Abstract

In using a laser light source, it becomes possible to realize an ultra-wide display gamut that approaches the human color vision limit. This paper introduces a method for extremely large gamut optimization for different primary numbers, and it offers a primary set that produces a nearly ultimate gamut. Considering display lightness, we calculated wavelength selection and lightness design of a display with 3-9 primaries in the CIELAB uniform color space (UCS) by optimizing the coverage of the optimal color gamut. Theoretically the maximum gamut area of a laser display with 3-12 primaries in the CIE xy and CIE u’v’ chromaticity diagrams is also calculated for comparison. We recommend 6 primaries as a reasonable choice, since the coverage reaches 97.6% of the optimal color. Taking into account the luminance efficacy of radiation (LER) and feasible laser wavelengths in practice, we get a practical design of wavelengths and power for a laser projection display with 6 primaries, which covers 96.6% of the optimal color gamut.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Metric of color-space coverage for wide-gamut displays

Kenichiro Masaoka and Yukihiro Nishida
Opt. Express 23(6) 7802-7808 (2015)

Designing display primaries with currently available light sources for UHDTV wide-gamut system colorimetry

Kenichiro Masaoka, Yukihiro Nishida, and Masayuki Sugawara
Opt. Express 22(16) 19069-19077 (2014)

Realizing Rec. 2020 color gamut with quantum dot displays

Ruidong Zhu, Zhenyue Luo, Haiwei Chen, Yajie Dong, and Shin-Tson Wu
Opt. Express 23(18) 23680-23693 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. B. Chorin, D. Eliav, S. Roth, A. Pagi, and I. Ben‐David, “21.3: New Metric for Display Color Gamut Evaluation,” SID Symp. Dig. Tec. 38(1), 1053–1056 (2007).
  2. Adobe Systems Inc., “Adobe RGB (1998) color image encoding,” 2005.
  3. SMPTE RP 431–2, “D-cinema quality — reference projector and environment,” 2011.
  4. ITU-R Recommendation BT.709–5, “Parameter values for the HDTV standards for production and international programme exchange,” 2002.
  5. ITU-R Recommendation BT.2020, “Parameter values for ultra-high definition television systems for production and international programme exchange,” 2012.
  6. K. Masaoka and Y. Nishida, “Metric of color-space coverage for wide-gamut displays,” Opt. Express 23(6), 7802–7808 (2015).
    [Crossref] [PubMed]
  7. K. Masaoka, Y. Nishida, and M. Sugawara, “Designing display primaries with currently available light sources for UHDTV wide-gamut system colorimetry,” Opt. Express 22(16), 19069–19077 (2014).
    [Crossref] [PubMed]
  8. S. Wen, “A method for selecting display primaries to match a target color gamut,” J. Soc. Inf. Disp. 15(12), 1015–1022 (2007).
    [Crossref]
  9. T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, “Expanded color gamut reproduced by six-primary projection display,” Proc. SPIE 3954, 130–137 (2000).
    [Crossref]
  10. M. R. Pointer, “The gamut of real surface colors,” Color Res. Appl. 5(3), 145–155 (1980).
    [Crossref]
  11. K. Masaoka, Y. Nishida, M. Sugawara, and E. Nakasu, “Design of primaries for a wide-gamut television colorimetry,” IEEE Trans. Broadcast 56(4), 452–457 (2010).
    [Crossref]
  12. C. J. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, and M. R. Pointer, “A revision of CIECAM02 and its CAT and UCS,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 208–212.
    [Crossref]
  13. M. Safdar, M. R. Luo, and G. Cui, “Investigating performance of uniform color spaces for high dynamic range and wide gamut color difference applications,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 88–93.
    [Crossref]
  14. C. J. Li, M. R. Luo, M. R. Pointer, and P. Green, “Comparison of real colour gamuts using a new reflectance database,” Color Res. Appl. 39(5), 442–451 (2014).
    [Crossref]
  15. D. L. MacAdam, “Theory of the maximum visual efficiency of colored materials,” J. Opt. Soc. Am. 25(8), 249–252 (1935).
    [Crossref]
  16. D. L. MacAdam, “Maximum Visual Efficiency of Colored Materials,” J. Opt. Soc. Am. 25(11), 361–367 (1935).
    [Crossref]
  17. K. Masaoka, “Fast and accurate model for optimal color computation,” Opt. Lett. 35(12), 2031–2033 (2010).
    [Crossref] [PubMed]
  18. V. Keikha, M. Löffler, A. Mohades, J. Urhausen, and I. V. Hoog, “Maximum-area triangle in a convex polygon, revisited,” arXiv:1705.11035 (2017).
  19. M. H. Brill, G. D. Finlayson, P. M. Hubel, and W. A. Thornton, “Prime colors and color imaging,” in Color and Imaging Conference (Society for Imaging Science and Technology, 1998), pp. 33–42.

