Abstract

The transmission distance of underwater wireless optical communication (UWOC) is severely limited by the rapid decay of light intensity in water. Power-efficient pulse position modulation (PPM) and ultra-sensitive multi-pixel photon counter (MPPC) open the door toward designing long-reach UWOC systems. In this paper, a 46-m UWOC system based on PPM and MPPC was proposed and experimentally demonstrated with ultra-low transmitting power into the underwater channel. Clear eye diagrams without any slot error for ten different PPM signals were obtained in the 46-m experiment with data rates of Mbps level. The received optical power was as low as −39.2 dBm for the 10-MHz 4-PPM signal, when the laser worked under the stimulated state. Meanwhile, the received optical power can be reduced to −62.8 dBm, for the 5-MHz 64-PPM signal when the laser worked under the spontaneous state.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Underwater wireless optical communication using an arrayed transmitter/receiver and optical superimposition-based PAM-4 signal

Meiwei Kong, Yifei Chen, Rohail Sarwar, Bin Sun, Zhiwei Xu, Jun Han, Jiawang Chen, Huawei Qin, and Jing Xu
Opt. Express 26(3) 3087-3097 (2018)

Security weaknesses of underwater wireless optical communication

Meiwei Kong, Jiongliang Wang, Yifei Chen, Tariq Ali, Rohail Sarwar, Yang Qiu, Shilian Wang, Jun Han, and Jing Xu
Opt. Express 25(18) 21509-21518 (2017)

16.6 Gbps data rate for underwater wireless optical transmission with single laser diode achieved with discrete multi-tone and post nonlinear equalization

Chao Fei, Xiaojian Hong, Guowu Zhang, Ji Du, Yu Gong, Julian Evans, and Sailing He
Opt. Express 26(26) 34060-34069 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. Wang, H.-Y. Yu, and Y.-J. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photonics J. 8(5), 1–11 (2017).
  2. X. Liu, S. Yi, X. Zhou, Z. Fang, Z.-J. Qiu, L. Hu, C. Cong, L. Zheng, R. Liu, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation,” Opt. Express 25(22), 27937–27947 (2017).
    [Crossref] [PubMed]
  3. Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, and J. Xu, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Express 25(13), 14760–14765 (2017).
    [Crossref] [PubMed]
  4. C. Shen, Y. Guo, H. M. Oubei, T. K. Ng, G. Liu, K.-H. Park, K.-T. Ho, M.-S. Alouini, and B. S. Ooi, “20-meter underwater wireless optical communication link with 1.5 Gbps data rate,” Opt. Express 24(22), 25502–25509 (2016).
    [Crossref] [PubMed]
  5. C. Fei, J. W. Zhang, G. W. Zhang, Y. J. Wu, X. Z. Hong, and S. He, “Demonstration of 15-M 7.33-Gb/s 450-nm underwater wireless optical discrete multitone transmission using post nonlinear equalization,” J. Lightwave Technol. 36(3), 728–734 (2018).
    [Crossref]
  6. M. Kong, W. Lv, T. Ali, R. Sarwar, C. Yu, Y. Qiu, F. Qu, Z. Xu, J. Han, and J. Xu, “10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication,” Opt. Express 25(17), 20829–20834 (2017).
    [Crossref] [PubMed]
  7. C.-Y. Li, H.-H. Lu, W.-S. Tsai, M.-T. Cheng, C.-M. Ho, Y.-C. Wang, Z.-Y. Yang, and D.-Y. Chen, “16 Gb/s PAM4 UWOC system based on 488-nm LD with light injection and optoelectronic feedback techniques,” Opt. Express 25(10), 11598–11605 (2017).
    [Crossref] [PubMed]
  8. H. M. Oubei, C. Li, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Express 23(16), 20743–20748 (2015).
    [Crossref] [PubMed]
  9. H. M. Oubei, J. R. Duran, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, T. K. Ng, H.-C. Kuo, J.-H. He, M.-S. Alouini, G.-R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
    [Crossref] [PubMed]
  10. C. Gabriel, M. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Investigation of suitable modulation techniques for underwater wireless optical communication,” 2012 International Workshop on Optical Wireless Communications (IWOW 2012), pp. 1–3.
    [Crossref]
  11. S. Meihong, Y. Xinsheng, and Z. Fengli, “The evaluation of modulation techniques for underwater wireless optical communications,” 2009International Conference on Communication Software and Networks, pp. 138–142.
    [Crossref]
  12. D. Anguita, D. Brizzolara, and G. Parodi, “Optical wireless communication for underwater Wireless Sensor Networks: Hardware modules and circuits design and implementation,” OCEANS 2010 MTS/IEEE, pp. 1–8.
  13. Y. Jiang, K. Tao, Y. Song, and S. Fu, “Packet error rate analysis of OOK, DPIM, and PPM modulation schemes for ground-to-satellite laser uplink communications,” Appl. Opt. 53(7), 1268–1273 (2014).
    [Crossref] [PubMed]
  14. H. Fu, P. Wang, T. Liu, T. Cao, L. Guo, and J. Qin, “Performance analysis of a PPM-FSO communication system with an avalanche photodiode receiver over atmospheric turbulence channels with aperture averaging,” Appl. Opt. 56(23), 6432–6439 (2017).
    [Crossref] [PubMed]

