Abstract

Type II π-phase-shifted Bragg gratings stable up to ~1000°C are written inside a standard single mode silica optical fiber (SMF-28) with infrared femtosecond pulses and a special phase mask. Inscription through the protective polyimide fiber coating is also demonstrated. The birefringence of the Bragg gratings and, as a result, the polarization dependence of their spectra are strongly affected by the femtosecond laser polarization. Using optimized writing conditions, the full width at half maximum of the π-phase-shifted passband feature can be ~30 pm in transmission, while the polarization-dependent shift of its central wavelength can be less than 8 pm, for a 7 mm long grating structure. This makes such gratings a unique tool for high-resolution measurements of temperature, load and vibration in extreme temperature environments.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Through-the-coating femtosecond laser inscription of very short fiber Bragg gratings for acoustic and high temperature sensing applications

Cyril Hnatovsky, Dan Grobnic, and Stephen J. Mihailov
Opt. Express 25(21) 25435-25446 (2017)

Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask

Stephen J. Mihailov, Dan Grobnic, Christopher W. Smelser, Ping Lu, Robert B. Walker, and Huimin Ding
Opt. Mater. Express 1(4) 754-765 (2011)

Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single-and multi-core mid-IR glass fibers

Rui Suo, Joris Lousteau, Hongxia Li, Xin Jiang, Kaiming Zhou, Lin Zhang, William N MacPherson, Henry T Bookey, James S Barton, Ajoy K Kar, Animesh Jha, and Ian Bennion
Opt. Express 17(9) 7540-7548 (2009)

References

  • View by:
  • |
  • |
  • |

  1. X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
    [Crossref]
  2. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and M. A. Nikulin, “Single frequency single polarization DFB fiber laser,” Laser Phys. Lett. 4(6), 428–432 (2007).
    [Crossref]
  3. M. LeBlanc, S. T. Vohra, T. E. Tsai, and E. J. Friebele, “Transverse load sensing by use of pi-phase-shifted fiber Bragg gratings,” Opt. Lett. 24(16), 1091–1093 (1999).
    [Crossref] [PubMed]
  4. D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, “Fiber strain sensor based on a π-phase-shifted Bragg grating and the Pound-Drever-Hall technique,” Opt. Express 16(3), 1945–1950 (2008).
    [Crossref] [PubMed]
  5. Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
    [Crossref]
  6. B. Huang and X. Shu, “Ultra-compact strain- and temperature-insensitive torsion sensor based on a line-by-line inscribed phase-shifted FBG,” Opt. Express 24(16), 17670–17679 (2016).
    [Crossref] [PubMed]
  7. A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett. 36(10), 1833–1835 (2011).
    [Crossref] [PubMed]
  8. G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
    [Crossref]
  9. A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(1), 42–44 (2000).
    [Crossref]
  10. N. K. Berger, B. Levit, B. Fischer, M. Kulishov, D. V. Plant, and J. Azaña, “Temporal differentiation of optical signals using a phase-shifted fiber Bragg grating,” Opt. Express 15(2), 371–381 (2007).
    [Crossref] [PubMed]
  11. J. Canning and M. G. Sceats, “π-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett. 30(16), 1344–1345 (1994).
    [Crossref]
  12. P. F. Mckee, R. Kashyap, and D. Armes, “UV written reflection grating structures in photosensitive optical fibres using phase-shifted phase masks,” Electron. Lett. 30(23), 1977–1978 (1994).
    [Crossref]
  13. W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, and R. I. Laming, “Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique,” Opt. Lett. 20(20), 2051–2053 (1995).
    [Crossref] [PubMed]
  14. G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
    [Crossref] [PubMed]
  15. J. Burgmeier, C. Waltermann, G. Flachenecker, and W. Schade, “Point-by-point inscription of phase-shifted fiber Bragg gratings with electro-optic amplitude modulated femtosecond laser pulses,” Opt. Lett. 39(3), 540–543 (2014).
    [Crossref] [PubMed]
  16. M. Bernier, V. Michaud-Belleau, S. Levasseur, V. Fortin, J. Genest, and R. Vallée, “All-fiber DFB laser operating at 2.8 μm,” Opt. Lett. 40(1), 81–84 (2015).
    [Crossref] [PubMed]
  17. A. Shamir and A. A. Ishaaya, “Femtosecond inscription of phase-shifted gratings by overlaid fiber Bragg gratings,” Opt. Lett. 41(9), 2017–2020 (2016).
    [Crossref] [PubMed]
  18. J. He, Y. Wang, C. Liao, Q. Wang, K. Yang, B. Sun, G. Yin, S. Liu, J. Zhou, and J. Zhao, “Highly birefringent phase-shifted fiber Bragg gratings inscribed with femtosecond laser,” Opt. Lett. 40(9), 2008–2011 (2015).
    [Crossref] [PubMed]
  19. Y. Du, T. Chen, Y. Zhang, R. Wang, H. Cao, and K. Li, “Fabrication of phase-shifted fiber Bragg grating by femtosecond laser shield method,” IEEE Photonics Technol. Lett. 29(24), 2143–2146 (2017).
    [Crossref]
  20. Y. Jiang, C. Liu, D. Li, D. Yang, and J. Zhao, “Simultaneous measurement of temperature and strain using a phase-shifted fiber Bragg grating inscribed by femtosecond laser,” Meas. Sci. Technol. 29(4), 045101 (2018).
    [Crossref]
  21. S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1(4), 754–765 (2011).
    [Crossref]
  22. A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006).
    [Crossref] [PubMed]
  23. S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
    [Crossref]
  24. D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
    [Crossref]
  25. S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
    [Crossref]
  26. M. Bernier, F. Trépanier, J. Carrier, and R. Vallée, “High mechanical strength fiber Bragg gratings made with infrared femtosecond pulses and a phase mask,” Opt. Lett. 39(12), 3646–3649 (2014).
    [Crossref] [PubMed]
  27. D. Grobnic, C. Hnatovsky, and S. J. Mihailov, “Thermally stable type II FBGs written through polyimide coatings of silica-based optical fiber,” IEEE Photonics Technol. Lett. 29(21), 1780–1783 (2017).
    [Crossref]
  28. C. Hnatovsky, D. Grobnic, and S. J. Mihailov, “Through-the-coating femtosecond laser inscription of very short fiber Bragg gratings for acoustic and high temperature sensing applications,” Opt. Express 25(21), 25435–25446 (2017).
    [Crossref] [PubMed]
  29. J. Habel, T. Boilard, J.-S. Frenière, F. Trépanier, and M. Bernier, “Femtosecond FBG Written through the Coating for Sensing Applications,” Sensors (Basel) 17(11), 2519 (2017).
    [Crossref] [PubMed]
  30. V. V. Rondinella and M. J. Matthewson, “Effect of chemical stripping on the strength and surface morphology of fused silica optical fiber,” Proc. SPIE 2074, 52–58 (1994).
    [Crossref]
  31. R. S. Robinson and H. H. Yuce, “Scanning tunneling microscopy of optical fiber corrosion: surface roughness contribution to zero-stress aging,” J. Am. Ceram. Soc. 74(4), 814–818 (1991).
    [Crossref]
  32. P. Lu, D. Grobnic, and S. J. Mihailov, “Characterization of the birefringence in fiber Bragg gratings fabricated with an ultrafast-infrared laser,” J. Lightwave Technol. 25(3), 779–786 (2007).
    [Crossref]
  33. L. A. Fernandes, J. R. Grenier, P. V. S. Marques, J. S. Aitchison, and P. R. Herman, “Strong birefringence tuning of optical waveguides with femtosecond laser irradiation of bulk fused silica and single mode fibers,” J. Lightwave Technol. 31(22), 3563–3569 (2013).
    [Crossref]
  34. Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg gratings,” IEEE Photonics Technol. Lett. 16(5), 1316–1318 (2004).
    [Crossref]
  35. Y. Sheng and L. Sun, “Near-field diffraction of irregular phase gratings with multiple phase-shifts,” Opt. Express 13(16), 6111–6116 (2005).
    [Crossref] [PubMed]
  36. G. Tremblay and Y. Sheng, “Effects of the phase shift split on phase-shifted fiber Bragg gratings,” J. Opt. Soc. Am. B 23(8), 1511–1516 (2006).
    [Crossref]
  37. C. Hnatovsky, D. Grobnic, D. Coulas, M. Barnes, and S. J. Mihailov, “Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings,” Opt. Lett. 42(3), 399–402 (2017).
    [Crossref] [PubMed]
  38. C. W. Smelser, S. J. Mihailov, D. Grobnic, P. Lu, R. B. Walker, H. Ding, and X. Dai, “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” Opt. Lett. 29(13), 1458–1460 (2004).
    [Crossref] [PubMed]
  39. C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
    [Crossref] [PubMed]
  40. C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
    [Crossref] [PubMed]
  41. R. J. Williams, R. G. Krämer, S. Nolte, M. J. Withford, and M. J. Steel, “Detuning in apodized point-by-point fiber Bragg gratings: insights into the grating morphology,” Opt. Express 21(22), 26854–26867 (2013).
    [Crossref] [PubMed]
  42. S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
    [Crossref] [PubMed]
  43. J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
    [Crossref]
  44. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [Crossref] [PubMed]
  45. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
    [Crossref] [PubMed]
  46. Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B 19(05), 225–238 (2005).
    [Crossref]
  47. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
    [Crossref]
  48. D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” Opt. Express 16(3), 1517–1522 (2008).
    [Crossref] [PubMed]
  49. S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica - periodic nanostructures in borosilicate glasses and ULE™,” Opt. Mater. Express 3(8), 1161–1166 (2013).
    [Crossref]
  50. F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
    [Crossref]
  51. T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
    [Crossref]
  52. M. Lancry, F. Zimmerman, R. Desmarchelier, J. Tian, F. Brisset, S. Nolte, and B. Poumellec, “Nanogratings formation in multicomponent silicate glasses,” Appl. Phys. B 122(3), 66 (2016).
    [Crossref]
  53. S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
    [Crossref]
  54. P. Karpinski, V. Shvedov, W. Krolikowski, and C. Hnatovsky, “Laser-writing inside uniaxially birefringent crystals: fine morphology of ultrashort pulse-induced changes in lithium niobate,” Opt. Express 24(7), 7456–7476 (2016).
    [Crossref] [PubMed]
  55. F. Zimmermann, M. Lancry, A. Plech, S. Richter, B. H. Babu, B. Poumellec, A. Tünnermann, and S. Nolte, “Femtosecond laser written nanostructures in Ge-doped glasses,” Opt. Lett. 41(6), 1161–1164 (2016).
    [Crossref] [PubMed]
  56. E. Bricchi and P. G. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett. 88(11), 111119 (2006).
    [Crossref]
  57. M. Beresna, M. Gecevičius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011).
    [Crossref]
  58. M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
    [Crossref]
  59. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  60. A. Champion and Y. Bellouard, “Direct volume variation measurements in fused silica specimens exposed to femtosecond laser,” Opt. Mater. Express 2(6), 789–798 (2012).
    [Crossref]
  61. A. Champion, M. Beresna, P. Kazansky, and Y. Bellouard, “Stress distribution around femtosecond laser affected zones: effect of nanogratings orientation,” Opt. Express 21(21), 24942–24951 (2013).
    [Crossref] [PubMed]
  62. B. McMillen and Y. Bellouard, “On the anisotropy of stress-distribution induced in glasses and crystals by non-ablative femtosecond laser exposure,” Opt. Express 23(1), 86–100 (2015).
    [Crossref] [PubMed]
  63. C. Hnatovsky, D. Grobnic, and S. J. Mihailov, “Nonlinear photoluminescence imaging applied to femtosecond laser manufacturing of fiber Bragg gratings,” Opt. Express 25(13), 14247–14259 (2017).
    [Crossref] [PubMed]
  64. D. Grobnic, C. Hnatovsky, and S. J. Mihailov, “Low loss Type II regenerative Bragg gratings made with ultrafast radiation,” Opt. Express 24(25), 28704–28712 (2016).
    [Crossref] [PubMed]
  65. S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
    [Crossref]
  66. T. Erdogan and V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Am. B 11(10), 2100–2105 (1994).
    [Crossref]
  67. A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, and S. G. Kosinski, “Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method,” Opt. Lett. 19(16), 1260–1262 (1994).
    [Crossref] [PubMed]
  68. N. Belhadj, Y. Park, S. Larochelle, K. Dossou, and J. Azaña, “UV-induced modification of stress distribution in optical fibers and its contribution to Bragg grating birefringence,” Opt. Express 16(12), 8727–8741 (2008).
    [Crossref] [PubMed]

