Abstract

In this paper, we present a phase-shifting-free method to improve the resolution of digital holographic microscopy (DHM) under the structured illumination (SI). The SI used in the system is different from the traditional SI for it is free of the visible structure due to two illumination lights with orthogonal polarization states. To separate the recorded information and also retrieve the object phase, two reference beams with different carrier frequencies and orthogonal polarization states are adopted. The principle component analysis (PCA) algorithm is introduced in the reconstruction process. It is found that the modulated frequency of SI besides the quadratic phases of the imaging system can be easily removed with help of PCA. Therefore, phase-shifting is not required both in recording and reconstruction process. The simulation is performed to validate our method, while the proposed method is applied to the resolution enhancement for amplitude-contrast and phase-contrast objects imaging in experiments. The resolution is doubled in the simulation, and it shows 78% resolution improvement in the experiments.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhancing spatial resolution in digital holographic microscopy by biprism structured illumination

Emilio Sánchez-Ortiga, Manuel Martínez-Corral, Genaro Saavedra, and Jorge Garcia-Sucerquia
Opt. Lett. 39(7) 2086-2089 (2014)

Structured illumination quantitative phase microscopy for enhanced resolution amplitude and phase imaging

Shwetadwip Chowdhury and Joseph Izatt
Biomed. Opt. Express 4(10) 1795-1805 (2013)

Enhancing the isotropy of lateral resolution in coherent structured illumination microscopy

