly sensitive SERS probes,” Nanoscale 8(13), 7326–7333 (2016).
[Crossref] [PubMed]

Grothaus, J. T.

Guerrini, L.

J. M. Romo-Herrera, A. L. González, L. Guerrini, F. R. Castiello, G. Alonso-Nuñez, O. E. Contreras, and R. A. Alvarez-Puebla, “A study of the depth and size of concave cube Au nanoparticles as highly sensitive SERS probes,” Nanoscale 8(13), 7326–7333 (2016).
[Crossref] [PubMed]

Guo, S.

Z. Dai, F. Mei, X. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. Guo, X. Zhao, W. Li, F. Ren, and C. Jiang, ““Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
[Crossref]

Guo, Y.

Y. Deng, M. Chen, J. Zhang, Z. Wang, W. Huang, Y. Zhao, J. P. Nshimiyimana, X. Hu, X. Chi, G. Hou, X. Zhang, Y. Guo, and L. Sun, “Thickness-dependent morphologies of Ag on n-layer MoS2 and its surface-enhanced Raman scattering,” Nano Res. 9(6), 1682–1688 (2016).
[Crossref]

Han, Y.

L. Hu, Y. J. Liu, Y. Han, P. Chen, C. Zhang, C. Li, Z. Lu, D. Luo, and S. Jiang, “Graphene oxide-decorated silver dendrites for high-performance surface-enhanced Raman scattering applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(16), 3908–3915 (2017).
[Crossref]

Hao, Y.

W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, and Z. L. Wang, “Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics,” Nature 514(7523), 470–474 (2014).
[Crossref] [PubMed]

He, Y.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

Heinz, T. F.

W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, and Z. L. Wang, “Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics,” Nature 514(7523), 470–474 (2014).
[Crossref] [PubMed]

Henry, A.-I.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Hone, J.

W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, and Z. L. Wang, “Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics,” Nature 514(7523), 470–474 (2014).
[Crossref] [PubMed]

Hou, G.

Y. Deng, M. Chen, J. Zhang, Z. Wang, W. Huang, Y. Zhao, J. P. Nshimiyimana, X. Hu, X. Chi, G. Hou, X. Zhang, Y. Guo, and L. Sun, “Thickness-dependent morphologies of Ag on n-layer MoS2 and its surface-enhanced Raman scattering,” Nano Res. 9(6), 1682–1688 (2016).
[Crossref]

Hsu, Y.-T.

Y. Shi, J.-K. Huang, L. Jin, Y.-T. Hsu, S. F. Yu, L.-J. Li, and H. Y. Yang, “Selective decoration of Au nanoparticles on monolayer MoS2 single crystals,” Sci. Rep. 3(1), 1839 (2013).
[Crossref] [PubMed]

Hu, L.

L. Hu, Y. J. Liu, Y. Han, P. Chen, C. Zhang, C. Li, Z. Lu, D. Luo, and S. Jiang, “Graphene oxide-decorated silver dendrites for high-performance surface-enhanced Raman scattering applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(16), 3908–3915 (2017).
[Crossref]

Hu, X.

Y. Deng, M. Chen, J. Zhang, Z. Wang, W. Huang, Y. Zhao, J. P. Nshimiyimana, X. Hu, X. Chi, G. Hou, X. Zhang, Y. Guo, and L. Sun, “Thickness-dependent morphologies of Ag on n-layer MoS2 and its surface-enhanced Raman scattering,” Nano Res. 9(6), 1682–1688 (2016).
[Crossref]

Huang, J.-K.

Y. Shi, J.-K. Huang, L. Jin, Y.-T. Hsu, S. F. Yu, L.-J. Li, and H. Y. Yang, “Selective decoration of Au nanoparticles on monolayer MoS2 single crystals,” Sci. Rep. 3(1), 1839 (2013).
[Crossref] [PubMed]

Huang, W.

Y. Deng, M. Chen, J. Zhang, Z. Wang, W. Huang, Y. Zhao, J. P. Nshimiyimana, X. Hu, X. Chi, G. Hou, X. Zhang, Y. Guo, and L. Sun, “Thickness-dependent morphologies of Ag on n-layer MoS2 and its surface-enhanced Raman scattering,” Nano Res. 9(6), 1682–1688 (2016).
[Crossref]

Huang, X.

Y. Zhang, M. Wang, E. Zhu, Y. Zheng, Y. Huang, and X. Huang, “Seedless Growth of Palladium Nanocrystals with Tunable Structures: From Tetrahedra to Nanosheets,” Nano Lett. 15(11), 7519–7525 (2015).
[Crossref] [PubMed]

Huang, Y.

Y. Zhang, M. Wang, E. Zhu, Y. Zheng, Y. Huang, and X. Huang, “Seedless Growth of Palladium Nanocrystals with Tunable Structures: From Tetrahedra to Nanosheets,” Nano Lett. 15(11), 7519–7525 (2015).
[Crossref] [PubMed]

Huo, Y.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. Li, C. Zhang, S. Xu, Y. Huo, S. Jiang, C. Yang, Z. Li, X. Zhao, S. Zhang, and B. Man, “Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots,” Sens. Actuators B Chem. 263, 408–416 (2018).
[Crossref]

C. Li, C. Yang, S. Xu, C. Zhang, Z. Li, X. Liu, S. Jiang, Y. Huo, A. Liu, and B. Man, “Ag2O@ Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

Z. Li, S. Jiang, S. Xu, C. Zhang, H. Qiu, C. Li, Y. Sheng, Y. Huo, C. Yang, and B. Man, “Few-layer MoS2-encapsulated Cu nanoparticle hybrids fabricated by two-step annealing process for surface enhanced Raman scattering,” Sens. Actuators B Chem. 230, 645–652 (2016).
[Crossref]

Huo, Y. Y.

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Hwang, B.-J.

M. Fan, F.-J. Lai, H.-L. Chou, W.-T. Lu, B.-J. Hwang, and A. G. Brolo, “Surface-enhanced Raman scattering (SERS) from Au: Ag bimetallic nanoparticles: the effect of the molecular probe,” Chem. Sci. (Camb.) 4(1), 509–515 (2013).
[Crossref]

Jeanmaire, D. L.

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. Inter. 84(1), 1–20 (1977).
[Crossref]

Jiang, C.

Z. Dai, F. Mei, X. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. Guo, X. Zhao, W. Li, F. Ren, and C. Jiang, ““Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
[Crossref]

Jiang, S.

C. Li, C. Zhang, S. Xu, Y. Huo, S. Jiang, C. Yang, Z. Li, X. Zhao, S. Zhang, and B. Man, “Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots,” Sens. Actuators B Chem. 263, 408–416 (2018).
[Crossref]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

C. Li, C. Yang, S. Xu, C. Zhang, Z. Li, X. Liu, S. Jiang, Y. Huo, A. Liu, and B. Man, “Ag2O@ Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

L. Hu, Y. J. Liu, Y. Han, P. Chen, C. Zhang, C. Li, Z. Lu, D. Luo, and S. Jiang, “Graphene oxide-decorated silver dendrites for high-performance surface-enhanced Raman scattering applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(16), 3908–3915 (2017).
[Crossref]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

Z. Li, S. Jiang, S. Xu, C. Zhang, H. Qiu, C. Li, Y. Sheng, Y. Huo, C. Yang, and B. Man, “Few-layer MoS2-encapsulated Cu nanoparticle hybrids fabricated by two-step annealing process for surface enhanced Raman scattering,” Sens. Actuators B Chem. 230, 645–652 (2016).
[Crossref]

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

C. Zhang, B. Man, S. Jiang, C. Yang, M. Liu, C. Chen, S. Xu, H. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

Jiang, S. Z.

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Jin, J.

H. Zhao, J. Jin, W. Tian, R. Li, Z. Yu, W. Song, Q. Cong, B. Zhao, and Y. Ozaki, “Three-dimensional superhydrophobic surface-enhanced Raman spectroscopy substrate for sensitive detection of pollutants in real environments,” J. Mater.Chen. A 3(8), 4330–4337 (2015).
[Crossref]

Jin, L.