2015 (1)

2014 (2)

K. Masaoka, Y. Nishida, and M. Sugawara, “Designing display primaries with currently available light sources for UHDTV wide-gamut system colorimetry,” Opt. Express 22(16), 19069–19077 (2014).
[Crossref] [PubMed]

C. J. Li, M. R. Luo, M. R. Pointer, and P. Green, “Comparison of real colour gamuts using a new reflectance database,” Color Res. Appl. 39(5), 442–451 (2014).
[Crossref]

2010 (2)

K. Masaoka, Y. Nishida, M. Sugawara, and E. Nakasu, “Design of primaries for a wide-gamut television colorimetry,” IEEE Trans. Broadcast 56(4), 452–457 (2010).
[Crossref]

K. Masaoka, “Fast and accurate model for optimal color computation,” Opt. Lett. 35(12), 2031–2033 (2010).
[Crossref] [PubMed]

2007 (2)

M. B. Chorin, D. Eliav, S. Roth, A. Pagi, and I. Ben‐David, “21.3: New Metric for Display Color Gamut Evaluation,” SID Symp. Dig. Tec. 38(1), 1053–1056 (2007).

S. Wen, “A method for selecting display primaries to match a target color gamut,” J. Soc. Inf. Disp. 15(12), 1015–1022 (2007).
[Crossref]

2000 (1)

T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, “Expanded color gamut reproduced by six-primary projection display,” Proc. SPIE 3954, 130–137 (2000).
[Crossref]

1980 (1)

M. R. Pointer, “The gamut of real surface colors,” Color Res. Appl. 5(3), 145–155 (1980).
[Crossref]

1935 (2)

Ajito, T.

T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, “Expanded color gamut reproduced by six-primary projection display,” Proc. SPIE 3954, 130–137 (2000).
[Crossref]

Ben-David, I.

M. B. Chorin, D. Eliav, S. Roth, A. Pagi, and I. Ben‐David, “21.3: New Metric for Display Color Gamut Evaluation,” SID Symp. Dig. Tec. 38(1), 1053–1056 (2007).

Brill, M. H.

M. H. Brill, G. D. Finlayson, P. M. Hubel, and W. A. Thornton, “Prime colors and color imaging,” in Color and Imaging Conference (Society for Imaging Science and Technology, 1998), pp. 33–42.

Chorin, M. B.

M. B. Chorin, D. Eliav, S. Roth, A. Pagi, and I. Ben‐David, “21.3: New Metric for Display Color Gamut Evaluation,” SID Symp. Dig. Tec. 38(1), 1053–1056 (2007).

Cui, G.

C. J. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, and M. R. Pointer, “A revision of CIECAM02 and its CAT and UCS,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 208–212.
[Crossref]

M. Safdar, M. R. Luo, and G. Cui, “Investigating performance of uniform color spaces for high dynamic range and wide gamut color difference applications,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 88–93.
[Crossref]

Eliav, D.

M. B. Chorin, D. Eliav, S. Roth, A. Pagi, and I. Ben‐David, “21.3: New Metric for Display Color Gamut Evaluation,” SID Symp. Dig. Tec. 38(1), 1053–1056 (2007).

Finlayson, G. D.

M. H. Brill, G. D. Finlayson, P. M. Hubel, and W. A. Thornton, “Prime colors and color imaging,” in Color and Imaging Conference (Society for Imaging Science and Technology, 1998), pp. 33–42.

Green, P.

C. J. Li, M. R. Luo, M. R. Pointer, and P. Green, “Comparison of real colour gamuts using a new reflectance database,” Color Res. Appl. 39(5), 442–451 (2014).
[Crossref]

Hubel, P. M.

M. H. Brill, G. D. Finlayson, P. M. Hubel, and W. A. Thornton, “Prime colors and color imaging,” in Color and Imaging Conference (Society for Imaging Science and Technology, 1998), pp. 33–42.

Li, C. J.

C. J. Li, M. R. Luo, M. R. Pointer, and P. Green, “Comparison of real colour gamuts using a new reflectance database,” Color Res. Appl. 39(5), 442–451 (2014).
[Crossref]

C. J. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, and M. R. Pointer, “A revision of CIECAM02 and its CAT and UCS,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 208–212.
[Crossref]

Li, Z.