Joo Hyun Park, Jae Yong Lee, and Eun Seong Lee
Biomed. Opt. Express 5(6) 1895-1912 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
    [Crossref] [PubMed]
  2. T. D. Yang, K. Park, Y. G. Kang, K. J. Lee, B. M. Kim, and Y. Choi, “Single-shot digital holographic microscopy for quantifying a spatially-resolved Jones matrix of biological specimens,” Opt. Express 24(25), 29302–29311 (2016).
    [Crossref] [PubMed]
  3. D. G. Abdelsalam and T. Yasui, “High brightness, low coherence, digital holographic microscopy for 3D visualization of an in-vitro sandwiched biological sample,” Appl. Opt. 56(13), F1–F6 (2017).
    [Crossref] [PubMed]
  4. E. Abbe, “Beiträge zur Theorie des Mikroskops undder mikroskopischen Wahrnehmung,” Arch. Mikrosk. Anat. 9(1), 413–418 (1873).
    [Crossref]
  5. A. Faridian, D. Hopp, G. Pedrini, U. Eigenthaler, M. Hirscher, and W. Osten, “Nanoscale imaging using deep ultraviolet digital holographic microscopy,” Opt. Express 18(13), 14159–14164 (2010).
    [Crossref] [PubMed]
  6. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23(12), 3162–3170 (2006).
    [Crossref] [PubMed]
  7. L. Granero, V. Micó, Z. Zalevsky, and J. García, “Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information,” Appl. Opt. 49(5), 845–857 (2010).
    [Crossref] [PubMed]
  8. V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276(2), 209–217 (2007).
    [Crossref]
  9. A. Calabuig, V. Micó, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by red-green-blue multiplexing,” Opt. Lett. 36(6), 885–887 (2011).
    [Crossref] [PubMed]
  10. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45(5), 822–828 (2006).
    [Crossref] [PubMed]
  11. J. Zhao, X. Yan, W. Sun, and J. Di, “Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states,” Opt. Lett. 35(20), 3519–3521 (2010).
    [Crossref] [PubMed]
  12. C. Yuan, G. Situ, G. Pedrini, J. Ma, and W. Osten, “Resolution improvement in digital holography by angular and polarization multiplexing,” Appl. Opt. 50(7), B6–B11 (2011).
    [Crossref] [PubMed]
  13. Y. C. Lin, H. Y. Tu, X. R. Wu, X. J. Lai, and C. J. Cheng, “One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating,” Opt. Express 26(10), 12620–12631 (2018).
    [Crossref] [PubMed]
  14. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
    [Crossref] [PubMed]
  15. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
    [Crossref] [PubMed]
  16. M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
    [Crossref] [PubMed]
  17. P. Gao, G. Pedrini, and W. Osten, “Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy,” Opt. Lett. 38(8), 1328–1330 (2013).
    [Crossref] [PubMed]
  18. Y. Ganjkhani, M. A. Charsooghi, E. A. Akhlaghi, and A. Moradi, “Super-resolved Mirau digital holography by structured illumination,” Opt. Commun. 404, 110–117 (2017).
    [Crossref]
  19. J. Ma, C. Yuan, G. Situ, G. Pedrini, and W. Osten, “Resolution enhancement in digital holographic microscopy with structured illumination,” Chin. Opt. Lett. 11(9), 28–32 (2013).
  20. E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Enhancing spatial resolution in digital holographic microscopy by biprism structured illumination,” Opt. Lett. 39(7), 2086–2089 (2014).
    [Crossref] [PubMed]
  21. J. Zheng, P. Gao, B. Yao, T. Ye, M. Lei, J. Min, D. Dan, Y. Yang, and S. Yan, “Digital holographic microscopy with phase-shift-free structured illumination,” Photon. Res. 2(3), 87–91 (2014).
    [Crossref]
  22. C. Mann, L. Yu, C. M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005).
    [Crossref] [PubMed]
  23. Q. Weijuan, Y. Yingjie, C. O. Choo, and A. Asundi, “Digital holographic microscopy with physical phase compensation,” Opt. Lett. 34(8), 1276–1278 (2009).
    [Crossref] [PubMed]
  24. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42(11), 1938–1946 (2003).
    [Crossref] [PubMed]
  25. T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14(10), 4300–4306 (2006).
    [Crossref] [PubMed]
  26. J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, “Phase aberration compensation of digital holographic microscopy based on least squares surface fitting,” Opt. Commun. 282(19), 3873–3877 (2009).
    [Crossref]
  27. C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Phase aberration compensation in digital holographic microscopy based on principal component analysis,” Opt. Lett. 38(10), 1724–1726 (2013).
    [Crossref] [PubMed]
  28. J. Sun, Q. Chen, Y. Zhang, and C. Zuo, “Optimal principal component analysis-based numerical phase aberration compensation method for digital holography,” Opt. Lett. 41(6), 1293–1296 (2016).
    [Crossref] [PubMed]
  29. K. Wicker and R. Heintzmann, “Resolving a misconception about structured illumination,” Nat. Photonics 8(5), 342–344 (2014).
    [Crossref]
  30. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005).
  31. W. Qu, C. O. Choo, V. R. Singh, Y. Yingjie, and A. Asundi, “Quasi-physical phase compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 26(9), 2005–2011 (2009).
    [Crossref] [PubMed]
  32. J. H. Park, J. Y. Lee, and E. S. Lee, “Enhancing the isotropy of lateral resolution in coherent structured illumination microscopy,” Biomed. Opt. Express 5(6), 1895–1912 (2014).
    [Crossref] [PubMed]
  33. M. Singh and K. Khare, “Accurate efficient carrier estimation for single-shot digital holographic imaging,” Opt. Lett. 41(21), 4871–4874 (2016).
    [Crossref] [PubMed]
  34. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

2018 (1)

2017 (2)

D. G. Abdelsalam and T. Yasui, “High brightness, low coherence, digital holographic microscopy for 3D visualization of an in-vitro sandwiched biological sample,” Appl. Opt. 56(13), F1–F6 (2017).
[Crossref] [PubMed]

Y. Ganjkhani, M. A. Charsooghi, E. A. Akhlaghi, and A. Moradi, “Super-resolved Mirau digital holography by structured illumination,” Opt. Commun. 404, 110–117 (2017).
[Crossref]

2016 (3)

2014 (5)

2013 (3)

2011 (2)

2010 (3)

2009 (3)

2008 (1)

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

2007 (1)

V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276(2), 209–217 (2007).
[Crossref]

2006 (3)

2005 (2)

C. Mann, L. Yu, C. M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005).
[Crossref] [PubMed]

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

2003 (1)

2000 (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

1873 (1)

E. Abbe, “Beiträge zur Theorie des Mikroskops undder mikroskopischen Wahrnehmung,” Arch. Mikrosk. Anat. 9(1), 413–418 (1873).
[Crossref]

Abbe, E.