2018 (1)

Y. Jiang, C. Liu, D. Li, D. Yang, and J. Zhao, “Simultaneous measurement of temperature and strain using a phase-shifted fiber Bragg grating inscribed by femtosecond laser,” Meas. Sci. Technol. 29(4), 045101 (2018).
[Crossref]

2017 (6)

Y. Du, T. Chen, Y. Zhang, R. Wang, H. Cao, and K. Li, “Fabrication of phase-shifted fiber Bragg grating by femtosecond laser shield method,” IEEE Photonics Technol. Lett. 29(24), 2143–2146 (2017).
[Crossref]

D. Grobnic, C. Hnatovsky, and S. J. Mihailov, “Thermally stable type II FBGs written through polyimide coatings of silica-based optical fiber,” IEEE Photonics Technol. Lett. 29(21), 1780–1783 (2017).
[Crossref]

C. Hnatovsky, D. Grobnic, and S. J. Mihailov, “Through-the-coating femtosecond laser inscription of very short fiber Bragg gratings for acoustic and high temperature sensing applications,” Opt. Express 25(21), 25435–25446 (2017).
[Crossref] [PubMed]

J. Habel, T. Boilard, J.-S. Frenière, F. Trépanier, and M. Bernier, “Femtosecond FBG Written through the Coating for Sensing Applications,” Sensors (Basel) 17(11), 2519 (2017).
[Crossref] [PubMed]

C. Hnatovsky, D. Grobnic, D. Coulas, M. Barnes, and S. J. Mihailov, “Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings,” Opt. Lett. 42(3), 399–402 (2017).
[Crossref] [PubMed]

C. Hnatovsky, D. Grobnic, and S. J. Mihailov, “Nonlinear photoluminescence imaging applied to femtosecond laser manufacturing of fiber Bragg gratings,” Opt. Express 25(13), 14247–14259 (2017).
[Crossref] [PubMed]