Y. Shi, J.-K. Huang, L. Jin, Y.-T. Hsu, S. F. Yu, L.-J. Li, and H. Y. Yang, “Selective decoration of Au nanoparticles on monolayer MoS2 single crystals,” Sci. Rep. 3(1), 1839 (2013).
[Crossref] [PubMed]

Ju, H.

N. H. T. Tran, B. T. Phan, W. J. Yoon, S. Khym, and H. Ju, “Dielectric Metal-Based Multilayers for Surface Plasmon Resonance with Enhanced Quality Factor of the Plasmonic Waves,” J. Electron. Mater. 46(6), 3654–3659 (2017).
[Crossref]

Justin Gooding, J.

Y. Zheng, A. H. Soeriyadi, L. Rosa, S. H. Ng, U. Bach, and J. Justin Gooding, “Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection,” Nat. Commun. 6(1), 8797 (2015).
[Crossref] [PubMed]

Karunadasa, H. I.

H. I. Karunadasa, E. Montalvo, Y. Sun, M. Majda, J. R. Long, and C. J. Chang, “A molecular MoS2 edge site mimic for catalytic hydrogen generation,” Science 335(6069), 698–702 (2012).
[Crossref] [PubMed]

Kawamura, G.

Y. Yang, J. Shi, G. Kawamura, and M. Nogami, “Preparation of Au–Ag, Ag–Au core–shell bimetallic nanoparticles for surface-enhanced Raman scattering,” Scr. Mater. 58(10), 862–865 (2008).
[Crossref]

Khym, S.

N. H. T. Tran, B. T. Phan, W. J. Yoon, S. Khym, and H. Ju, “Dielectric Metal-Based Multilayers for Surface Plasmon Resonance with Enhanced Quality Factor of the Plasmonic Waves,” J. Electron. Mater. 46(6), 3654–3659 (2017).
[Crossref]

Kim, G.-H.

J.-H. Lee, M.-H. You, G.-H. Kim, and J.-M. Nam, “Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes,” Nano Lett. 14(11), 6217–6225 (2014).
[Crossref] [PubMed]

Kim, N.

T. S. Sreeprasad, P. Nguyen, N. Kim, and V. Berry, “Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties,” Nano Lett. 13(9), 4434–4441 (2013).
[Crossref] [PubMed]

Lai, F.-J.

M. Fan, F.-J. Lai, H.-L. Chou, W.-T. Lu, B.-J. Hwang, and A. G. Brolo, “Surface-enhanced Raman scattering (SERS) from Au: Ag bimetallic nanoparticles: the effect of the molecular probe,” Chem. Sci. (Camb.) 4(1), 509–515 (2013).
[Crossref]

Lee, J.-H.

J.-H. Lee, M.-H. You, G.-H. Kim, and J.-M. Nam, “Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes,” Nano Lett. 14(11), 6217–6225 (2014).
[Crossref] [PubMed]

Leopold, N.

N. E. Mircescu, M. Oltean, V. Chiş, and N. Leopold, “FTIR, FT-Raman, SERS and DFT study on melamine,” Vib. Spectrosc. 62, 165–171 (2012).
[Crossref]

Li, C.

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

C. Li, C. Zhang, S. Xu, Y. Huo, S. Jiang, C. Yang, Z. Li, X. Zhao, S. Zhang, and B. Man, “Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots,” Sens. Actuators B Chem. 263, 408–416 (2018).
[Crossref]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. Li, C. Yang, S. Xu, C. Zhang, Z. Li, X. Liu, S. Jiang, Y. Huo, A. Liu, and B. Man, “Ag2O@ Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

L. Hu, Y. J. Liu, Y. Han, P. Chen, C. Zhang, C. Li, Z. Lu, D. Luo, and S. Jiang, “Graphene oxide-decorated silver dendrites for high-performance surface-enhanced Raman scattering applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(16), 3908–3915 (2017).
[Crossref]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

Z. Li, S. Jiang, S. Xu, C. Zhang, H. Qiu, C. Li, Y. Sheng, Y. Huo, C. Yang, and B. Man, “Few-layer MoS2-encapsulated Cu nanoparticle hybrids fabricated by two-step annealing process for surface enhanced Raman scattering,” Sens. Actuators B Chem. 230, 645–652 (2016).
[Crossref]

Li, C. H.

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

Li, H.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Li, L.-J.

Y. Shi, J.-K. Huang, L. Jin, Y.-T. Hsu, S. F. Yu, L.-J. Li, and H. Y. Yang, “Selective decoration of Au nanoparticles on monolayer MoS2 single crystals,” Sci. Rep. 3(1), 1839 (2013).
[Crossref] [PubMed]

Li, R.

H. Zhao, J. Jin, W. Tian, R. Li, Z. Yu, W. Song, Q. Cong, B. Zhao, and Y. Ozaki, “Three-dimensional superhydrophobic surface-enhanced Raman spectroscopy substrate for sensitive detection of pollutants in real environments,” J. Mater.Chen. A 3(8), 4330–4337 (2015).
[Crossref]

Li, W.

Z. Dai, F. Mei, X. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. Guo, X. Zhao, W. Li, F. Ren, and C. Jiang, ““Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
[Crossref]

Li, Y.

W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, and Z. L. Wang, “Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics,” Nature 514(7523), 470–474 (2014).
[Crossref] [PubMed]

Li, Z.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. Li, C. Zhang, S. Xu, Y. Huo, S. Jiang, C. Yang, Z. Li, X. Zhao, S. Zhang, and B. Man, “Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots,” Sens. Actuators B Chem. 263, 408–416 (2018).
[Crossref]

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

C. Li, C. Yang, S. Xu, C. Zhang, Z. Li, X. Liu, S. Jiang, Y. Huo, A. Liu, and B. Man, “Ag2O@ Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

Z. Li, S. Jiang, S. Xu, C. Zhang, H. Qiu, C. Li, Y. Sheng, Y. Huo, C. Yang, and B. Man, “Few-layer MoS2-encapsulated Cu nanoparticle hybrids fabricated by two-step annealing process for surface enhanced Raman scattering,” Sens. Actuators B Chem. 230, 645–652 (2016).
[Crossref]

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

C. Zhang, B. Man, S. Jiang, C. Yang, M. Liu, C. Chen, S. Xu, H. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Liang, X.

X. Liang, X. J. Zhang, T. T. You, N. Yang, G. S. Wang, and P. G. Yin, “Three-dimensional MoS2-NS@ Au-NPs hybrids as SERS sensor for quantitative and ultrasensitive detection of melamine in milk,” J. Raman Spectrosc. 49(2), 245–255 (2018).
[Crossref]

Liao, L.

Z. Dai, F. Mei, X. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. Guo, X. Zhao, W. Li, F. Ren, and C. Jiang, ““Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
[Crossref]

Lin, L.

W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, and Z. L. Wang, “Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics,” Nature 514(7523), 470–474 (2014).
[Crossref] [PubMed]

Liu, A.

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. Li, C. Yang, S. Xu, C. Zhang, Z. Li, X. Liu, S. Jiang, Y. Huo, A. Liu, and B. Man, “Ag2O@ Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

Liu, A. H.

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Liu, B.

J. Lu, J. H. Lu, H. Liu, B. Liu, L. Gong, E. S. Tok, K. P. Loh, and C. H. Sow, “Microlandscaping of Au nanoparticles on few-layer MoS2 films for chemical sensing,” Small 11(15), 1792–1800 (2015).
[Crossref] [PubMed]

Liu, H.

J. Lu, J. H. Lu, H. Liu, B. Liu, L. Gong, E. S. Tok, K. P. Loh, and C. H. Sow, “Microlandscaping of Au nanoparticles on few-layer MoS2 films for chemical sensing,” Small 11(15), 1792–1800 (2015).
[Crossref] [PubMed]

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Liu, K.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au–Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Liu, M.