E. Abbe, “Beiträge zur Theorie des Mikroskops undder mikroskopischen Wahrnehmung,” Arch. Mikrosk. Anat. 9(1), 413–418 (1873).
[Crossref]

Abdelsalam, D. G.

Agard, D. A.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Akhlaghi, E. A.

Y. Ganjkhani, M. A. Charsooghi, E. A. Akhlaghi, and A. Moradi, “Super-resolved Mirau digital holography by structured illumination,” Opt. Commun. 404, 110–117 (2017).
[Crossref]

Aspert, N.

Asundi, A.

Calabuig, A.

Cande, W. Z.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Carlton, P. M.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Charrière, F.

Charsooghi, M. A.

Y. Ganjkhani, M. A. Charsooghi, E. A. Akhlaghi, and A. Moradi, “Super-resolved Mirau digital holography by structured illumination,” Opt. Commun. 404, 110–117 (2017).
[Crossref]

Chen, Q.

Cheng, C. J.

Choi, Y.

Choo, C. O.

Colomb, T.

Coppola, G.

Dan, D.

De Nicola, S.

Depeursinge, C.

Di, J.

J. Zhao, X. Yan, W. Sun, and J. Di, “Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states,” Opt. Lett. 35(20), 3519–3521 (2010).
[Crossref] [PubMed]

J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, “Phase aberration compensation of digital holographic microscopy based on least squares surface fitting,” Opt. Commun. 282(19), 3873–3877 (2009).
[Crossref]

Doblas, A.

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[Crossref] [PubMed]

Eigenthaler, U.

Faridian, A.

Ferraro, P.

Ferreira, C.

Finizio, A.

Ganjkhani, Y.

Y. Ganjkhani, M. A. Charsooghi, E. A. Akhlaghi, and A. Moradi, “Super-resolved Mirau digital holography by structured illumination,” Opt. Commun. 404, 110–117 (2017).
[Crossref]

Gao, P.

Garcia, J.

García, J.

García-Martínez, P.

Garcia-Sucerquia, J.

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[Crossref] [PubMed]

E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Enhancing spatial resolution in digital holographic microscopy by biprism structured illumination,” Opt. Lett. 39(7), 2086–2089 (2014).
[Crossref] [PubMed]

Golubovskaya, I. N.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Granero, L.

Grilli, S.

Gustafsson, M. G. L.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

Heintzmann, R.

K. Wicker and R. Heintzmann, “Resolving a misconception about structured illumination,” Nat. Photonics 8(5), 342–344 (2014).
[Crossref]

Hirscher, M.

Hopp, D.

Jiang, H.

J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, “Phase aberration compensation of digital holographic microscopy based on least squares surface fitting,” Opt. Commun. 282(19), 3873–3877 (2009).
[Crossref]

Kang, Y. G.

Khare, K.

Kim, B. M.

Kim, M.

Kühn, J.

Lai, X. J.

Lee, E. S.

Lee, J. Y.

Lee, K. J.

Lei, M.

Lin, Y. C.

Lo, C. M.

Ma, J.

J. Ma, C. Yuan, G. Situ, G. Pedrini, and W. Osten, “Resolution enhancement in digital holographic microscopy with structured illumination,” Chin. Opt. Lett. 11(9), 28–32 (2013).

C. Yuan, G. Situ, G. Pedrini, J. Ma, and W. Osten, “Resolution improvement in digital holography by angular and polarization multiplexing,” Appl. Opt. 50(7), B6–B11 (2011).
[Crossref] [PubMed]

Magro, C.

Mann, C.

Marquet, P.

Martínez-Corral, M.