2018 (1)

2017 (6)

M. Kong, W. Lv, T. Ali, R. Sarwar, C. Yu, Y. Qiu, F. Qu, Z. Xu, J. Han, and J. Xu, “10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication,” Opt. Express 25(17), 20829–20834 (2017).
[Crossref] [PubMed]

C.-Y. Li, H.-H. Lu, W.-S. Tsai, M.-T. Cheng, C.-M. Ho, Y.-C. Wang, Z.-Y. Yang, and D.-Y. Chen, “16 Gb/s PAM4 UWOC system based on 488-nm LD with light injection and optoelectronic feedback techniques,” Opt. Express 25(10), 11598–11605 (2017).
[Crossref] [PubMed]

C. Wang, H.-Y. Yu, and Y.-J. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photonics J. 8(5), 1–11 (2017).

X. Liu, S. Yi, X. Zhou, Z. Fang, Z.-J. Qiu, L. Hu, C. Cong, L. Zheng, R. Liu, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation,” Opt. Express 25(22), 27937–27947 (2017).
[Crossref] [PubMed]

Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, and J. Xu, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Express 25(13), 14760–14765 (2017).
[Crossref] [PubMed]

H. Fu, P. Wang, T. Liu, T. Cao, L. Guo, and J. Qin, “Performance analysis of a PPM-FSO communication system with an avalanche photodiode receiver over atmospheric turbulence channels with aperture averaging,” Appl. Opt. 56(23), 6432–6439 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (2)

2014 (1)

Ali, T.

Alouini, M.-S.

Cao, T.

Chen, D.-Y.

Chen, Y.

Cheng, M.-T.

Chi, Y.-C.

Cong, C.

Deng, N.

Duran, J. R.

Fang, Z.

Fei, C.

Fengli, Z.

S. Meihong, Y. Xinsheng, and Z. Fengli, “The evaluation of modulation techniques for underwater wireless optical communications,” 2009International Conference on Communication Software and Networks, pp. 138–142.
[Crossref]

Fu, H.

Fu, S.

Guo, C.

Guo, L.

Guo, Y.

Han, J.

He, J.-H.

He, S.

Ho, C.-M.

Ho, K.-T.

Hong, X. Z.

Hu, L.

Janjua, B.

Jiang, Y.

Kong, M.

Kuo, H.-C.

Li, C.

Li, C.-Y.

Lin, G.-R.

Liu, G.

Liu, R.

Liu, T.

Liu, X.

Lu, H.-H.

Lv, W.

Meihong, S.

S. Meihong, Y. Xinsheng, and Z. Fengli, “The evaluation of modulation techniques for underwater wireless optical communications,” 2009International Conference on Communication Software and Networks, pp. 138–142.
[Crossref]

Ng, T. K.

Ooi, B. S.

Oubei, H. M.

Park, K.-H.

Qin, J.

Qiu, Y.

Qiu, Z.-J.

Qu, F.

Sarwar, R.

Shen, C.

Song, Y.

Sun, B.

Tao, K.

Tian, P.

Tsai, C.-T.

Tsai, W.-S.

Wang, C.

C. Wang, H.-Y. Yu, and Y.-J. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photonics J. 8(5), 1–11 (2017).

Wang, H.-Y.

Wang, J.

Wang, P.

Wang, Y.-C.

Wu, Y. J.

Xinsheng, Y.

S. Meihong, Y. Xinsheng, and Z. Fengli, “The evaluation of modulation techniques for underwater wireless optical communications,” 2009International Conference on Communication Software and Networks, pp. 138–142.
[Crossref]

Xu, J.

Xu, Z.

Yang, Z.-Y.

Yi, S.

Yu, C.

Yu, H.-Y.

C. Wang, H.-Y. Yu, and Y.-J. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photonics J. 8(5), 1–11 (2017).

Zhang, G. W.