C. Zhang, B. Man, S. Jiang, C. Yang, M. Liu, C. Chen, S. Xu, H. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

Liu, W.

S. Su, W. Cao, W. Liu, Z. Lu, D. Zhu, J. Chao, L. Weng, L. Wang, C. Fan, and L. Wang, “Dual-mode electrochemical analysis of microRNA-21 using gold nanoparticle-decorated MoS2 nanosheet,” Biosens. Bioelectron. 94, 552–559 (2017).
[Crossref] [PubMed]

Liu, X.

C. Li, C. Yang, S. Xu, C. Zhang, Z. Li, X. Liu, S. Jiang, Y. Huo, A. Liu, and B. Man, “Ag2O@ Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, C. Song, C. Fan, and L. Wang, “Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles,” ACS Appl. Mater. Interfaces 6(21), 18735–18741 (2014).
[Crossref] [PubMed]

Liu, X. Y.

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Liu, Y. J.

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

L. Hu, Y. J. Liu, Y. Han, P. Chen, C. Zhang, C. Li, Z. Lu, D. Luo, and S. Jiang, “Graphene oxide-decorated silver dendrites for high-performance surface-enhanced Raman scattering applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(16), 3908–3915 (2017).
[Crossref]

Loh, K. P.

J. Lu, J. H. Lu, H. Liu, B. Liu, L. Gong, E. S. Tok, K. P. Loh, and C. H. Sow, “Microlandscaping of Au nanoparticles on few-layer MoS2 films for chemical sensing,” Small 11(15), 1792–1800 (2015).
[Crossref] [PubMed]

Long, J. R.

H. I. Karunadasa, E. Montalvo, Y. Sun, M. Majda, J. R. Long, and C. J. Chang, “A molecular MoS2 edge site mimic for catalytic hydrogen generation,” Science 335(6069), 698–702 (2012).
[Crossref] [PubMed]

Lu, J.

J. Lu, J. H. Lu, H. Liu, B. Liu, L. Gong, E. S. Tok, K. P. Loh, and C. H. Sow, “Microlandscaping of Au nanoparticles on few-layer MoS2 films for chemical sensing,” Small 11(15), 1792–1800 (2015).
[Crossref] [PubMed]

Lu, J. H.

J. Lu, J. H. Lu, H. Liu, B. Liu, L. Gong, E. S. Tok, K. P. Loh, and C. H. Sow, “Microlandscaping of Au nanoparticles on few-layer MoS2 films for chemical sensing,” Small 11(15), 1792–1800 (2015).
[Crossref] [PubMed]

Lu, W.-T.

M. Fan, F.-J. Lai, H.-L. Chou, W.-T. Lu, B.-J. Hwang, and A. G. Brolo, “Surface-enhanced Raman scattering (SERS) from Au: Ag bimetallic nanoparticles: the effect of the molecular probe,” Chem. Sci. (Camb.) 4(1), 509–515 (2013).
[Crossref]

Lu, Z.

L. Hu, Y. J. Liu, Y. Han, P. Chen, C. Zhang, C. Li, Z. Lu, D. Luo, and S. Jiang, “Graphene oxide-decorated silver dendrites for high-performance surface-enhanced Raman scattering applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(16), 3908–3915 (2017).
[Crossref]

S. Su, W. Cao, W. Liu, Z. Lu, D. Zhu, J. Chao, L. Weng, L. Wang, C. Fan, and L. Wang, “Dual-mode electrochemical analysis of microRNA-21 using gold nanoparticle-decorated MoS2 nanosheet,” Biosens. Bioelectron. 94, 552–559 (2017).
[Crossref] [PubMed]

Luo, D.

L. Hu, Y. J. Liu, Y. Han, P. Chen, C. Zhang, C. Li, Z. Lu, D. Luo, and S. Jiang, “Graphene oxide-decorated silver dendrites for high-performance surface-enhanced Raman scattering applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(16), 3908–3915 (2017).
[Crossref]

Luong, J. H.

S. K. Vashist, E. M. Schneider, and J. H. Luong, “A rapid sandwich immunoassay for human fetuin A using agarose-3-aminopropyltriethoxysilane modified microtiter plate,” Anal. Chim. Acta 883, 74–80 (2015).
[Crossref] [PubMed]

Madison, L. R.

C. M. Aikens, L. R. Madison, and G. C. Schatz, “Raman spectroscopy: The effect of field gradient on SERS,” Nat. Photonics 7(7), 508–510 (2013).
[Crossref]

Majda, M.

H. I. Karunadasa, E. Montalvo, Y. Sun, M. Majda, J. R. Long, and C. J. Chang, “A molecular MoS2 edge site mimic for catalytic hydrogen generation,” Science 335(6069), 698–702 (2012).
[Crossref] [PubMed]

Man, B.

C. Li, C. Zhang, S. Xu, Y. Huo, S. Jiang, C. Yang, Z. Li, X. Zhao, S. Zhang, and B. Man, “Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots,” Sens. Actuators B Chem. 263, 408–416 (2018).
[Crossref]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

C. Li, C. Yang, S. Xu, C. Zhang, Z. Li, X. Liu, S. Jiang, Y. Huo, A. Liu, and B. Man, “Ag2O@ Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

Z. Li, S. Jiang, S. Xu, C. Zhang, H. Qiu, C. Li, Y. Sheng, Y. Huo, C. Yang, and B. Man, “Few-layer MoS2-encapsulated Cu nanoparticle hybrids fabricated by two-step annealing process for surface enhanced Raman scattering,” Sens. Actuators B Chem. 230, 645–652 (2016).
[Crossref]

C. Zhang, B. Man, S. Jiang, C. Yang, M. Liu, C. Chen, S. Xu, H. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Man, B. Y.

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Marcott, C.

Margalith, E.

Mattei, G.

N. Michieli, R. Pilot, V. Russo, C. Scian, F. Todescato, R. Signorini, S. Agnoli, T. Cesca, R. Bozio, and G. Mattei, “Oxidation effects on the SERS response of silver nanoprism arrays,” RSC Advances 7(1), 369–378 (2017).
[Crossref]

Mei, F.

Z. Dai, F. Mei, X. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. Guo, X. Zhao, W. Li, F. Ren, and C. Jiang, ““Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
[Crossref]

Michieli, N.

N. Michieli, R. Pilot, V. Russo, C. Scian, F. Todescato, R. Signorini, S. Agnoli, T. Cesca, R. Bozio, and G. Mattei, “Oxidation effects on the SERS response of silver nanoprism arrays,” RSC Advances 7(1), 369–378 (2017).
[Crossref]

Mircescu, N. E.

N. E. Mircescu, M. Oltean, V. Chiş, and N. Leopold, “FTIR, FT-Raman, SERS and DFT study on melamine,” Vib. Spectrosc. 62, 165–171 (2012).
[Crossref]

Montalvo, E.

H. I. Karunadasa, E. Montalvo, Y. Sun, M. Majda, J. R. Long, and C. J. Chang, “A molecular MoS2 edge site mimic for catalytic hydrogen generation,” Science 335(6069), 698–702 (2012).
[Crossref] [PubMed]

Muthu, D.

B. Chakraborty, A. Bera, D. Muthu, S. Bhowmick, U. V. Waghmare, and A. Sood, “Symmetry-dependent phonon renormalization in monolayer MoS2 transistor,” Phys. Rev. B 85(16), 161403 (2012).
[Crossref]

Nam, J.-M.

J.-H. Lee, M.-H. You, G.-H. Kim, and J.-M. Nam, “Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes,” Nano Lett. 14(11), 6217–6225 (2014).
[Crossref] [PubMed]

Natan, M. J.

M. J. Natan, “Surface enhanced Raman scattering,” Faraday Discuss. 132, 321–328 (2006).
[Crossref] [PubMed]

Ng, S. H.