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[Crossref] [PubMed]

E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Enhancing spatial resolution in digital holographic microscopy by biprism structured illumination,” Opt. Lett. 39(7), 2086–2089 (2014).
[Crossref] [PubMed]

Mico, V.

Micó, V.

Min, J.

Moradi, A.

Y. Ganjkhani, M. A. Charsooghi, E. A. Akhlaghi, and A. Moradi, “Super-resolved Mirau digital holography by structured illumination,” Opt. Commun. 404, 110–117 (2017).
[Crossref]

Osten, W.

Park, J. H.

Park, K.

Pedrini, G.

Pierattini, G.

Qu, W.

Saavedra, G.

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[Crossref] [PubMed]

E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Enhancing spatial resolution in digital holographic microscopy by biprism structured illumination,” Opt. Lett. 39(7), 2086–2089 (2014).
[Crossref] [PubMed]

Sánchez-Ortiga, E.

E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Enhancing spatial resolution in digital holographic microscopy by biprism structured illumination,” Opt. Lett. 39(7), 2086–2089 (2014).
[Crossref] [PubMed]

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[Crossref] [PubMed]

Sedat, J. W.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Shao, L.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Singh, M.

Singh, V. R.

Situ, G.

J. Ma, C. Yuan, G. Situ, G. Pedrini, and W. Osten, “Resolution enhancement in digital holographic microscopy with structured illumination,” Chin. Opt. Lett. 11(9), 28–32 (2013).

C. Yuan, G. Situ, G. Pedrini, J. Ma, and W. Osten, “Resolution improvement in digital holography by angular and polarization multiplexing,” Appl. Opt. 50(7), B6–B11 (2011).
[Crossref] [PubMed]

Sun, J.

Sun, W.

J. Zhao, X. Yan, W. Sun, and J. Di, “Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states,” Opt. Lett. 35(20), 3519–3521 (2010).
[Crossref] [PubMed]

J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, “Phase aberration compensation of digital holographic microscopy based on least squares surface fitting,” Opt. Commun. 282(19), 3873–3877 (2009).
[Crossref]

Tu, H. Y.

Wang, C. J.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Weijuan, Q.

Wicker, K.

K. Wicker and R. Heintzmann, “Resolving a misconception about structured illumination,” Nat. Photonics 8(5), 342–344 (2014).
[Crossref]

Wu, X. R.

Yan, S.

Yan, X.

J. Zhao, X. Yan, W. Sun, and J. Di, “Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states,” Opt. Lett. 35(20), 3519–3521 (2010).
[Crossref] [PubMed]

J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, “Phase aberration compensation of digital holographic microscopy based on least squares surface fitting,” Opt. Commun. 282(19), 3873–3877 (2009).
[Crossref]

Yang, T. D.

Yang, Y.

Yao, B.

Yasui, T.

Ye, T.

Yingjie, Y.

Yu, L.

Yuan, C.

J. Ma, C. Yuan, G. Situ, G. Pedrini, and W. Osten, “Resolution enhancement in digital holographic microscopy with structured illumination,” Chin. Opt. Lett. 11(9), 28–32 (2013).

C. Yuan, G. Situ, G. Pedrini, J. Ma, and W. Osten, “Resolution improvement in digital holography by angular and polarization multiplexing,” Appl. Opt. 50(7), B6–B11 (2011).
[Crossref] [PubMed]

Zalevsky, Z.

Zhang, Y.

Zhao, J.

J. Zhao, X. Yan, W. Sun, and J. Di, “Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states,” Opt. Lett. 35(20), 3519–3521 (2010).
[Crossref] [PubMed]

J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, “Phase aberration compensation of digital holographic microscopy based on least squares surface fitting,” Opt. Commun. 282(19), 3873–3877 (2009).
[Crossref]

Zheng, J.

Zuo, C.