Zhang, J. W.

Zheng, L.

Zhou, X.

Zhu, Y.-J.

C. Wang, H.-Y. Yu, and Y.-J. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photonics J. 8(5), 1–11 (2017).

Appl. Opt. (2)

IEEE Photonics J. (1)

C. Wang, H.-Y. Yu, and Y.-J. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photonics J. 8(5), 1–11 (2017).

J. Lightwave Technol. (1)

Opt. Express (7)

M. Kong, W. Lv, T. Ali, R. Sarwar, C. Yu, Y. Qiu, F. Qu, Z. Xu, J. Han, and J. Xu, “10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication,” Opt. Express 25(17), 20829–20834 (2017).
[Crossref] [PubMed]

X. Liu, S. Yi, X. Zhou, Z. Fang, Z.-J. Qiu, L. Hu, C. Cong, L. Zheng, R. Liu, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation,” Opt. Express 25(22), 27937–27947 (2017).
[Crossref] [PubMed]

H. M. Oubei, C. Li, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Express 23(16), 20743–20748 (2015).
[Crossref] [PubMed]

H. M. Oubei, J. R. Duran, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, T. K. Ng, H.-C. Kuo, J.-H. He, M.-S. Alouini, G.-R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
[Crossref] [PubMed]

C. Shen, Y. Guo, H. M. Oubei, T. K. Ng, G. Liu, K.-H. Park, K.-T. Ho, M.-S. Alouini, and B. S. Ooi, “20-meter underwater wireless optical communication link with 1.5 Gbps data rate,” Opt. Express 24(22), 25502–25509 (2016).
[Crossref] [PubMed]

C.-Y. Li, H.-H. Lu, W.-S. Tsai, M.-T. Cheng, C.-M. Ho, Y.-C. Wang, Z.-Y. Yang, and D.-Y. Chen, “16 Gb/s PAM4 UWOC system based on 488-nm LD with light injection and optoelectronic feedback techniques,” Opt. Express 25(10), 11598–11605 (2017).
[Crossref] [PubMed]

Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, and J. Xu, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Express 25(13), 14760–14765 (2017).
[Crossref] [PubMed]

Other (3)

C. Gabriel, M. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Investigation of suitable modulation techniques for underwater wireless optical communication,” 2012 International Workshop on Optical Wireless Communications (IWOW 2012), pp. 1–3.
[Crossref]

S. Meihong, Y. Xinsheng, and Z. Fengli, “The evaluation of modulation techniques for underwater wireless optical communications,” 2009International Conference on Communication Software and Networks, pp. 138–142.
[Crossref]

D. Anguita, D. Brizzolara, and G. Parodi, “Optical wireless communication for underwater Wireless Sensor Networks: Hardware modules and circuits design and implementation,” OCEANS 2010 MTS/IEEE, pp. 1–8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Frame structure of the PPM signals. (b) Laser driving voltage vs laser current (V-I curve) and optical power versus laser current (P-I curve). (c) The 4-PPM signal captured by the MPPC with a slot width of 200 ns.
Fig. 2
Fig. 2 (a) Experiment setup of the proposed 46-m UWOC system using an MPPC receiver. AWG, arbitrary waveform generator; PA, power amplifier; VEA, variable electrical attenuator; DC, direct current; BT, bias-tee; LD, laser diode; OF1, variable metallic neutral density optical filter; OF2, 450 nm optical filter; OSC, oscilloscope. (b) The 46-m PVC tube filled with tap water to simulate a 46-m underwater channel.
Fig. 3
Fig. 3 (a)~(e) Eye diagrams of 4-PPM, 8-PPM, 16-PPM, 32-PPM and 64-PPM before demodulation, respectively, when the time slot frequency was 5 MHz and the laser worked under stimulated emission state. (f)~(j) Eye diagrams when the time slot frequency was changed to 10 MHz. (k) Enlarged partial eye diagram of (j). (l) Back to back 4-PPM eye diagram.
Fig. 4
Fig. 4 (a)~(e) Eye diagrams of 4-PPM, 8-PPM, 16-PPM, 32-PPM and 64-PPM signals before demodulation, respectively, when the time slot frequency was 5 MHz and the laser worked under spontaneous emission state. (f)~(j) Eye diagrams when the time slot frequency was changed to 10 MHz. (k) Enlarged partial eye diagram of (j).
Fig. 5
Fig. 5 Transmitting optical power for different L-PPM signals, stimulated: laser worked under stimulated emission state; spontaneous: laser worked under spontaneous emission state.

Metrics