Abstract

We report the first demonstration of Raman amplification in a fiber of a single Bessel-like higher order mode using a multimode pump source. We amplify the LP08-mode with a 559-µm2 effective mode area at a signal wavelength of 1115 nm in a pure-silica-core step-index fiber. A maximum of 18 dB average power gain is achieved in a 9-m long gain fiber, with output pulse energy of 115 µJ. The Raman pump source comprises a pulsed 1060 nm ytterbium-doped fiber amplifier with V-value ~30, which is matched to the Raman gain fiber. The pump depletion as averaged over the signal pulses reaches 36.7%. The conversion of power from the multimode pump into the signal mode demonstrates the potential for efficient brightness enhancement with low amplification-induced signal mode purity degradation.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Raman amplification of pure side-seeded higher-order modes in hydrogen-filled hollow-core PCF

Jean-Michel Ménard, Barbara M. Trabold, Amir Abdolvand, and Philip St.J. Russell
Opt. Express 23(2) 895-901 (2015)

Reconversion of higher-order-mode (HOM) output from cladding-pumped hybrid Yb:HOM fiber amplifier

Kazi S. Abedin, Raja Ahmad, Anthony M. DeSantolo, and David J. DiGiovanni
Opt. Express 27(6) 8585-8595 (2019)

Comparison of amplification in large area fibers using cladding-pump and fundamental-mode core-pump schemes

Z. Várallyay and J. C. Jasapara
Opt. Express 17(20) 17242-17252 (2009)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  2. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004).
    [Crossref] [PubMed]
  3. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
    [Crossref] [PubMed]
  4. L. Dong, H. A. Mckay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, and M. E. Fermann, “Extending Effective Area of Fundamental Mode in Optical Fibers,” J. Lightwave Technol. 27(11), 1565–1570 (2009).
    [Crossref]
  5. D. Jain, Y. Jung, M. Nunez-Velazquez, and J. K. Sahu, “Extending single mode performance of all-solid large-mode-area single trench fiber,” Opt. Express 22(25), 31078–31091 (2014).
    [Crossref] [PubMed]
  6. D. Jain, Novel Optical Fibers for High Power Lasers, PhD Thesis, University of Southampton (2015).
  7. L. Rishøj, M. Jones, J. Demas, P. Gregg, G. Prabhakar, L. Yan, T. Hawkins, J. Ballato, and S. Ramachandran, “Polymer-clad silica fibers for tailoring modal area and dispersion,” Opt. Lett. 41(15), 3587–3590 (2016).
    [Crossref] [PubMed]
  8. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31(12), 1797–1799 (2006).
    [Crossref] [PubMed]
  9. J. M. Fini and S. Ramachandran, “Natural bend-distortion immunity of higher-order-mode large-mode-area fibers,” Opt. Lett. 32(7), 748–750 (2007).
    [Crossref] [PubMed]
  10. S. Ramachandran, “Dispersion-tailored few-mode fibers: a versatile platform for in-fiber photonic devices,” J. Lightwave Technol. 23(11), 3426–3443 (2005).
    [Crossref]
  11. S. Pidishety, S. Pachava, P. Gregg, S. Ramachandran, G. Brambilla, and B. Srinivasan, “Orbital angular momentum beam excitation using an all-fiber weakly fused mode selective coupler,” Opt. Lett. 42(21), 4347–4350 (2017).
    [Crossref] [PubMed]
  12. R. M. Herman and T. A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A 8(6), 932–942 (1991).
    [Crossref]
  13. J. Demas, L. Rishøj, and S. Ramachandran, “Free-space beam shaping for precise control and conversion of modes in optical fiber,” Opt. Express 23(22), 28531–28545 (2015).
    [Crossref] [PubMed]
  14. J. W. Nicholson, J. M. Fini, A. DeSantolo, P. S. Westbrook, R. S. Windeler, T. Kremp, C. Headley, and D. J. DiGiovanni, “A higher-order mode fiber amplifier with an axicon for output mode conversion,” Proc. SPIE 9344, 93441V (2015).
    [Crossref]
  15. S. Ramachandran, K. Brar, S. Ghalmi, K. Aiso, M. Yan, D. Trevor, J. Fleming, C. Headley, and P. Wisk, “High-power amplification in a 2040-µm2 higher order mode,” in SPIE Photonics West, San Jose, 2007.
  16. J. W. Nicholson, J. M. Fini, A. M. DeSantolo, E. Monberg, F. DiMarcello, J. Fleming, C. Headley, D. J. DiGiovanni, S. Ghalmi, and S. Ramachandran, “A higher-order-mode erbium-doped-fiber amplifier,” Opt. Express 18(17), 17651–17657 (2010).
    [Crossref] [PubMed]
  17. R. Ryf, M. Esmaeelpour, N. K. Fontaine, H. Chen, A. H. Gnauck, R.-J. Essiambre, J. Toulouse, Y. Sun, and R. Lingle, “Distributed Raman amplification based transmission over 1050-km few-mode fiber,” in 2015 European Conference on Optical Communication (ECOC) (IEEE, 2015), pp. 1–3.
    [Crossref]
  18. J. Li, J. Du, L. Ma, M. J. Li, K. Xu, and Z. He, “Second-order few-mode Raman amplifier for mode-division multiplexed optical communication systems,” Opt. Express 25(2), 810–820 (2017).
    [Crossref] [PubMed]
  19. J. Ji, C. A. Codemard, M. Ibsen, J. K. Sahu, and J. Nilsson, “Analysis of the conversion to the first Stokes in cladding-pumped fiber Raman amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 129–139 (2009).
    [Crossref]
  20. J. Ji, C. A. Codemard, J. K. Sahu, and J. Nilsson, “Design, performance, and limitations of fibers for cladding-pumped Raman lasers,” Opt. Fiber Technol. 16(6), 428–441 (2010).
    [Crossref]
  21. C. A. Codemard, J. K. Sahu, and J. Nilsson, “Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 46(12), 1860–1869 (2010).
    [Crossref]
  22. G. Agrawal, Nonlinear Fiber Optics (Elsevier, 2006), Chap. 2.
  23. S. Zhu, S. Pidishety, Y. Feng, J. Demas, S. Ramachandran, B. Srinivasan, and J. Nilsson, “Multimode Raman pumping for power-scaling of large area higher order modes in fiber amplifiers,” in Laser Congress 2017 (ASSL, LAC), OSA Technical Digest (online) (Optical Society of America, 2017), paper ATh4A.4.
    [Crossref]
  24. C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9(2), 271–283 (1991).
    [Crossref]
  25. R. P. Photonics, “Fiber-Optic Simulation and Design Software RP Fiber Power,” https://www.rp-photonics.com/fiberpower.html .
  26. F. Capasso and P. Di Porto, “Coupled-mode theory of Raman amplification in lossless optical fibers,” J. Appl. Phys. 47(4), 1472–1476 (1976).
    [Crossref]
  27. C. A. Codemard, High-Power Cladding-Pumped Raman and Erbium-Ytterbium Doped Fibre Sources, PhD Thesis, University of Southampton (2007).
  28. R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
    [Crossref]
  29. R. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22(6), 276–278 (1973).
    [Crossref]