2016 (7)

D. Grobnic, C. Hnatovsky, and S. J. Mihailov, “Low loss Type II regenerative Bragg gratings made with ultrafast radiation,” Opt. Express 24(25), 28704–28712 (2016).
[Crossref] [PubMed]

M. Lancry, F. Zimmerman, R. Desmarchelier, J. Tian, F. Brisset, S. Nolte, and B. Poumellec, “Nanogratings formation in multicomponent silicate glasses,” Appl. Phys. B 122(3), 66 (2016).
[Crossref]

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

P. Karpinski, V. Shvedov, W. Krolikowski, and C. Hnatovsky, “Laser-writing inside uniaxially birefringent crystals: fine morphology of ultrashort pulse-induced changes in lithium niobate,” Opt. Express 24(7), 7456–7476 (2016).
[Crossref] [PubMed]

F. Zimmermann, M. Lancry, A. Plech, S. Richter, B. H. Babu, B. Poumellec, A. Tünnermann, and S. Nolte, “Femtosecond laser written nanostructures in Ge-doped glasses,” Opt. Lett. 41(6), 1161–1164 (2016).
[Crossref] [PubMed]

B. Huang and X. Shu, “Ultra-compact strain- and temperature-insensitive torsion sensor based on a line-by-line inscribed phase-shifted FBG,” Opt. Express 24(16), 17670–17679 (2016).
[Crossref] [PubMed]

A. Shamir and A. A. Ishaaya, “Femtosecond inscription of phase-shifted gratings by overlaid fiber Bragg gratings,” Opt. Lett. 41(9), 2017–2020 (2016).
[Crossref] [PubMed]

2015 (4)

2014 (3)

2013 (5)

2012 (4)

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

A. Champion and Y. Bellouard, “Direct volume variation measurements in fused silica specimens exposed to femtosecond laser,” Opt. Mater. Express 2(6), 789–798 (2012).
[Crossref]

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

2011 (4)

2010 (1)

2008 (6)

D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, “Fiber strain sensor based on a π-phase-shifted Bragg grating and the Pound-Drever-Hall technique,” Opt. Express 16(3), 1945–1950 (2008).
[Crossref] [PubMed]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[Crossref]

N. Belhadj, Y. Park, S. Larochelle, K. Dossou, and J. Azaña, “UV-induced modification of stress distribution in optical fibers and its contribution to Bragg grating birefringence,” Opt. Express 16(12), 8727–8741 (2008).
[Crossref] [PubMed]

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
[Crossref]

D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” Opt. Express 16(3), 1517–1522 (2008).
[Crossref] [PubMed]

2007 (4)

P. Lu, D. Grobnic, and S. J. Mihailov, “Characterization of the birefringence in fiber Bragg gratings fabricated with an ultrafast-infrared laser,” J. Lightwave Technol. 25(3), 779–786 (2007).
[Crossref]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[Crossref]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and M. A. Nikulin, “Single frequency single polarization DFB fiber laser,” Laser Phys. Lett. 4(6), 428–432 (2007).
[Crossref]

N. K. Berger, B. Levit, B. Fischer, M. Kulishov, D. V. Plant, and J. Azaña, “Temporal differentiation of optical signals using a phase-shifted fiber Bragg grating,” Opt. Express 15(2), 371–381 (2007).
[Crossref] [PubMed]

2006 (4)

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006).
[Crossref] [PubMed]

G. Tremblay and Y. Sheng, “Effects of the phase shift split on phase-shifted fiber Bragg gratings,” J. Opt. Soc. Am. B 23(8), 1511–1516 (2006).
[Crossref]

E. Bricchi and P. G. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett. 88(11), 111119 (2006).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

2005 (4)

Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B 19(05), 225–238 (2005).
[Crossref]

C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
[Crossref] [PubMed]

Y. Sheng and L. Sun, “Near-field diffraction of irregular phase gratings with multiple phase-shifts,” Opt. Express 13(16), 6111–6116 (2005).
[Crossref] [PubMed]

X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]

2004 (3)

2003 (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

2000 (1)

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(1), 42–44 (2000).
[Crossref]

1999 (1)

1995 (1)

1994 (6)

J. Canning and M. G. Sceats, “π-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett. 30(16), 1344–1345 (1994).
[Crossref]

P. F. Mckee, R. Kashyap, and D. Armes, “UV written reflection grating structures in photosensitive optical fibres using phase-shifted phase masks,” Electron. Lett. 30(23), 1977–1978 (1994).
[Crossref]

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
[Crossref]

V. V. Rondinella and M. J. Matthewson, “Effect of chemical stripping on the strength and surface morphology of fused silica optical fiber,” Proc. SPIE 2074, 52–58 (1994).
[Crossref]

T. Erdogan and V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Am. B 11(10), 2100–2105 (1994).
[Crossref]

A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, and S. G. Kosinski, “Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method,” Opt. Lett. 19(16), 1260–1262 (1994).
[Crossref] [PubMed]

1991 (1)

R. S. Robinson and H. H. Yuce, “Scanning tunneling microscopy of optical fiber corrosion: surface roughness contribution to zero-stress aging,” J. Am. Ceram. Soc. 74(4), 814–818 (1991).
[Crossref]

Agrawal, G. P.

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
[Crossref]

Aitchison, J. S.

Armes, D.

P. F. Mckee, R. Kashyap, and D. Armes, “UV written reflection grating structures in photosensitive optical fibres using phase-shifted phase masks,” Electron. Lett. 30(23), 1977–1978 (1994).
[Crossref]

Asai, T.

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

Azaña, J.

Babin, S. A.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and M. A. Nikulin, “Single frequency single polarization DFB fiber laser,” Laser Phys. Lett. 4(6), 428–432 (2007).
[Crossref]

Babu, B. H.

Barcelos, S.

Barnes, M.

Becker, R. G.

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

Belhadj, N.

Bellouard, Y.

Bennion, I.

Beresna, M.

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

A. Champion, M. Beresna, P. Kazansky, and Y. Bellouard, “Stress distribution around femtosecond laser affected zones: effect of nanogratings orientation,” Opt. Express 21(21), 24942–24951 (2013).
[Crossref] [PubMed]

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011).
[Crossref]

Berger, N. K.

Bernier, M.

Bhardwaj, V. R.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Boilard, T.

J. Habel, T. Boilard, J.-S. Frenière, F. Trépanier, and M. Bernier, “Femtosecond FBG Written through the Coating for Sensing Applications,” Sensors (Basel) 17(11), 2519 (2017).
[Crossref] [PubMed]

Brandt, N.

Bricchi, E.

E. Bricchi and P. G. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett. 88(11), 111119 (2006).
[Crossref]

Brisset, F.

M. Lancry, F. Zimmerman, R. Desmarchelier, J. Tian, F. Brisset, S. Nolte, and B. Poumellec, “Nanogratings formation in multicomponent silicate glasses,” Appl. Phys. B 122(3), 66 (2016).
[Crossref]

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

Burgmeier, J.

Canning, J.

J. Canning and M. G. Sceats, “π-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett. 30(16), 1344–1345 (1994).
[Crossref]

Cao, H.

Y. Du, T. Chen, Y. Zhang, R. Wang, H. Cao, and K. Li, “Fabrication of phase-shifted fiber Bragg grating by femtosecond laser shield method,” IEEE Photonics Technol. Lett. 29(24), 2143–2146 (2017).
[Crossref]

Carrier, J.