Y. Zheng, A. H. Soeriyadi, L. Rosa, S. H. Ng, U. Bach, and J. Justin Gooding, “Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection,” Nat. Commun. 6(1), 8797 (2015).
[Crossref] [PubMed]

Nguyen, L.

Nguyen, P.

T. S. Sreeprasad, P. Nguyen, N. Kim, and V. Berry, “Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties,” Nano Lett. 13(9), 4434–4441 (2013).
[Crossref] [PubMed]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Ning, T.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

Niu, S.

W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, and Z. L. Wang, “Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics,” Nature 514(7523), 470–474 (2014).
[Crossref] [PubMed]

Noda, I.

Nogami, M.

Y. Yang, J. Shi, G. Kawamura, and M. Nogami, “Preparation of Au–Ag, Ag–Au core–shell bimetallic nanoparticles for surface-enhanced Raman scattering,” Scr. Mater. 58(10), 862–865 (2008).
[Crossref]

Nshimiyimana, J. P.

Y. Deng, M. Chen, J. Zhang, Z. Wang, W. Huang, Y. Zhao, J. P. Nshimiyimana, X. Hu, X. Chi, G. Hou, X. Zhang, Y. Guo, and L. Sun, “Thickness-dependent morphologies of Ag on n-layer MoS2 and its surface-enhanced Raman scattering,” Nano Res. 9(6), 1682–1688 (2016).
[Crossref]

Oertel, D. C.

Oltean, M.

N. E. Mircescu, M. Oltean, V. Chiş, and N. Leopold, “FTIR, FT-Raman, SERS and DFT study on melamine,” Vib. Spectrosc. 62, 165–171 (2012).
[Crossref]

Ozaki, Y.

H. Zhao, J. Jin, W. Tian, R. Li, Z. Yu, W. Song, Q. Cong, B. Zhao, and Y. Ozaki, “Three-dimensional superhydrophobic surface-enhanced Raman spectroscopy substrate for sensitive detection of pollutants in real environments,” J. Mater.Chen. A 3(8), 4330–4337 (2015).
[Crossref]

Phan, B. T.

N. H. T. Tran, B. T. Phan, W. J. Yoon, S. Khym, and H. Ju, “Dielectric Metal-Based Multilayers for Surface Plasmon Resonance with Enhanced Quality Factor of the Plasmonic Waves,” J. Electron. Mater. 46(6), 3654–3659 (2017).
[Crossref]

Pilot, R.

N. Michieli, R. Pilot, V. Russo, C. Scian, F. Todescato, R. Signorini, S. Agnoli, T. Cesca, R. Bozio, and G. Mattei, “Oxidation effects on the SERS response of silver nanoprism arrays,” RSC Advances 7(1), 369–378 (2017).
[Crossref]

Qiu, H.

Z. Li, S. Jiang, S. Xu, C. Zhang, H. Qiu, C. Li, Y. Sheng, Y. Huo, C. Yang, and B. Man, “Few-layer MoS2-encapsulated Cu nanoparticle hybrids fabricated by two-step annealing process for surface enhanced Raman scattering,” Sens. Actuators B Chem. 230, 645–652 (2016).
[Crossref]

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

C. Zhang, B. Man, S. Jiang, C. Yang, M. Liu, C. Chen, S. Xu, H. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

Ren, F.

Z. Dai, F. Mei, X. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. Guo, X. Zhao, W. Li, F. Ren, and C. Jiang, ““Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
[Crossref]

Ringe, E.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Romo-Herrera, J. M.

J. M. Romo-Herrera, A. L. González, L. Guerrini, F. R. Castiello, G. Alonso-Nuñez, O. E. Contreras, and R. A. Alvarez-Puebla, “A study of the depth and size of concave cube Au nanoparticles as highly sensitive SERS probes,” Nanoscale 8(13), 7326–7333 (2016).
[Crossref] [PubMed]

Rosa, L.

Y. Zheng, A. H. Soeriyadi, L. Rosa, S. H. Ng, U. Bach, and J. Justin Gooding, “Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection,” Nat. Commun. 6(1), 8797 (2015).
[Crossref] [PubMed]

Russo, V.

N. Michieli, R. Pilot, V. Russo, C. Scian, F. Todescato, R. Signorini, S. Agnoli, T. Cesca, R. Bozio, and G. Mattei, “Oxidation effects on the SERS response of silver nanoprism arrays,” RSC Advances 7(1), 369–378 (2017).
[Crossref]

Schatz, G. C.

C. M. Aikens, L. R. Madison, and G. C. Schatz, “Raman spectroscopy: The effect of field gradient on SERS,” Nat. Photonics 7(7), 508–510 (2013).
[Crossref]

Schneider, E. M.

S. K. Vashist, E. M. Schneider, and J. H. Luong, “A rapid sandwich immunoassay for human fetuin A using agarose-3-aminopropyltriethoxysilane modified microtiter plate,” Anal. Chim. Acta 883, 74–80 (2015).
[Crossref] [PubMed]

Scian, C.

N. Michieli, R. Pilot, V. Russo, C. Scian, F. Todescato, R. Signorini, S. Agnoli, T. Cesca, R. Bozio, and G. Mattei, “Oxidation effects on the SERS response of silver nanoprism arrays,” RSC Advances 7(1), 369–378 (2017).
[Crossref]

Shah, N. C.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 601–626 (2008).
[Crossref] [PubMed]

Sharma, B.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Sheng, Y.

Z. Li, S. Jiang, S. Xu, C. Zhang, H. Qiu, C. Li, Y. Sheng, Y. Huo, C. Yang, and B. Man, “Few-layer MoS2-encapsulated Cu nanoparticle hybrids fabricated by two-step annealing process for surface enhanced Raman scattering,” Sens. Actuators B Chem. 230, 645–652 (2016).
[Crossref]

Shi, J.

Y. Yang, J. Shi, G. Kawamura, and M. Nogami, “Preparation of Au–Ag, Ag–Au core–shell bimetallic nanoparticles for surface-enhanced Raman scattering,” Scr. Mater. 58(10), 862–865 (2008).
[Crossref]

Shi, Y.

Y. Shi, J.-K. Huang, L. Jin, Y.-T. Hsu, S. F. Yu, L.-J. Li, and H. Y. Yang, “Selective decoration of Au nanoparticles on monolayer MoS2 single crystals,” Sci. Rep. 3(1), 1839 (2013).
[Crossref] [PubMed]

Signorini, R.

N. Michieli, R. Pilot, V. Russo, C. Scian, F. Todescato, R. Signorini, S. Agnoli, T. Cesca, R. Bozio, and G. Mattei, “Oxidation effects on the SERS response of silver nanoprism arrays,” RSC Advances 7(1), 369–378 (2017).
[Crossref]

Soeriyadi, A. H.

Y. Zheng, A. H. Soeriyadi, L. Rosa, S. H. Ng, U. Bach, and J. Justin Gooding, “Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection,” Nat. Commun. 6(1), 8797 (2015).
[Crossref] [PubMed]

Song, C.

S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, C. Song, C. Fan, and L. Wang, “Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles,” ACS Appl. Mater. Interfaces 6(21), 18735–18741 (2014).
[Crossref] [PubMed]

Song, W.

H. Zhao, J. Jin, W. Tian, R. Li, Z. Yu, W. Song, Q. Cong, B. Zhao, and Y. Ozaki, “Three-dimensional superhydrophobic surface-enhanced Raman spectroscopy substrate for sensitive detection of pollutants in real environments,” J. Mater.Chen. A 3(8), 4330–4337 (2015).
[Crossref]

Sood, A.

B. Chakraborty, A. Bera, D. Muthu, S. Bhowmick, U. V. Waghmare, and A. Sood, “Symmetry-dependent phonon renormalization in monolayer MoS2 transistor,” Phys. Rev. B 85(16), 161403 (2012).
[Crossref]

Sow, C. H.