C. J. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, and M. R. Pointer, “A revision of CIECAM02 and its CAT and UCS,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 208–212.
[Crossref]

Luo, M. R.

C. J. Li, M. R. Luo, M. R. Pointer, and P. Green, “Comparison of real colour gamuts using a new reflectance database,” Color Res. Appl. 39(5), 442–451 (2014).
[Crossref]

C. J. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, and M. R. Pointer, “A revision of CIECAM02 and its CAT and UCS,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 208–212.
[Crossref]

M. Safdar, M. R. Luo, and G. Cui, “Investigating performance of uniform color spaces for high dynamic range and wide gamut color difference applications,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 88–93.
[Crossref]

MacAdam, D. L.

Masaoka, K.

Melgosa, M.

C. J. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, and M. R. Pointer, “A revision of CIECAM02 and its CAT and UCS,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 208–212.
[Crossref]

Nakasu, E.

K. Masaoka, Y. Nishida, M. Sugawara, and E. Nakasu, “Design of primaries for a wide-gamut television colorimetry,” IEEE Trans. Broadcast 56(4), 452–457 (2010).
[Crossref]

Nishida, Y.

Obi, T.

T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, “Expanded color gamut reproduced by six-primary projection display,” Proc. SPIE 3954, 130–137 (2000).
[Crossref]

Ohyama, N.

T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, “Expanded color gamut reproduced by six-primary projection display,” Proc. SPIE 3954, 130–137 (2000).
[Crossref]

Pagi, A.

M. B. Chorin, D. Eliav, S. Roth, A. Pagi, and I. Ben‐David, “21.3: New Metric for Display Color Gamut Evaluation,” SID Symp. Dig. Tec. 38(1), 1053–1056 (2007).

Pointer, M. R.

C. J. Li, M. R. Luo, M. R. Pointer, and P. Green, “Comparison of real colour gamuts using a new reflectance database,” Color Res. Appl. 39(5), 442–451 (2014).
[Crossref]

M. R. Pointer, “The gamut of real surface colors,” Color Res. Appl. 5(3), 145–155 (1980).
[Crossref]

C. J. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, and M. R. Pointer, “A revision of CIECAM02 and its CAT and UCS,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 208–212.
[Crossref]

Roth, S.

M. B. Chorin, D. Eliav, S. Roth, A. Pagi, and I. Ben‐David, “21.3: New Metric for Display Color Gamut Evaluation,” SID Symp. Dig. Tec. 38(1), 1053–1056 (2007).

Safdar, M.

M. Safdar, M. R. Luo, and G. Cui, “Investigating performance of uniform color spaces for high dynamic range and wide gamut color difference applications,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 88–93.
[Crossref]

Sugawara, M.

K. Masaoka, Y. Nishida, and M. Sugawara, “Designing display primaries with currently available light sources for UHDTV wide-gamut system colorimetry,” Opt. Express 22(16), 19069–19077 (2014).
[Crossref] [PubMed]

K. Masaoka, Y. Nishida, M. Sugawara, and E. Nakasu, “Design of primaries for a wide-gamut television colorimetry,” IEEE Trans. Broadcast 56(4), 452–457 (2010).
[Crossref]

Thornton, W. A.

M. H. Brill, G. D. Finlayson, P. M. Hubel, and W. A. Thornton, “Prime colors and color imaging,” in Color and Imaging Conference (Society for Imaging Science and Technology, 1998), pp. 33–42.

Wang, Z.

C. J. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, and M. R. Pointer, “A revision of CIECAM02 and its CAT and UCS,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 208–212.
[Crossref]

Wen, S.

S. Wen, “A method for selecting display primaries to match a target color gamut,” J. Soc. Inf. Disp. 15(12), 1015–1022 (2007).
[Crossref]

Xu, Y.

C. J. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, and M. R. Pointer, “A revision of CIECAM02 and its CAT and UCS,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 208–212.
[Crossref]

Yamaguchi, M.

T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, “Expanded color gamut reproduced by six-primary projection display,” Proc. SPIE 3954, 130–137 (2000).
[Crossref]

Color Res. Appl. (2)

M. R. Pointer, “The gamut of real surface colors,” Color Res. Appl. 5(3), 145–155 (1980).
[Crossref]

C. J. Li, M. R. Luo, M. R. Pointer, and P. Green, “Comparison of real colour gamuts using a new reflectance database,” Color Res. Appl. 39(5), 442–451 (2014).
[Crossref]

IEEE Trans. Broadcast (1)

K. Masaoka, Y. Nishida, M. Sugawara, and E. Nakasu, “Design of primaries for a wide-gamut television colorimetry,” IEEE Trans. Broadcast 56(4), 452–457 (2010).
[Crossref]