Cerkauskaite, A.

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

Champion, A.

Chen, T.

Y. Du, T. Chen, Y. Zhang, R. Wang, H. Cao, and K. Li, “Fabrication of phase-shifted fiber Bragg grating by femtosecond laser shield method,” IEEE Photonics Technol. Lett. 29(24), 2143–2146 (2017).
[Crossref]

Chen, X.

X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]

Chinello, M.

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(1), 42–44 (2000).
[Crossref]

Churkin, D. V.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and M. A. Nikulin, “Single frequency single polarization DFB fiber laser,” Laser Phys. Lett. 4(6), 428–432 (2007).
[Crossref]

Cole, M. J.

Corkum, P. B.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Coulas, D.

Cuglietta, G.

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[Crossref]

Dai, X.

Deng, Z.

X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]

Desmarchelier, R.

M. Lancry, F. Zimmerman, R. Desmarchelier, J. Tian, F. Brisset, S. Nolte, and B. Poumellec, “Nanogratings formation in multicomponent silicate glasses,” Appl. Phys. B 122(3), 66 (2016).
[Crossref]

Ding, H.

Döring, S.

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica - periodic nanostructures in borosilicate glasses and ULE™,” Opt. Mater. Express 3(8), 1161–1166 (2013).
[Crossref]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
[Crossref]

Dossou, K.

Drevinskas, R.

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

Du, Y.

Y. Du, T. Chen, Y. Zhang, R. Wang, H. Cao, and K. Li, “Fabrication of phase-shifted fiber Bragg grating by femtosecond laser shield method,” IEEE Photonics Technol. Lett. 29(24), 2143–2146 (2017).
[Crossref]

Erdogan, T.

Fedotov, S. S.

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

Fernandes, L. A.

Fink, T.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Fischer, B.

Flachenecker, G.

Fortin, V.

Frenière, J.-S.

J. Habel, T. Boilard, J.-S. Frenière, F. Trépanier, and M. Bernier, “Femtosecond FBG Written through the Coating for Sensing Applications,” Sensors (Basel) 17(11), 2519 (2017).
[Crossref] [PubMed]

Friebele, E. J.

Galzerano, G.

Gatti, D.

Gecevicius, M.

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011).
[Crossref]

Genest, J.

Gottmann, J.

Graver, T.

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[Crossref]

Grenier, J. R.

Grobnic, D.

C. Hnatovsky, D. Grobnic, and S. J. Mihailov, “Nonlinear photoluminescence imaging applied to femtosecond laser manufacturing of fiber Bragg gratings,” Opt. Express 25(13), 14247–14259 (2017).
[Crossref] [PubMed]

C. Hnatovsky, D. Grobnic, and S. J. Mihailov, “Through-the-coating femtosecond laser inscription of very short fiber Bragg gratings for acoustic and high temperature sensing applications,” Opt. Express 25(21), 25435–25446 (2017).
[Crossref] [PubMed]

C. Hnatovsky, D. Grobnic, D. Coulas, M. Barnes, and S. J. Mihailov, “Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings,” Opt. Lett. 42(3), 399–402 (2017).
[Crossref] [PubMed]

D. Grobnic, C. Hnatovsky, and S. J. Mihailov, “Thermally stable type II FBGs written through polyimide coatings of silica-based optical fiber,” IEEE Photonics Technol. Lett. 29(21), 1780–1783 (2017).
[Crossref]

D. Grobnic, C. Hnatovsky, and S. J. Mihailov, “Low loss Type II regenerative Bragg gratings made with ultrafast radiation,” Opt. Express 24(25), 28704–28712 (2016).
[Crossref] [PubMed]

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1(4), 754–765 (2011).
[Crossref]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[Crossref]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[Crossref]

P. Lu, D. Grobnic, and S. J. Mihailov, “Characterization of the birefringence in fiber Bragg gratings fabricated with an ultrafast-infrared laser,” J. Lightwave Technol. 25(3), 779–786 (2007).
[Crossref]

C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
[Crossref] [PubMed]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
[Crossref] [PubMed]

C. W. Smelser, S. J. Mihailov, D. Grobnic, P. Lu, R. B. Walker, H. Ding, and X. Dai, “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” Opt. Lett. 29(13), 1458–1460 (2004).
[Crossref] [PubMed]

Habel, J.

J. Habel, T. Boilard, J.-S. Frenière, F. Trépanier, and M. Bernier, “Femtosecond FBG Written through the Coating for Sensing Applications,” Sensors (Basel) 17(11), 2519 (2017).
[Crossref] [PubMed]

Han, M.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

He, J.

Heinrich, M.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
[Crossref]

Herman, P. R.

Hirao, K.

Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B 19(05), 225–238 (2005).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Hnatovsky, C.

D. Grobnic, C. Hnatovsky, and S. J. Mihailov, “Thermally stable type II FBGs written through polyimide coatings of silica-based optical fiber,” IEEE Photonics Technol. Lett. 29(21), 1780–1783 (2017).
[Crossref]

C. Hnatovsky, D. Grobnic, D. Coulas, M. Barnes, and S. J. Mihailov, “Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings,” Opt. Lett. 42(3), 399–402 (2017).
[Crossref] [PubMed]

C. Hnatovsky, D. Grobnic, and S. J. Mihailov, “Through-the-coating femtosecond laser inscription of very short fiber Bragg gratings for acoustic and high temperature sensing applications,” Opt. Express 25(21), 25435–25446 (2017).
[Crossref] [PubMed]

C. Hnatovsky, D. Grobnic, and S. J. Mihailov, “Nonlinear photoluminescence imaging applied to femtosecond laser manufacturing of fiber Bragg gratings,” Opt. Express 25(13), 14247–14259 (2017).
[Crossref] [PubMed]

D. Grobnic, C. Hnatovsky, and S. J. Mihailov, “Low loss Type II regenerative Bragg gratings made with ultrafast radiation,” Opt. Express 24(25), 28704–28712 (2016).
[Crossref] [PubMed]

P. Karpinski, V. Shvedov, W. Krolikowski, and C. Hnatovsky, “Laser-writing inside uniaxially birefringent crystals: fine morphology of ultrashort pulse-induced changes in lithium niobate,” Opt. Express 24(7), 7456–7476 (2016).
[Crossref] [PubMed]

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Horn-Solle, H.

Huang, B.

Inniss, D.

Ishaaya, A. A.

Ismagulov, A. E.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and M. A. Nikulin, “Single frequency single polarization DFB fiber laser,” Laser Phys. Lett. 4(6), 428–432 (2007).
[Crossref]

Janner, D.

Jiang, Y.

Y. Jiang, C. Liu, D. Li, D. Yang, and J. Zhao, “Simultaneous measurement of temperature and strain using a phase-shifted fiber Bragg grating inscribed by femtosecond laser,” Meas. Sci. Technol. 29(4), 045101 (2018).
[Crossref]

Jovanovic, N.

Kablukov, S. I.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and M. A. Nikulin, “Single frequency single polarization DFB fiber laser,” Laser Phys. Lett. 4(6), 428–432 (2007).
[Crossref]

Karpinski, P.

Kashyap, R.