J. Lu, J. H. Lu, H. Liu, B. Liu, L. Gong, E. S. Tok, K. P. Loh, and C. H. Sow, “Microlandscaping of Au nanoparticles on few-layer MoS2 films for chemical sensing,” Small 11(15), 1792–1800 (2015).
[Crossref] [PubMed]

Sreeprasad, T. S.

T. S. Sreeprasad, P. Nguyen, N. Kim, and V. Berry, “Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties,” Nano Lett. 13(9), 4434–4441 (2013).
[Crossref] [PubMed]

Stiles, P. L.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 601–626 (2008).
[Crossref] [PubMed]

Story, G. M.

Su, S.

S. Su, W. Cao, W. Liu, Z. Lu, D. Zhu, J. Chao, L. Weng, L. Wang, C. Fan, and L. Wang, “Dual-mode electrochemical analysis of microRNA-21 using gold nanoparticle-decorated MoS2 nanosheet,” Biosens. Bioelectron. 94, 552–559 (2017).
[Crossref] [PubMed]

S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, C. Song, C. Fan, and L. Wang, “Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles,” ACS Appl. Mater. Interfaces 6(21), 18735–18741 (2014).
[Crossref] [PubMed]

Sun, L.

Y. Deng, M. Chen, J. Zhang, Z. Wang, W. Huang, Y. Zhao, J. P. Nshimiyimana, X. Hu, X. Chi, G. Hou, X. Zhang, Y. Guo, and L. Sun, “Thickness-dependent morphologies of Ag on n-layer MoS2 and its surface-enhanced Raman scattering,” Nano Res. 9(6), 1682–1688 (2016).
[Crossref]

Sun, Y.

H. I. Karunadasa, E. Montalvo, Y. Sun, M. Majda, J. R. Long, and C. J. Chang, “A molecular MoS2 edge site mimic for catalytic hydrogen generation,” Science 335(6069), 698–702 (2012).
[Crossref] [PubMed]

Sun, Z. C.

Tian, W.

H. Zhao, J. Jin, W. Tian, R. Li, Z. Yu, W. Song, Q. Cong, B. Zhao, and Y. Ozaki, “Three-dimensional superhydrophobic surface-enhanced Raman spectroscopy substrate for sensitive detection of pollutants in real environments,” J. Mater.Chen. A 3(8), 4330–4337 (2015).
[Crossref]

Todescato, F.

N. Michieli, R. Pilot, V. Russo, C. Scian, F. Todescato, R. Signorini, S. Agnoli, T. Cesca, R. Bozio, and G. Mattei, “Oxidation effects on the SERS response of silver nanoprism arrays,” RSC Advances 7(1), 369–378 (2017).
[Crossref]

Tok, E. S.

J. Lu, J. H. Lu, H. Liu, B. Liu, L. Gong, E. S. Tok, K. P. Loh, and C. H. Sow, “Microlandscaping of Au nanoparticles on few-layer MoS2 films for chemical sensing,” Small 11(15), 1792–1800 (2015).
[Crossref] [PubMed]

Tran, N. H. T.

N. H. T. Tran, B. T. Phan, W. J. Yoon, S. Khym, and H. Ju, “Dielectric Metal-Based Multilayers for Surface Plasmon Resonance with Enhanced Quality Factor of the Plasmonic Waves,” J. Electron. Mater. 46(6), 3654–3659 (2017).
[Crossref]

Van Duyne, R. P.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 601–626 (2008).
[Crossref] [PubMed]

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. Inter. 84(1), 1–20 (1977).
[Crossref]

Vashist, S. K.

S. K. Vashist, E. M. Schneider, and J. H. Luong, “A rapid sandwich immunoassay for human fetuin A using agarose-3-aminopropyltriethoxysilane modified microtiter plate,” Anal. Chim. Acta 883, 74–80 (2015).
[Crossref] [PubMed]

Waghmare, U. V.

B. Chakraborty, A. Bera, D. Muthu, S. Bhowmick, U. V. Waghmare, and A. Sood, “Symmetry-dependent phonon renormalization in monolayer MoS2 transistor,” Phys. Rev. B 85(16), 161403 (2012).
[Crossref]

Wang, G. S.

X. Liang, X. J. Zhang, T. T. You, N. Yang, G. S. Wang, and P. G. Yin, “Three-dimensional MoS2-NS@ Au-NPs hybrids as SERS sensor for quantitative and ultrasensitive detection of melamine in milk,” J. Raman Spectrosc. 49(2), 245–255 (2018).
[Crossref]

Wang, J.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Z. Dai, F. Mei, X. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. Guo, X. Zhao, W. Li, F. Ren, and C. Jiang, ““Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
[Crossref]

Wang, L.

S. Su, W. Cao, W. Liu, Z. Lu, D. Zhu, J. Chao, L. Weng, L. Wang, C. Fan, and L. Wang, “Dual-mode electrochemical analysis of microRNA-21 using gold nanoparticle-decorated MoS2 nanosheet,” Biosens. Bioelectron. 94, 552–559 (2017).
[Crossref] [PubMed]

S. Su, W. Cao, W. Liu, Z. Lu, D. Zhu, J. Chao, L. Weng, L. Wang, C. Fan, and L. Wang, “Dual-mode electrochemical analysis of microRNA-21 using gold nanoparticle-decorated MoS2 nanosheet,” Biosens. Bioelectron. 94, 552–559 (2017).
[Crossref] [PubMed]

W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, and Z. L. Wang, “Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics,” Nature 514(7523), 470–474 (2014).
[Crossref] [PubMed]

S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, C. Song, C. Fan, and L. Wang, “Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles,” ACS Appl. Mater. Interfaces 6(21), 18735–18741 (2014).
[Crossref] [PubMed]

Wang, M.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

Y. Zhang, M. Wang, E. Zhu, Y. Zheng, Y. Huang, and X. Huang, “Seedless Growth of Palladium Nanocrystals with Tunable Structures: From Tetrahedra to Nanosheets,” Nano Lett. 15(11), 7519–7525 (2015).
[Crossref] [PubMed]

Wang, M. H.

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

Wang, Z.

Y. Deng, M. Chen, J. Zhang, Z. Wang, W. Huang, Y. Zhao, J. P. Nshimiyimana, X. Hu, X. Chi, G. Hou, X. Zhang, Y. Guo, and L. Sun, “Thickness-dependent morphologies of Ag on n-layer MoS2 and its surface-enhanced Raman scattering,” Nano Res. 9(6), 1682–1688 (2016).
[Crossref]

Wang, Z. L.

W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, and Z. L. Wang, “Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics,” Nature 514(7523), 470–474 (2014).
[Crossref] [PubMed]

Wei, J.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Wei, Q.

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

Weng, L.

S. Su, W. Cao, W. Liu, Z. Lu, D. Zhu, J. Chao, L. Weng, L. Wang, C. Fan, and L. Wang, “Dual-mode electrochemical analysis of microRNA-21 using gold nanoparticle-decorated MoS2 nanosheet,” Biosens. Bioelectron. 94, 552–559 (2017).
[Crossref] [PubMed]

Wu, W.

W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, and Z. L. Wang, “Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics,” Nature 514(7523), 470–474 (2014).
[Crossref] [PubMed]

Z. Dai, F. Mei, X. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. Guo, X. Zhao, W. Li, F. Ren, and C. Jiang, ““Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
[Crossref]

Xiao, X.

Z. Dai, F. Mei, X. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. Guo, X. Zhao, W. Li, F. Ren, and C. Jiang, ““Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
[Crossref]

Xu, S.