Appl. Opt. (5)

Arch. Mikrosk. Anat. (1)

E. Abbe, “Beiträge zur Theorie des Mikroskops undder mikroskopischen Wahrnehmung,” Arch. Mikrosk. Anat. 9(1), 413–418 (1873).
[Crossref]

Biomed. Opt. Express (1)

Biophys. J. (1)

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Chin. Opt. Lett. (1)

J. Ma, C. Yuan, G. Situ, G. Pedrini, and W. Osten, “Resolution enhancement in digital holographic microscopy with structured illumination,” Chin. Opt. Lett. 11(9), 28–32 (2013).

J. Biomed. Opt. (1)

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[Crossref] [PubMed]

J. Microsc. (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

Nat. Photonics (1)

K. Wicker and R. Heintzmann, “Resolving a misconception about structured illumination,” Nat. Photonics 8(5), 342–344 (2014).
[Crossref]

Opt. Commun. (3)

J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, “Phase aberration compensation of digital holographic microscopy based on least squares surface fitting,” Opt. Commun. 282(19), 3873–3877 (2009).
[Crossref]

Y. Ganjkhani, M. A. Charsooghi, E. A. Akhlaghi, and A. Moradi, “Super-resolved Mirau digital holography by structured illumination,” Opt. Commun. 404, 110–117 (2017).
[Crossref]

V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276(2), 209–217 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (8)

Q. Weijuan, Y. Yingjie, C. O. Choo, and A. Asundi, “Digital holographic microscopy with physical phase compensation,” Opt. Lett. 34(8), 1276–1278 (2009).
[Crossref] [PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Phase aberration compensation in digital holographic microscopy based on principal component analysis,” Opt. Lett. 38(10), 1724–1726 (2013).
[Crossref] [PubMed]

J. Sun, Q. Chen, Y. Zhang, and C. Zuo, “Optimal principal component analysis-based numerical phase aberration compensation method for digital holography,” Opt. Lett. 41(6), 1293–1296 (2016).
[Crossref] [PubMed]

M. Singh and K. Khare, “Accurate efficient carrier estimation for single-shot digital holographic imaging,” Opt. Lett. 41(21), 4871–4874 (2016).
[Crossref] [PubMed]

E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Enhancing spatial resolution in digital holographic microscopy by biprism structured illumination,” Opt. Lett. 39(7), 2086–2089 (2014).
[Crossref] [PubMed]

P. Gao, G. Pedrini, and W. Osten, “Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy,” Opt. Lett. 38(8), 1328–1330 (2013).
[Crossref] [PubMed]

A. Calabuig, V. Micó, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by red-green-blue multiplexing,” Opt. Lett. 36(6), 885–887 (2011).
[Crossref] [PubMed]

J. Zhao, X. Yan, W. Sun, and J. Di, “Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states,” Opt. Lett. 35(20), 3519–3521 (2010).
[Crossref] [PubMed]

Photon. Res. (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

Other (2)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The simulation results. The horizontal compound hologram (a) and its Fourier spectrum (b). The reconstructed 1D phase images by the SI-DHM using direct spectrum-synthesizing (c) and the SI-DHM using the PCA (d). The reconstructed phase image by the regular DHM (e). The reconstructed 2D phase image (f) by the SI-DHM using the PCA. The insets at the top of (d)-(f) are their spectrum, and those at the bottom of them are their plots along the corresponding colorful lines.
Fig. 2
Fig. 2 Experiment setup of the proposed structured illumination DHM system.
Fig. 3
Fig. 3 Experiment results of the USAF 1951 test target. The recorded horizontal compound hologram (a) and its Fourier spectrum (b). The reconstructed 1D amplitude images by the SI-DHM using direct spectrum synthesizing (c) and the SI-DHM using PCA algorithm (e). The reconstructed amplitude image by the regular DHM (d). The reconstructed 2D amplitude image by the SI-DHM using PCA algorithm (g). The horizontal plots (f) along the blue line in (d) and the red line in (e), and the horizontal (h) and vertical (i) plots along the blue lines in (d) and the red lines in (g).
Fig. 4
Fig. 4 Experiment results of the polystyrene particle-cluster. The reconstructed amplitude images by the regular DHM (a), the SI-DHM using direct spectrum synthesizing (c) and the SI-DHM using the PCA (e), respectively. The reconstructed phase images by the regular DHM (b), the SI-DHM using direct spectrum synthesizing (d) and the SI-DHM using the PCA (f), respectively. The plots (g) and (h) along the amplitude distributions of red lines in (a) and (e), and the phase distribution of red lines in (b) and (f), respectively.
Fig. 5
Fig. 5 Experiment results of the label-free cat neurons. The reconstructed phase images using the regular DHM (a) and the SI-DHM by the PCA (b). The plots (c) along the red lines in the red squares of (a) and (b).