P. F. Mckee, R. Kashyap, and D. Armes, “UV written reflection grating structures in photosensitive optical fibres using phase-shifted phase masks,” Electron. Lett. 30(23), 1977–1978 (1994).
[Crossref]

Kazansky, P.

Kazansky, P. G.

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011).
[Crossref]

E. Bricchi and P. G. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett. 88(11), 111119 (2006).
[Crossref]

Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B 19(05), 225–238 (2005).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Khrushchev, I. Y.

Kosinski, S. G.

Krämer, R. G.

Krolikowski, W.

Kubota, S.

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

Kulishov, M.

Kurita, T.

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

Laming, R. I.

Lancry, M.

M. Lancry, F. Zimmerman, R. Desmarchelier, J. Tian, F. Brisset, S. Nolte, and B. Poumellec, “Nanogratings formation in multicomponent silicate glasses,” Appl. Phys. B 122(3), 66 (2016).
[Crossref]

F. Zimmermann, M. Lancry, A. Plech, S. Richter, B. H. Babu, B. Poumellec, A. Tünnermann, and S. Nolte, “Femtosecond laser written nanostructures in Ge-doped glasses,” Opt. Lett. 41(6), 1161–1164 (2016).
[Crossref] [PubMed]

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

Laporta, P.

Larochelle, S.

LeBlanc, M.

Lemaire, P. J.

Levasseur, S.

Levit, B.

Li, D.

Y. Jiang, C. Liu, D. Li, D. Yang, and J. Zhao, “Simultaneous measurement of temperature and strain using a phase-shifted fiber Bragg grating inscribed by femtosecond laser,” Meas. Sci. Technol. 29(4), 045101 (2018).
[Crossref]

Li, H.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg gratings,” IEEE Photonics Technol. Lett. 16(5), 1316–1318 (2004).
[Crossref]

Li, K.

Y. Du, T. Chen, Y. Zhang, R. Wang, H. Cao, and K. Li, “Fabrication of phase-shifted fiber Bragg grating by femtosecond laser shield method,” IEEE Photonics Technol. Lett. 29(24), 2143–2146 (2017).
[Crossref]

Liao, C.

Lipatiev, A. S.

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

Liu, C.

Y. Jiang, C. Liu, D. Li, D. Yang, and J. Zhao, “Simultaneous measurement of temperature and strain using a phase-shifted fiber Bragg grating inscribed by femtosecond laser,” Meas. Sci. Technol. 29(4), 045101 (2018).
[Crossref]

Liu, N.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Liu, S.

Loh, W. H.

Longhi, S.

Lotarev, S. V.

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

Lu, P.

Marques, P. V. S.

Marshall, G. D.

Martinelli, M.

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(1), 42–44 (2000).
[Crossref]

Martinez, A.

Matthewson, M. J.

V. V. Rondinella and M. J. Matthewson, “Effect of chemical stripping on the strength and surface morphology of fused silica optical fiber,” Proc. SPIE 2074, 52–58 (1994).
[Crossref]

Mckee, P. F.

P. F. Mckee, R. Kashyap, and D. Armes, “UV written reflection grating structures in photosensitive optical fibres using phase-shifted phase masks,” Electron. Lett. 30(23), 1977–1978 (1994).
[Crossref]

McMillen, B.

Melloni, A.

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(1), 42–44 (2000).
[Crossref]

Mendez, A.

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[Crossref]

Michaud-Belleau, V.

Miese, C.

Mihailov, S.

Mihailov, S. J.

C. Hnatovsky, D. Grobnic, D. Coulas, M. Barnes, and S. J. Mihailov, “Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings,” Opt. Lett. 42(3), 399–402 (2017).
[Crossref] [PubMed]

C. Hnatovsky, D. Grobnic, and S. J. Mihailov, “Nonlinear photoluminescence imaging applied to femtosecond laser manufacturing of fiber Bragg gratings,” Opt. Express 25(13), 14247–14259 (2017).
[Crossref] [PubMed]

C. Hnatovsky, D. Grobnic, and S. J. Mihailov, “Through-the-coating femtosecond laser inscription of very short fiber Bragg gratings for acoustic and high temperature sensing applications,” Opt. Express 25(21), 25435–25446 (2017).
[Crossref] [PubMed]

D. Grobnic, C. Hnatovsky, and S. J. Mihailov, “Thermally stable type II FBGs written through polyimide coatings of silica-based optical fiber,” IEEE Photonics Technol. Lett. 29(21), 1780–1783 (2017).
[Crossref]

D. Grobnic, C. Hnatovsky, and S. J. Mihailov, “Low loss Type II regenerative Bragg gratings made with ultrafast radiation,” Opt. Express 24(25), 28704–28712 (2016).
[Crossref] [PubMed]

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1(4), 754–765 (2011).
[Crossref]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[Crossref]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[Crossref]

P. Lu, D. Grobnic, and S. J. Mihailov, “Characterization of the birefringence in fiber Bragg gratings fabricated with an ultrafast-infrared laser,” J. Lightwave Technol. 25(3), 779–786 (2007).
[Crossref]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
[Crossref] [PubMed]

C. W. Smelser, S. J. Mihailov, D. Grobnic, P. Lu, R. B. Walker, H. Ding, and X. Dai, “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” Opt. Lett. 29(13), 1458–1460 (2004).
[Crossref] [PubMed]

Miura, K.

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

Mizrahi, V.

Murata, A.

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

Nikulin, M. A.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and M. A. Nikulin, “Single frequency single polarization DFB fiber laser,” Laser Phys. Lett. 4(6), 428–432 (2007).
[Crossref]

Nolte, S.

M. Lancry, F. Zimmerman, R. Desmarchelier, J. Tian, F. Brisset, S. Nolte, and B. Poumellec, “Nanogratings formation in multicomponent silicate glasses,” Appl. Phys. B 122(3), 66 (2016).
[Crossref]

F. Zimmermann, M. Lancry, A. Plech, S. Richter, B. H. Babu, B. Poumellec, A. Tünnermann, and S. Nolte, “Femtosecond laser written nanostructures in Ge-doped glasses,” Opt. Lett. 41(6), 1161–1164 (2016).
[Crossref] [PubMed]

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
[Crossref]

R. J. Williams, R. G. Krämer, S. Nolte, M. J. Withford, and M. J. Steel, “Detuning in apodized point-by-point fiber Bragg gratings: insights into the grating morphology,” Opt. Express 21(22), 26854–26867 (2013).
[Crossref] [PubMed]

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica - periodic nanostructures in borosilicate glasses and ULE™,” Opt. Mater. Express 3(8), 1161–1166 (2013).
[Crossref]

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
[Crossref]

Ntziachristos, V.

Park, Y.

Peng, W.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Plant, D. V.

Plech, A.

F. Zimmermann, M. Lancry, A. Plech, S. Richter, B. H. Babu, B. Poumellec, A. Tünnermann, and S. Nolte, “Femtosecond laser written nanostructures in Ge-doped glasses,” Opt. Lett. 41(6), 1161–1164 (2016).
[Crossref] [PubMed]

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
[Crossref]

Poumellec, B.