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

C. Li, C. Zhang, S. Xu, Y. Huo, S. Jiang, C. Yang, Z. Li, X. Zhao, S. Zhang, and B. Man, “Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots,” Sens. Actuators B Chem. 263, 408–416 (2018).
[Crossref]

C. Li, C. Yang, S. Xu, C. Zhang, Z. Li, X. Liu, S. Jiang, Y. Huo, A. Liu, and B. Man, “Ag2O@ Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

Z. Li, S. Jiang, S. Xu, C. Zhang, H. Qiu, C. Li, Y. Sheng, Y. Huo, C. Yang, and B. Man, “Few-layer MoS2-encapsulated Cu nanoparticle hybrids fabricated by two-step annealing process for surface enhanced Raman scattering,” Sens. Actuators B Chem. 230, 645–652 (2016).
[Crossref]

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

C. Zhang, B. Man, S. Jiang, C. Yang, M. Liu, C. Chen, S. Xu, H. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

Xu, S. C.

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Xu, Y. Y.

Yang, C.

C. Li, C. Zhang, S. Xu, Y. Huo, S. Jiang, C. Yang, Z. Li, X. Zhao, S. Zhang, and B. Man, “Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots,” Sens. Actuators B Chem. 263, 408–416 (2018).
[Crossref]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

C. Li, C. Yang, S. Xu, C. Zhang, Z. Li, X. Liu, S. Jiang, Y. Huo, A. Liu, and B. Man, “Ag2O@ Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

Z. Li, S. Jiang, S. Xu, C. Zhang, H. Qiu, C. Li, Y. Sheng, Y. Huo, C. Yang, and B. Man, “Few-layer MoS2-encapsulated Cu nanoparticle hybrids fabricated by two-step annealing process for surface enhanced Raman scattering,” Sens. Actuators B Chem. 230, 645–652 (2016).
[Crossref]

C. Zhang, B. Man, S. Jiang, C. Yang, M. Liu, C. Chen, S. Xu, H. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

Yang, H. Y.

Y. Shi, J.-K. Huang, L. Jin, Y.-T. Hsu, S. F. Yu, L.-J. Li, and H. Y. Yang, “Selective decoration of Au nanoparticles on monolayer MoS2 single crystals,” Sci. Rep. 3(1), 1839 (2013).
[Crossref] [PubMed]

Yang, N.

X. Liang, X. J. Zhang, T. T. You, N. Yang, G. S. Wang, and P. G. Yin, “Three-dimensional MoS2-NS@ Au-NPs hybrids as SERS sensor for quantitative and ultrasensitive detection of melamine in milk,” J. Raman Spectrosc. 49(2), 245–255 (2018).
[Crossref]

Yang, Y.

Y. Yang, J. Shi, G. Kawamura, and M. Nogami, “Preparation of Au–Ag, Ag–Au core–shell bimetallic nanoparticles for surface-enhanced Raman scattering,” Scr. Mater. 58(10), 862–865 (2008).
[Crossref]

Yang, Z.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au–Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Yin, P. G.

X. Liang, X. J. Zhang, T. T. You, N. Yang, G. S. Wang, and P. G. Yin, “Three-dimensional MoS2-NS@ Au-NPs hybrids as SERS sensor for quantitative and ultrasensitive detection of melamine in milk,” J. Raman Spectrosc. 49(2), 245–255 (2018).
[Crossref]

Yin, Y.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au–Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Yoon, W. J.

N. H. T. Tran, B. T. Phan, W. J. Yoon, S. Khym, and H. Ju, “Dielectric Metal-Based Multilayers for Surface Plasmon Resonance with Enhanced Quality Factor of the Plasmonic Waves,” J. Electron. Mater. 46(6), 3654–3659 (2017).
[Crossref]

You, M.-H.

J.-H. Lee, M.-H. You, G.-H. Kim, and J.-M. Nam, “Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes,” Nano Lett. 14(11), 6217–6225 (2014).
[Crossref] [PubMed]

You, T. T.

X. Liang, X. J. Zhang, T. T. You, N. Yang, G. S. Wang, and P. G. Yin, “Three-dimensional MoS2-NS@ Au-NPs hybrids as SERS sensor for quantitative and ultrasensitive detection of melamine in milk,” J. Raman Spectrosc. 49(2), 245–255 (2018).
[Crossref]

Yu, J.

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

Yu, S. F.

Y. Shi, J.-K. Huang, L. Jin, Y.-T. Hsu, S. F. Yu, L.-J. Li, and H. Y. Yang, “Selective decoration of Au nanoparticles on monolayer MoS2 single crystals,” Sci. Rep. 3(1), 1839 (2013).
[Crossref] [PubMed]

Yu, Z.

H. Zhao, J. Jin, W. Tian, R. Li, Z. Yu, W. Song, Q. Cong, B. Zhao, and Y. Ozaki, “Three-dimensional superhydrophobic surface-enhanced Raman spectroscopy substrate for sensitive detection of pollutants in real environments,” J. Mater.Chen. A 3(8), 4330–4337 (2015).
[Crossref]

Yuwen, L.

S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, C. Song, C. Fan, and L. Wang, “Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles,” ACS Appl. Mater. Interfaces 6(21), 18735–18741 (2014).
[Crossref] [PubMed]

Zhang, C.

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

C. Li, C. Zhang, S. Xu, Y. Huo, S. Jiang, C. Yang, Z. Li, X. Zhao, S. Zhang, and B. Man, “Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots,” Sens. Actuators B Chem. 263, 408–416 (2018).
[Crossref]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

L. Hu, Y. J. Liu, Y. Han, P. Chen, C. Zhang, C. Li, Z. Lu, D. Luo, and S. Jiang, “Graphene oxide-decorated silver dendrites for high-performance surface-enhanced Raman scattering applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(16), 3908–3915 (2017).
[Crossref]

C. Li, C. Yang, S. Xu, C. Zhang, Z. Li, X. Liu, S. Jiang, Y. Huo, A. Liu, and B. Man, “Ag2O@ Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

Z. Li, S. Jiang, S. Xu, C. Zhang, H. Qiu, C. Li, Y. Sheng, Y. Huo, C. Yang, and B. Man, “Few-layer MoS2-encapsulated Cu nanoparticle hybrids fabricated by two-step annealing process for surface enhanced Raman scattering,” Sens. Actuators B Chem. 230, 645–652 (2016).
[Crossref]

C. Zhang, B. Man, S. Jiang, C. Yang, M. Liu, C. Chen, S. Xu, H. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, C. Song, C. Fan, and L. Wang, “Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles,” ACS Appl. Mater. Interfaces 6(21), 18735–18741 (2014).
[Crossref] [PubMed]

Zhang, F.

W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, and Z. L. Wang, “Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics,” Nature 514(7523), 470–474 (2014).
[Crossref] [PubMed]

Zhang, J.

Y. Deng, M. Chen, J. Zhang, Z. Wang, W. Huang, Y. Zhao, J. P. Nshimiyimana, X. Hu, X. Chi, G. Hou, X. Zhang, Y. Guo, and L. Sun, “Thickness-dependent morphologies of Ag on n-layer MoS2 and its surface-enhanced Raman scattering,” Nano Res. 9(6), 1682–1688 (2016).
[Crossref]

Zhang, L.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au–Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Zhang, S.

C. Li, C. Zhang, S. Xu, Y. Huo, S. Jiang, C. Yang, Z. Li, X. Zhao, S. Zhang, and B. Man, “Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots,” Sens. Actuators B Chem. 263, 408–416 (2018).
[Crossref]

Zhang, X.

Y. Deng, M. Chen, J. Zhang, Z. Wang, W. Huang, Y. Zhao, J. P. Nshimiyimana, X. Hu, X. Chi, G. Hou, X. Zhang, Y. Guo, and L. Sun, “Thickness-dependent morphologies of Ag on n-layer MoS2 and its surface-enhanced Raman scattering,” Nano Res. 9(6), 1682–1688 (2016).
[Crossref]

W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, and Z. L. Wang, “Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics,” Nature 514(7523), 470–474 (2014).
[Crossref] [PubMed]

Zhang, X. J.

X. Liang, X. J. Zhang, T. T. You, N. Yang, G. S. Wang, and P. G. Yin, “Three-dimensional MoS2-NS@ Au-NPs hybrids as SERS sensor for quantitative and ultrasensitive detection of melamine in milk,” J. Raman Spectrosc. 49(2), 245–255 (2018).
[Crossref]

Zhang, Y.