J. Opt. Soc. Am. (2)

J. Soc. Inf. Disp. (1)

S. Wen, “A method for selecting display primaries to match a target color gamut,” J. Soc. Inf. Disp. 15(12), 1015–1022 (2007).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (1)

T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, “Expanded color gamut reproduced by six-primary projection display,” Proc. SPIE 3954, 130–137 (2000).
[Crossref]

SID Symp. Dig. Tec. (1)

M. B. Chorin, D. Eliav, S. Roth, A. Pagi, and I. Ben‐David, “21.3: New Metric for Display Color Gamut Evaluation,” SID Symp. Dig. Tec. 38(1), 1053–1056 (2007).

Other (8)

Adobe Systems Inc., “Adobe RGB (1998) color image encoding,” 2005.

SMPTE RP 431–2, “D-cinema quality — reference projector and environment,” 2011.

ITU-R Recommendation BT.709–5, “Parameter values for the HDTV standards for production and international programme exchange,” 2002.

ITU-R Recommendation BT.2020, “Parameter values for ultra-high definition television systems for production and international programme exchange,” 2012.

V. Keikha, M. Löffler, A. Mohades, J. Urhausen, and I. V. Hoog, “Maximum-area triangle in a convex polygon, revisited,” arXiv:1705.11035 (2017).

M. H. Brill, G. D. Finlayson, P. M. Hubel, and W. A. Thornton, “Prime colors and color imaging,” in Color and Imaging Conference (Society for Imaging Science and Technology, 1998), pp. 33–42.

C. J. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, and M. R. Pointer, “A revision of CIECAM02 and its CAT and UCS,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 208–212.
[Crossref]

M. Safdar, M. R. Luo, and G. Cui, “Investigating performance of uniform color spaces for high dynamic range and wide gamut color difference applications,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 88–93.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Chromaticities for Adobe RGB, SMPTE RP 431-2, Rec. 709, Rec. 2020 and theoretically largest coverage RGB primary sets in (a) xy diagram and (b) u’v’ diagram.
Fig. 2
Fig. 2 Intersection of 3-primary display gamut and optimal color gamut.
Fig. 3
Fig. 3 Flow chart of optimization process.
Fig. 4
Fig. 4 Optimal color gamut volume coverage of 3-primary to 9-primary display.
Fig. 5
Fig. 5 Optimal color coverage of 6-primary display at (a) L* = 99, (b) L* = 80, (c) L* = 70, (d) L* = 50, (e) L* = 30, (f) L* = 10. It can be seen that optimal color is almost fully covered at each slice, even at high lightness and low lightness slices.
Fig. 6
Fig. 6 Optimized wavelength sets in (a) CIE xy diagram (b) CIE u’v’ diagram and gamut area growing trend in (c) CIE xy and (d) CIE u’v’ diagram.
Fig. 7
Fig. 7 Comparison among all 83 6-primary wavelength sets (blue dots) and optimized result (dot with orange circle). It can be seen that our result performs excellently in both two spaces. Note that best u’v’ and xy coverage results in a relatively poor performance in UCS. This is mainly caused by two reasons, the irrelevance between area and volume color model, and the optimal color coverage criterion in our optimization. High area coverage may not result in a high optimal color coverage in UCS.
Fig. 8
Fig. 8 Coverage and LER for display primary number at (a) 3, (b) 4, (c) 5, (d) 6, (e) 7.
Fig. 9
Fig. 9 Feasible laser wavelengths in xy chromaticity diagram.
Fig. 10
Fig. 10 Optimal color gamut coverage of 6-primary laser projection display at (a) L* = 99, (b) L* = 80, (c) L* = 70, (d) L* = 50, (e) L* = 30, (f) L* = 10.

Tables (2)

Tables Icon

Table 1 Optimal color coverage comparison of 3-primary display (White point: D65).

Tables Icon

Table 2 Characteristics of 6-primary laser projection display (white point: D65).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

G={ (c)|c= i=1 N α i P i ,0 α i 1 }
W= Volume(G G T ) Volume( G T ) ×100%
  min x f(x)such that{ c(x)0 ceq(x)=0 Axb Aeqx=beq lbxub
lb=[ 0 0 0 ];Aeq=[ X 1 X 2 X N Y 1 Y 2 Y N Z 1 Z 2 Z N ],beq=[ X W Y W Z W ]
lb=[ 380 380 380 ],ub=[ 780 780 780 ];A=[ 1 1 0 0 0 1 1 0 0 0 1 1 ],b=[ 0 0 0 ]

Metrics