M. Lancry, F. Zimmerman, R. Desmarchelier, J. Tian, F. Brisset, S. Nolte, and B. Poumellec, “Nanogratings formation in multicomponent silicate glasses,” Appl. Phys. B 122(3), 66 (2016).
[Crossref]

F. Zimmermann, M. Lancry, A. Plech, S. Richter, B. H. Babu, B. Poumellec, A. Tünnermann, and S. Nolte, “Femtosecond laser written nanostructures in Ge-doped glasses,” Opt. Lett. 41(6), 1161–1164 (2016).
[Crossref] [PubMed]

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

Qiu, J.

Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B 19(05), 225–238 (2005).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Radic, S.

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
[Crossref]

Rajeev, P. P.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Ramos, R. T.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

Rayner, D. M.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Razansky, D.

Reed, W. A.

Richter, D.

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

Richter, S.

F. Zimmermann, M. Lancry, A. Plech, S. Richter, B. H. Babu, B. Poumellec, A. Tünnermann, and S. Nolte, “Femtosecond laser written nanostructures in Ge-doped glasses,” Opt. Lett. 41(6), 1161–1164 (2016).
[Crossref] [PubMed]

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
[Crossref]

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica - periodic nanostructures in borosilicate glasses and ULE™,” Opt. Mater. Express 3(8), 1161–1166 (2013).
[Crossref]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
[Crossref]

Robinson, R. S.

R. S. Robinson and H. H. Yuce, “Scanning tunneling microscopy of optical fiber corrosion: surface roughness contribution to zero-stress aging,” J. Am. Ceram. Soc. 74(4), 814–818 (1991).
[Crossref]

Rondinella, V. V.

V. V. Rondinella and M. J. Matthewson, “Effect of chemical stripping on the strength and surface morphology of fused silica optical fiber,” Proc. SPIE 2074, 52–58 (1994).
[Crossref]

Rosenthal, A.

Rothenberg, J. E.

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg gratings,” IEEE Photonics Technol. Lett. 16(5), 1316–1318 (2004).
[Crossref]

Sakakura, M.

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

Sceats, M. G.

J. Canning and M. G. Sceats, “π-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett. 30(16), 1344–1345 (1994).
[Crossref]

Schade, W.

Shamir, A.

Sheng, Y.

Shimotsuma, Y.

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B 19(05), 225–238 (2005).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Shu, X.

Shvedov, V.

Sigaev, V. N.

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

Simova, E.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Smelser, C.

Smelser, C. W.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1(4), 754–765 (2011).
[Crossref]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[Crossref]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[Crossref]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
[Crossref] [PubMed]

C. W. Smelser, S. J. Mihailov, D. Grobnic, P. Lu, R. B. Walker, H. Ding, and X. Dai, “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” Opt. Lett. 29(13), 1458–1460 (2004).
[Crossref] [PubMed]

Steel, M. J.

Sun, B.

Sun, L.

Taylor, R.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
[Crossref]

Taylor, R. S.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Thomas, J.

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

Tian, J.

M. Lancry, F. Zimmerman, R. Desmarchelier, J. Tian, F. Brisset, S. Nolte, and B. Poumellec, “Nanogratings formation in multicomponent silicate glasses,” Appl. Phys. B 122(3), 66 (2016).
[Crossref]

Tremblay, G.

Trépanier, F.

J. Habel, T. Boilard, J.-S. Frenière, F. Trépanier, and M. Bernier, “Femtosecond FBG Written through the Coating for Sensing Applications,” Sensors (Basel) 17(11), 2519 (2017).
[Crossref] [PubMed]

M. Bernier, F. Trépanier, J. Carrier, and R. Vallée, “High mechanical strength fiber Bragg gratings made with infrared femtosecond pulses and a phase mask,” Opt. Lett. 39(12), 3646–3649 (2014).
[Crossref] [PubMed]

Tsai, T. E.

Tünnermann, A.

F. Zimmermann, M. Lancry, A. Plech, S. Richter, B. H. Babu, B. Poumellec, A. Tünnermann, and S. Nolte, “Femtosecond laser written nanostructures in Ge-doped glasses,” Opt. Lett. 41(6), 1161–1164 (2016).
[Crossref] [PubMed]

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
[Crossref]

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica - periodic nanostructures in borosilicate glasses and ULE™,” Opt. Mater. Express 3(8), 1161–1166 (2013).
[Crossref]

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
[Crossref]

Vallée, R.

Vengsarkar, A. M.

Vohra, S. T.

Voigtländer, C.

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

Walker, R. B.

Waltermann, C.

Wang, Q.

Wang, R.

Y. Du, T. Chen, Y. Zhang, R. Wang, H. Cao, and K. Li, “Fabrication of phase-shifted fiber Bragg grating by femtosecond laser shield method,” IEEE Photonics Technol. Lett. 29(24), 2143–2146 (2017).
[Crossref]

Wang, Y.

J. He, Y. Wang, C. Liao, Q. Wang, K. Yang, B. Sun, G. Yin, S. Liu, J. Zhou, and J. Zhao, “Highly birefringent phase-shifted fiber Bragg gratings inscribed with femtosecond laser,” Opt. Lett. 40(9), 2008–2011 (2015).
[Crossref] [PubMed]

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg gratings,” IEEE Photonics Technol. Lett. 16(5), 1316–1318 (2004).
[Crossref]

Williams, R. J.

Withford, M. J.

Wortmann, D.

Yang, D.

Y. Jiang, C. Liu, D. Li, D. Yang, and J. Zhao, “Simultaneous measurement of temperature and strain using a phase-shifted fiber Bragg grating inscribed by femtosecond laser,” Meas. Sci. Technol. 29(4), 045101 (2018).
[Crossref]

Yang, K.

Yao, J.

X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]

Yin, G.

Yuce, H. H.

R. S. Robinson and H. H. Yuce, “Scanning tunneling microscopy of optical fiber corrosion: surface roughness contribution to zero-stress aging,” J. Am. Ceram. Soc. 74(4), 814–818 (1991).
[Crossref]

Zeng, F.

X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]

Zervas, M. N.

Zhang, Q.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Zhang, Y.

Y. Du, T. Chen, Y. Zhang, R. Wang, H. Cao, and K. Li, “Fabrication of phase-shifted fiber Bragg grating by femtosecond laser shield method,” IEEE Photonics Technol. Lett. 29(24), 2143–2146 (2017).
[Crossref]

Zhao, J.

Y. Jiang, C. Liu, D. Li, D. Yang, and J. Zhao, “Simultaneous measurement of temperature and strain using a phase-shifted fiber Bragg grating inscribed by femtosecond laser,” Meas. Sci. Technol. 29(4), 045101 (2018).
[Crossref]

J. He, Y. Wang, C. Liao, Q. Wang, K. Yang, B. Sun, G. Yin, S. Liu, J. Zhou, and J. Zhao, “Highly birefringent phase-shifted fiber Bragg gratings inscribed with femtosecond laser,” Opt. Lett. 40(9), 2008–2011 (2015).
[Crossref] [PubMed]

Zhong, Q.

Zhou, J.

Zimmerman, F.

M. Lancry, F. Zimmerman, R. Desmarchelier, J. Tian, F. Brisset, S. Nolte, and B. Poumellec, “Nanogratings formation in multicomponent silicate glasses,” Appl. Phys. B 122(3), 66 (2016).
[Crossref]

Zimmermann, F.

Zweiback, J.