Y. Zhang, M. Wang, E. Zhu, Y. Zheng, Y. Huang, and X. Huang, “Seedless Growth of Palladium Nanocrystals with Tunable Structures: From Tetrahedra to Nanosheets,” Nano Lett. 15(11), 7519–7525 (2015).
[Crossref] [PubMed]

Zhao, B.

H. Zhao, J. Jin, W. Tian, R. Li, Z. Yu, W. Song, Q. Cong, B. Zhao, and Y. Ozaki, “Three-dimensional superhydrophobic surface-enhanced Raman spectroscopy substrate for sensitive detection of pollutants in real environments,” J. Mater.Chen. A 3(8), 4330–4337 (2015).
[Crossref]

Zhao, H.

H. Zhao, J. Jin, W. Tian, R. Li, Z. Yu, W. Song, Q. Cong, B. Zhao, and Y. Ozaki, “Three-dimensional superhydrophobic surface-enhanced Raman spectroscopy substrate for sensitive detection of pollutants in real environments,” J. Mater.Chen. A 3(8), 4330–4337 (2015).
[Crossref]

Zhao, X.

C. Li, C. Zhang, S. Xu, Y. Huo, S. Jiang, C. Yang, Z. Li, X. Zhao, S. Zhang, and B. Man, “Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots,” Sens. Actuators B Chem. 263, 408–416 (2018).
[Crossref]

Z. Dai, F. Mei, X. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. Guo, X. Zhao, W. Li, F. Ren, and C. Jiang, ““Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
[Crossref]

Zhao, Y.

Y. Deng, M. Chen, J. Zhang, Z. Wang, W. Huang, Y. Zhao, J. P. Nshimiyimana, X. Hu, X. Chi, G. Hou, X. Zhang, Y. Guo, and L. Sun, “Thickness-dependent morphologies of Ag on n-layer MoS2 and its surface-enhanced Raman scattering,” Nano Res. 9(6), 1682–1688 (2016).
[Crossref]

Zheng, H.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au–Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Zheng, Y.

Y. Zheng, A. H. Soeriyadi, L. Rosa, S. H. Ng, U. Bach, and J. Justin Gooding, “Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection,” Nat. Commun. 6(1), 8797 (2015).
[Crossref] [PubMed]

Y. Zhang, M. Wang, E. Zhu, Y. Zheng, Y. Huang, and X. Huang, “Seedless Growth of Palladium Nanocrystals with Tunable Structures: From Tetrahedra to Nanosheets,” Nano Lett. 15(11), 7519–7525 (2015).
[Crossref] [PubMed]

Zhu, D.

S. Su, W. Cao, W. Liu, Z. Lu, D. Zhu, J. Chao, L. Weng, L. Wang, C. Fan, and L. Wang, “Dual-mode electrochemical analysis of microRNA-21 using gold nanoparticle-decorated MoS2 nanosheet,” Biosens. Bioelectron. 94, 552–559 (2017).
[Crossref] [PubMed]

Zhu, E.

Y. Zhang, M. Wang, E. Zhu, Y. Zheng, Y. Huang, and X. Huang, “Seedless Growth of Palladium Nanocrystals with Tunable Structures: From Tetrahedra to Nanosheets,” Nano Lett. 15(11), 7519–7525 (2015).
[Crossref] [PubMed]

Zuo, X.

S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, C. Song, C. Fan, and L. Wang, “Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles,” ACS Appl. Mater. Interfaces 6(21), 18735–18741 (2014).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (2)

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, C. Song, C. Fan, and L. Wang, “Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles,” ACS Appl. Mater. Interfaces 6(21), 18735–18741 (2014).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

S. K. Vashist, E. M. Schneider, and J. H. Luong, “A rapid sandwich immunoassay for human fetuin A using agarose-3-aminopropyltriethoxysilane modified microtiter plate,” Anal. Chim. Acta 883, 74–80 (2015).
[Crossref] [PubMed]

Annu. Rev. Anal. Chem. (Palo Alto, Calif.) (1)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 601–626 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Z. Dai, F. Mei, X. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. Guo, X. Zhao, W. Li, F. Ren, and C. Jiang, ““Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
[Crossref]

Appl. Spectrosc. (1)

Appl. Surf. Sci. (1)

C. Zhang, B. Man, S. Jiang, C. Yang, M. Liu, C. Chen, S. Xu, H. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

Biosens. Bioelectron. (1)

S. Su, W. Cao, W. Liu, Z. Lu, D. Zhu, J. Chao, L. Weng, L. Wang, C. Fan, and L. Wang, “Dual-mode electrochemical analysis of microRNA-21 using gold nanoparticle-decorated MoS2 nanosheet,” Biosens. Bioelectron. 94, 552–559 (2017).
[Crossref] [PubMed]

Chem. Sci. (Camb.) (1)

M. Fan, F.-J. Lai, H.-L. Chou, W.-T. Lu, B.-J. Hwang, and A. G. Brolo, “Surface-enhanced Raman scattering (SERS) from Au: Ag bimetallic nanoparticles: the effect of the molecular probe,” Chem. Sci. (Camb.) 4(1), 509–515 (2013).
[Crossref]

Faraday Discuss. (1)

M. J. Natan, “Surface enhanced Raman scattering,” Faraday Discuss. 132, 321–328 (2006).
[Crossref] [PubMed]

J. Alloys Compd. (1)

C. Li, C. Yang, S. Xu, C. Zhang, Z. Li, X. Liu, S. Jiang, Y. Huo, A. Liu, and B. Man, “Ag2O@ Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

J. Am. Chem. Soc. (1)

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
[Crossref]

J. Electroanal. Chem. Inter. (1)

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. Inter. 84(1), 1–20 (1977).
[Crossref]

J. Electron. Mater. (1)

N. H. T. Tran, B. T. Phan, W. J. Yoon, S. Khym, and H. Ju, “Dielectric Metal-Based Multilayers for Surface Plasmon Resonance with Enhanced Quality Factor of the Plasmonic Waves,” J. Electron. Mater. 46(6), 3654–3659 (2017).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

L. Hu, Y. J. Liu, Y. Han, P. Chen, C. Zhang, C. Li, Z. Lu, D. Luo, and S. Jiang, “Graphene oxide-decorated silver dendrites for high-performance surface-enhanced Raman scattering applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(16), 3908–3915 (2017).
[Crossref]

J. Mater.Chen. A (1)

H. Zhao, J. Jin, W. Tian, R. Li, Z. Yu, W. Song, Q. Cong, B. Zhao, and Y. Ozaki, “Three-dimensional superhydrophobic surface-enhanced Raman spectroscopy substrate for sensitive detection of pollutants in real environments,” J. Mater.Chen. A 3(8), 4330–4337 (2015).
[Crossref]

J. Raman Spectrosc. (1)

X. Liang, X. J. Zhang, T. T. You, N. Yang, G. S. Wang, and P. G. Yin, “Three-dimensional MoS2-NS@ Au-NPs hybrids as SERS sensor for quantitative and ultrasensitive detection of melamine in milk,” J. Raman Spectrosc. 49(2), 245–255 (2018).
[Crossref]

Mater. Today (1)

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Nano Lett. (4)

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au–Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Y. Zhang, M. Wang, E. Zhu, Y. Zheng, Y. Huang, and X. Huang, “Seedless Growth of Palladium Nanocrystals with Tunable Structures: From Tetrahedra to Nanosheets,” Nano Lett. 15(11), 7519–7525 (2015).
[Crossref] [PubMed]

T. S. Sreeprasad, P. Nguyen, N. Kim, and V. Berry, “Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties,” Nano Lett. 13(9), 4434–4441 (2013).
[Crossref] [PubMed]