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

E ( x 0 ) = cos ( 2 π f 0 x 0 ) = 1 2 [ exp ( i 2 π f 0 x 0 ) + exp ( i 2 π f 0 x 0 ) ]
O 0 ( x 0 , y 0 ) = 1 2 O ( x 0 , y 0 ) [ exp ( i 2 π f 0 x 0 ) J h + exp ( i 2 π f 0 x 0 ) J v ]
O r ( x , y ) = h q ( x x 0 , y y 0 ) O 0 ( x 0 / M , y 0 / M ) d x 0 d y 0
O r ( x , y ) = P q ( x , y ) - - h ( x x 0 , y y 0 ) O 0 ( x 0 / M , y 0 / M ) d x 0 d y 0
O r ( x ) = 1 2 P q ( x ) { O ( x / M ) [ exp ( i 2 π f 0 x / M ) J h + exp ( i 2 π f 0 x / M ) J v ] h ( x ) }
O ˜ r ( f ) = M 2 P ˜ q ( f ) { [ O ˜ ( M f f 0 ) J h + O ˜ ( M f + f 0 ) J v ] H ( f ) }
I c ( x ) = | O r ( x ) + R ( x ) J h + R + ( x ) J v | 2
I c ( x ) = | 1 2 { [ O ( x / M ) exp ( i 2 π f 0 x / M ) ] h ( x ) } P q ( x ) + R ( x ) | 2 + | 1 2 { [ O ( x / M ) exp ( i 2 π f 0 x / M ) ] h ( x ) } P q ( x ) + R + ( x ) | 2
I ˜ c ( f ) = { [ O ˜ ( M f f 0 ) H ( f ) ] P ˜ q ( f ) δ ( f α ) + [ O ˜ ( M f + f 0 ) H ( f ) ] P ˜ q ( f ) δ ( f + α + ) + [ O ˜ ( M f f 0 ) H * ( f ) ] P ˜ q * ( f ) δ ( f + α ) + [ O ˜ ( M f + f 0 ) H * ( f ) ] P ˜ q * ( f ) δ ( f α + ) } M / 2 + D ( f )
O R ( x ) = [ exp ( i l 1 x ) P q ( x ) ] [ O ( x / M ) h ( x ) exp ( i 2 π f 0 x / M ) ] / 2 = Q 1 ( x ) [ O ( x / M ) h ( x ) exp ( i 2 π f 0 x / M ) ] / 2
O R + ( x ) = [ exp ( i l 2 x ) P q ( x ) ] [ O ( x / M ) h ( x ) exp ( i 2 π f 0 x / M ) ] / 2 = Q 2 ( x ) [ O ( x / M ) h ( x ) exp ( i 2 π f 0 x / M ) ] / 2
Z R = U 1 Σ 1 V 1 T
Z R + = U 2 Σ 2 V 2 T
j = ( σ j , 1 0 0 σ j , m i n )
O c ( x ) = Q 1 * ( x ) O R ( x ) + Q 2 * ( x ) O R + ( x ) = { O ( x / M ) [ h ( x ) exp ( i 2 π f 0 x / M ) ] + O ( x / M ) [ h ( x ) exp ( i 2 π f 0 x / M ) ] } / 2
O ˜ c ( f ) = M 2 O ˜ ( M f ) [ H ( f f 0 M ) + H ( f + f 0 M ) ]
H c ( f ) = H ( f f 0 M ) + H ( f + f 0 M )

Metrics