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg gratings,” IEEE Photonics Technol. Lett. 16(5), 1316–1318 (2004).
[Crossref]

Appl. Phys. B (1)

M. Lancry, F. Zimmerman, R. Desmarchelier, J. Tian, F. Brisset, S. Nolte, and B. Poumellec, “Nanogratings formation in multicomponent silicate glasses,” Appl. Phys. B 122(3), 66 (2016).
[Crossref]

Appl. Phys. Lett. (4)

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

E. Bricchi and P. G. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett. 88(11), 111119 (2006).
[Crossref]

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
[Crossref]

Electron. Lett. (3)

J. Canning and M. G. Sceats, “π-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett. 30(16), 1344–1345 (1994).
[Crossref]

P. F. Mckee, R. Kashyap, and D. Armes, “UV written reflection grating structures in photosensitive optical fibres using phase-shifted phase masks,” Electron. Lett. 30(23), 1977–1978 (1994).
[Crossref]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[Crossref]

IEEE Photonics Technol. Lett. (8)

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

D. Grobnic, C. Hnatovsky, and S. J. Mihailov, “Thermally stable type II FBGs written through polyimide coatings of silica-based optical fiber,” IEEE Photonics Technol. Lett. 29(21), 1780–1783 (2017).
[Crossref]

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg gratings,” IEEE Photonics Technol. Lett. 16(5), 1316–1318 (2004).
[Crossref]

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
[Crossref]

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(1), 42–44 (2000).
[Crossref]

X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Y. Du, T. Chen, Y. Zhang, R. Wang, H. Cao, and K. Li, “Fabrication of phase-shifted fiber Bragg grating by femtosecond laser shield method,” IEEE Photonics Technol. Lett. 29(24), 2143–2146 (2017).
[Crossref]

J. Am. Ceram. Soc. (2)

R. S. Robinson and H. H. Yuce, “Scanning tunneling microscopy of optical fiber corrosion: surface roughness contribution to zero-stress aging,” J. Am. Ceram. Soc. 74(4), 814–818 (1991).
[Crossref]

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (2)

Laser Photonics Rev. (2)

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
[Crossref]

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

Laser Phys. Lett. (1)

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and M. A. Nikulin, “Single frequency single polarization DFB fiber laser,” Laser Phys. Lett. 4(6), 428–432 (2007).
[Crossref]

Meas. Sci. Technol. (1)

Y. Jiang, C. Liu, D. Li, D. Yang, and J. Zhao, “Simultaneous measurement of temperature and strain using a phase-shifted fiber Bragg grating inscribed by femtosecond laser,” Meas. Sci. Technol. 29(4), 045101 (2018).
[Crossref]

Mod. Phys. Lett. B (1)

Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B 19(05), 225–238 (2005).
[Crossref]

Opt. Commun. (1)

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[Crossref]

Opt. Express (15)

C. Hnatovsky, D. Grobnic, and S. J. Mihailov, “Through-the-coating femtosecond laser inscription of very short fiber Bragg gratings for acoustic and high temperature sensing applications,” Opt. Express 25(21), 25435–25446 (2017).
[Crossref] [PubMed]

Y. Sheng and L. Sun, “Near-field diffraction of irregular phase gratings with multiple phase-shifts,” Opt. Express 13(16), 6111–6116 (2005).
[Crossref] [PubMed]

C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
[Crossref] [PubMed]

R. J. Williams, R. G. Krämer, S. Nolte, M. J. Withford, and M. J. Steel, “Detuning in apodized point-by-point fiber Bragg gratings: insights into the grating morphology,” Opt. Express 21(22), 26854–26867 (2013).
[Crossref] [PubMed]

D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, “Fiber strain sensor based on a π-phase-shifted Bragg grating and the Pound-Drever-Hall technique,” Opt. Express 16(3), 1945–1950 (2008).
[Crossref] [PubMed]

G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
[Crossref] [PubMed]

B. Huang and X. Shu, “Ultra-compact strain- and temperature-insensitive torsion sensor based on a line-by-line inscribed phase-shifted FBG,” Opt. Express 24(16), 17670–17679 (2016).
[Crossref] [PubMed]

N. K. Berger, B. Levit, B. Fischer, M. Kulishov, D. V. Plant, and J. Azaña, “Temporal differentiation of optical signals using a phase-shifted fiber Bragg grating,” Opt. Express 15(2), 371–381 (2007).
[Crossref] [PubMed]

D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” Opt. Express 16(3), 1517–1522 (2008).
[Crossref] [PubMed]

P. Karpinski, V. Shvedov, W. Krolikowski, and C. Hnatovsky, “Laser-writing inside uniaxially birefringent crystals: fine morphology of ultrashort pulse-induced changes in lithium niobate,” Opt. Express 24(7), 7456–7476 (2016).
[Crossref] [PubMed]

N. Belhadj, Y. Park, S. Larochelle, K. Dossou, and J. Azaña, “UV-induced modification of stress distribution in optical fibers and its contribution to Bragg grating birefringence,” Opt. Express 16(12), 8727–8741 (2008).
[Crossref] [PubMed]

A. Champion, M. Beresna, P. Kazansky, and Y. Bellouard, “Stress distribution around femtosecond laser affected zones: effect of nanogratings orientation,” Opt. Express 21(21), 24942–24951 (2013).
[Crossref] [PubMed]

B. McMillen and Y. Bellouard, “On the anisotropy of stress-distribution induced in glasses and crystals by non-ablative femtosecond laser exposure,” Opt. Express 23(1), 86–100 (2015).
[Crossref] [PubMed]

C. Hnatovsky, D. Grobnic, and S. J. Mihailov, “Nonlinear photoluminescence imaging applied to femtosecond laser manufacturing of fiber Bragg gratings,” Opt. Express 25(13), 14247–14259 (2017).
[Crossref] [PubMed]

D. Grobnic, C. Hnatovsky, and S. J. Mihailov, “Low loss Type II regenerative Bragg gratings made with ultrafast radiation,” Opt. Express 24(25), 28704–28712 (2016).
[Crossref] [PubMed]

Opt. Lett. (14)

A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, and S. G. Kosinski, “Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method,” Opt. Lett. 19(16), 1260–1262 (1994).
[Crossref] [PubMed]

F. Zimmermann, M. Lancry, A. Plech, S. Richter, B. H. Babu, B. Poumellec, A. Tünnermann, and S. Nolte, “Femtosecond laser written nanostructures in Ge-doped glasses,” Opt. Lett. 41(6), 1161–1164 (2016).
[Crossref] [PubMed]

W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, and R. I. Laming, “Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique,” Opt. Lett. 20(20), 2051–2053 (1995).
[Crossref] [PubMed]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett. 36(10), 1833–1835 (2011).
[Crossref] [PubMed]

M. LeBlanc, S. T. Vohra, T. E. Tsai, and E. J. Friebele, “Transverse load sensing by use of pi-phase-shifted fiber Bragg gratings,” Opt. Lett. 24(16), 1091–1093 (1999).
[Crossref] [PubMed]

J. Burgmeier, C. Waltermann, G. Flachenecker, and W. Schade, “Point-by-point inscription of phase-shifted fiber Bragg gratings with electro-optic amplitude modulated femtosecond laser pulses,” Opt. Lett. 39(3), 540–543 (2014).
[Crossref] [PubMed]