J.-H. Lee, M.-H. You, G.-H. Kim, and J.-M. Nam, “Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes,” Nano Lett. 14(11), 6217–6225 (2014).
[Crossref] [PubMed]

Nano Res. (1)

Y. Deng, M. Chen, J. Zhang, Z. Wang, W. Huang, Y. Zhao, J. P. Nshimiyimana, X. Hu, X. Chi, G. Hou, X. Zhang, Y. Guo, and L. Sun, “Thickness-dependent morphologies of Ag on n-layer MoS2 and its surface-enhanced Raman scattering,” Nano Res. 9(6), 1682–1688 (2016).
[Crossref]

Nanoscale (2)

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

J. M. Romo-Herrera, A. L. González, L. Guerrini, F. R. Castiello, G. Alonso-Nuñez, O. E. Contreras, and R. A. Alvarez-Puebla, “A study of the depth and size of concave cube Au nanoparticles as highly sensitive SERS probes,” Nanoscale 8(13), 7326–7333 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. Zheng, A. H. Soeriyadi, L. Rosa, S. H. Ng, U. Bach, and J. Justin Gooding, “Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection,” Nat. Commun. 6(1), 8797 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

C. M. Aikens, L. R. Madison, and G. C. Schatz, “Raman spectroscopy: The effect of field gradient on SERS,” Nat. Photonics 7(7), 508–510 (2013).
[Crossref]

Nature (1)

W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, and Z. L. Wang, “Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics,” Nature 514(7523), 470–474 (2014).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. B (1)

B. Chakraborty, A. Bera, D. Muthu, S. Bhowmick, U. V. Waghmare, and A. Sood, “Symmetry-dependent phonon renormalization in monolayer MoS2 transistor,” Phys. Rev. B 85(16), 161403 (2012).
[Crossref]

RSC Advances (1)

N. Michieli, R. Pilot, V. Russo, C. Scian, F. Todescato, R. Signorini, S. Agnoli, T. Cesca, R. Bozio, and G. Mattei, “Oxidation effects on the SERS response of silver nanoprism arrays,” RSC Advances 7(1), 369–378 (2017).
[Crossref]

Sci. Rep. (2)

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

Y. Shi, J.-K. Huang, L. Jin, Y.-T. Hsu, S. F. Yu, L.-J. Li, and H. Y. Yang, “Selective decoration of Au nanoparticles on monolayer MoS2 single crystals,” Sci. Rep. 3(1), 1839 (2013).
[Crossref] [PubMed]

Science (2)

H. I. Karunadasa, E. Montalvo, Y. Sun, M. Majda, J. R. Long, and C. J. Chang, “A molecular MoS2 edge site mimic for catalytic hydrogen generation,” Science 335(6069), 698–702 (2012).
[Crossref] [PubMed]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Scr. Mater. (1)

Y. Yang, J. Shi, G. Kawamura, and M. Nogami, “Preparation of Au–Ag, Ag–Au core–shell bimetallic nanoparticles for surface-enhanced Raman scattering,” Scr. Mater. 58(10), 862–865 (2008).
[Crossref]

Sens. Actuators B Chem. (4)

C. Li, C. Zhang, S. Xu, Y. Huo, S. Jiang, C. Yang, Z. Li, X. Zhao, S. Zhang, and B. Man, “Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots,” Sens. Actuators B Chem. 263, 408–416 (2018).
[Crossref]

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

Z. Li, S. Jiang, S. Xu, C. Zhang, H. Qiu, C. Li, Y. Sheng, Y. Huo, C. Yang, and B. Man, “Few-layer MoS2-encapsulated Cu nanoparticle hybrids fabricated by two-step annealing process for surface enhanced Raman scattering,” Sens. Actuators B Chem. 230, 645–652 (2016).
[Crossref]

Small (1)

J. Lu, J. H. Lu, H. Liu, B. Liu, L. Gong, E. S. Tok, K. P. Loh, and C. H. Sow, “Microlandscaping of Au nanoparticles on few-layer MoS2 films for chemical sensing,” Small 11(15), 1792–1800 (2015).
[Crossref] [PubMed]

Vib. Spectrosc. (1)

N. E. Mircescu, M. Oltean, V. Chiş, and N. Leopold, “FTIR, FT-Raman, SERS and DFT study on melamine,” Vib. Spectrosc. 62, 165–171 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic illustration of the process for the synthesis of AuNPs-AgNPs/MoS2/P-Si and flexible MoS2/AuNPs-AgNPs/P-PMMA SERS substrates.
Fig. 2
Fig. 2 SEM morphology characterization respectively from (a) P-Si, (b) P-Si/MoS2, (c) P-Si/AgNPs substrate.
Fig. 3
Fig. 3 SEM morphology characterization respectively from (a)AuNPs/MoS2/P-Si, (b) AuNPs-AgNPs/MoS2/P-Si substrate. (c) SERS spectra of MoS2 on MoS2/P-Si, AuNPs/MoS2/P-Si and AuNPs-AgNPs/MoS2/P-Si substrate. (d) TEM image of the synthesized AuNPs-AgNPs/MoS2. The inset shows the SAED pattern from the film. (e) Enlarged TEM image of AuNPs-AgNPs/MoS2 film. (f) the corresponding EDS spectrum.
Fig. 4
Fig. 4 EDS elemental maps from (b) Si, (c) Mo, (d) S, (e) Au and (f) Ag on the (a) P-Si/MoS2/AuNPs-AgNPs substrate.
Fig. 5
Fig. 5 (a)XPS survey spectrum obtained from AuNPs-AgNPs/MoS2/P-Si substrate. Inset: Detailed XPS spectrum analysis of that in dotted box. Chemical composition analysis by XPS for (b) S, (C) Au and (D) Ag binding energies of the substrate.
Fig. 6
Fig. 6 (a) Raman spectra of R6G molecules (10−5 M) detected on the AuNPs/MoS2/P-Si with different reaction time.(b) Raman spectra of R6G molecules (10−5 M) detected on the AuNPs-AgNPs/MoS2/P-Si, AuNPs/MoS2/P-Si and MoS2/P-Si substrates. (c) The corresponding histogram of SERS peak intensities at five typical Raman peaks (610, 773, 1360, 1508, and 1648 cm−1) from the above substrates. (d) and (f) are the schematic of AuNPs-AgNPs and AgNPs-AgNPs structure for FDTD simulation. (e) and (f) are the local electric field distribution of AuNPs-AgNPs and AgNPs-AgNPs structure.
Fig. 7
Fig. 7 (a) Raman spectra of R6G (the concentration from 10−5 M to 10−12 M). (b) Linear relationships (R2 = 0.978): Raman intensities at 613 cm−1 as a function of the concentrations of R6Gmolecules. (c) Raman intensities of R6G molecules at 610, 773, 1360, 1508 and 1648 cm−1 (10−5 M) randomly collected 20 spots on a AuNPs-AgNPs/MoS2/P-Si substrate. (d) The histogramof SERS intensities of the peak at 613 cm−1 (R6G of 10−6 M) respectively collected from 10 different batches AuNPs-AgNPs/MoS2/P-Si substrate.
Fig. 8
Fig. 8 The Raman spectra of (a) CV (concentration from 10−6 to 10−12 M) and (c) MG (concentration from 10−6 to 10−11 M) on the AuNPs-AgNPs/MoS2/P-Si substrate. Raman intensity of (b) CV (at 1620 cm−1) and (d) MG (at 1618 cm−1) on the substrate as a function of the molecule concentration.
Fig. 9
Fig. 9 (a) SEM image of flexible MoS2/AuNPs-AgNPs/PMMA hybrid pyramidal SERS substrate. (b) SERS spectra of melamine solution with different concentration. (c) The linear relationships of the peak (1071 cm−1) intensities as a function of the concentrations ranging from 10−5 to 10−9 M.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

EF= I SERS / N SERS I RS / N RS .
RSD= ΔI I ¯ ×100%= I I ¯ I ¯ ×100%,

Metrics