M. Bernier, V. Michaud-Belleau, S. Levasseur, V. Fortin, J. Genest, and R. Vallée, “All-fiber DFB laser operating at 2.8 μm,” Opt. Lett. 40(1), 81–84 (2015).
[Crossref] [PubMed]

A. Shamir and A. A. Ishaaya, “Femtosecond inscription of phase-shifted gratings by overlaid fiber Bragg gratings,” Opt. Lett. 41(9), 2017–2020 (2016).
[Crossref] [PubMed]

J. He, Y. Wang, C. Liao, Q. Wang, K. Yang, B. Sun, G. Yin, S. Liu, J. Zhou, and J. Zhao, “Highly birefringent phase-shifted fiber Bragg gratings inscribed with femtosecond laser,” Opt. Lett. 40(9), 2008–2011 (2015).
[Crossref] [PubMed]

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006).
[Crossref] [PubMed]

C. Hnatovsky, D. Grobnic, D. Coulas, M. Barnes, and S. J. Mihailov, “Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings,” Opt. Lett. 42(3), 399–402 (2017).
[Crossref] [PubMed]

C. W. Smelser, S. J. Mihailov, D. Grobnic, P. Lu, R. B. Walker, H. Ding, and X. Dai, “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” Opt. Lett. 29(13), 1458–1460 (2004).
[Crossref] [PubMed]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
[Crossref] [PubMed]

M. Bernier, F. Trépanier, J. Carrier, and R. Vallée, “High mechanical strength fiber Bragg gratings made with infrared femtosecond pulses and a phase mask,” Opt. Lett. 39(12), 3646–3649 (2014).
[Crossref] [PubMed]

Opt. Mater. Express (4)

Phys. Rev. Lett. (2)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Proc. SPIE (1)

V. V. Rondinella and M. J. Matthewson, “Effect of chemical stripping on the strength and surface morphology of fused silica optical fiber,” Proc. SPIE 2074, 52–58 (1994).
[Crossref]

Sensors (Basel) (2)

J. Habel, T. Boilard, J.-S. Frenière, F. Trépanier, and M. Bernier, “Femtosecond FBG Written through the Coating for Sensing Applications,” Sensors (Basel) 17(11), 2519 (2017).
[Crossref] [PubMed]

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

Other (1)

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Regions where ultrashort pulses produce interference patterns after a phase mask (M) that diffracts light only into ± 1 orders. (a) A uniform phase mask. (b) A π-phase-shifted phase mask. (c) A π-phase-shifted phase mask when the central portion of the laser beam is obstructed by a rectangular stop (S) of width 2s. An optical fiber (F) is at a distance L from (M). The diffraction angle is θ ; the effective beam width is 2w.
Fig. 2
Fig. 2 Spectral characteristics of FBGs produced with a π-phase-shifted mask under different laser writing conditions. In the simulations (Optiwave software), the mask pitch d is 1.07 μm, the effective refractive index of the fiber core neff is = 1.447, the light-induced refractive index modulation in the core Δn is 5·10−4. (a) FBG spectra corresponding to the case shown in Fig. 1(b). The blue plot represents L = 0.5 mm, with the length of the central section and side sections at the fiber core being 1.1 mm and 2.4 mm, respectively. The red plot represents L = 0.25 mm, with the length of the central section and side sections at the fiber core being 0.55 mm and 2.9 mm, respectively. (b) Spectra corresponding to the case shown in Fig. 1(c) when L = 0.25 mm and 2s = 1 mm. The blue plot represents a π-shifted Fabry-Pérot interferometer composed of two detached 2.4 mm-long uniform Bragg gratings with a 1.6 mm separation between them. The black plot (dashes) shows how the spectrum of the above interferometer is changed when neff in the two detached π-shifted FBGs is higher than in the central unexposed section by 5·10−5. The red plot represents a standard 4.8 mm-long π-shifted FBG.
Fig. 3
Fig. 3 Inscription of π-phase-shifted FBGs using the phase mask technique. (a) A schematic of the setup. CL is an acylindrical lens; (A) is an aperture to select the central part of the fs-beam and make it quasi-flat-top along the x-axis; (S) is a rectangular stop to obstruct the central portion of the beam in order to not allow any light to impinge the π-phase shift on (M) (see text). (b) A fs-beam with a quasi-flat-top intensity profile of width 2w = 7 mm along the x-axis induces a 7 mm Type II modification (purple) in the fiber core. (c) When (A) is removed from the fs-beam path the resultant FBG consists of both Type I (green) and Type II (purple) modification.
Fig. 4
Fig. 4 Interference patterns produced by 80 fs pulses after a π-phase-shifted mask with a 1.07 μm pitch. The mask is at z = 0. While recording the images, the laser power was kept at a ~1 mW level and the pulse repletion rate was 1 kHz. (a) The pattern in the vicinity of the π-shift (x = 0, z = 0). (b) The pattern 500 μm away from the π-shift along the x-axis. The different z-ranges in (a) and (b) are used to demonstrate that a Talbot-type interference pattern is formed near the mask, while a two-beam interference pattern is formed at z > 200 μm.
Fig. 5
Fig. 5 Spectral asymmetry of π-shifted FBGs produced by a π-phase-shifted mask and a method to correct this asymmetry. The mask pitch d is 1.07 μm. (a) The spectrum of an FBG written at L ~450 μm when the fiber core was exposed to a complex interference pattern consisting of three regions (see Fig. 1(b)). (b) The spectrum of an FBG written at L ~450 μm when the π-shift is blocked by a stop (S) with 2s ~1 mm (see Fig. 1(c)). The FBG in (b) becomes a π-shifted Fabry-Pérot interferometer composed of two detached uniform Bragg gratings. The laser parameters in (a) and (b) are the same. The spectra were recorded using a tunable laser source with a 1 pm resolution.
Fig. 6
Fig. 6 Interference patterns produced by 80 fs pulses after a π-phase-shifted mask with a 3.21 μm pitch. The mask is at z = 0. While recording the images, the laser power was kept at ~1 mW level and the pulse repletion rate was 1 kHz. (a) The pattern in the vicinity of the π-shift (x = 0, z = 0). (b) The pattern 500 μm away from the π-shift along the x-axis. The longitudinal walk-off of the 0th, 1st, 2nd and 3rd diffraction orders for the z-range in (b) is insufficient to ensure a two-beam interference pattern (see Fig. 4(b) for comparison).
Fig. 7
Fig. 7 Birefringence of fs-laser-written π-shifted Type II FBGs and its dependence on the fs-laser polarization. (a) The fs-laser polarization is aligned perpendicular to the fiber (y-polarization). The polarization-dependent wavelength shift of the π-feature (i.e., PD-λ) is ~70 pm. (b) The fs-laser polarization is aligned along the fiber (x-polarization). In the insert to (b): PD-λ is ~8 pm; 3 dB band width (i.e., 3 dB BW) of the π-feature is ~35 pm. The same writing conditions except for the fs-laser polarization were used for the FBGs presented in (a) and (b). The spectra were recorded using a tunable laser source with a 1 pm resolution.
Fig. 8
Fig. 8 High-temperature performance of fs-laser-written π-shifted Type II FBGs. (a) The blue trace shows the initial FBG spectrum at 20°C, whereas the red trace shows the spectrum at 1000°C after ~200 cumulative hours of annealing at this temperature. (b) The wavelength shift of the π-feature as a function of annealing time at 1000°C.

Metrics