2017 (2)

2016 (1)

2015 (2)

J. Demas, L. Rishøj, and S. Ramachandran, “Free-space beam shaping for precise control and conversion of modes in optical fiber,” Opt. Express 23(22), 28531–28545 (2015).
[Crossref] [PubMed]

J. W. Nicholson, J. M. Fini, A. DeSantolo, P. S. Westbrook, R. S. Windeler, T. Kremp, C. Headley, and D. J. DiGiovanni, “A higher-order mode fiber amplifier with an axicon for output mode conversion,” Proc. SPIE 9344, 93441V (2015).
[Crossref]

2014 (1)

2010 (4)

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
[Crossref]

J. W. Nicholson, J. M. Fini, A. M. DeSantolo, E. Monberg, F. DiMarcello, J. Fleming, C. Headley, D. J. DiGiovanni, S. Ghalmi, and S. Ramachandran, “A higher-order-mode erbium-doped-fiber amplifier,” Opt. Express 18(17), 17651–17657 (2010).
[Crossref] [PubMed]

J. Ji, C. A. Codemard, J. K. Sahu, and J. Nilsson, “Design, performance, and limitations of fibers for cladding-pumped Raman lasers,” Opt. Fiber Technol. 16(6), 428–441 (2010).
[Crossref]

C. A. Codemard, J. K. Sahu, and J. Nilsson, “Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 46(12), 1860–1869 (2010).
[Crossref]

2009 (2)

L. Dong, H. A. Mckay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, and M. E. Fermann, “Extending Effective Area of Fundamental Mode in Optical Fibers,” J. Lightwave Technol. 27(11), 1565–1570 (2009).
[Crossref]

J. Ji, C. A. Codemard, M. Ibsen, J. K. Sahu, and J. Nilsson, “Analysis of the conversion to the first Stokes in cladding-pumped fiber Raman amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 129–139 (2009).
[Crossref]

2007 (1)

2006 (1)

2005 (1)

2004 (1)

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

1991 (2)

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9(2), 271–283 (1991).
[Crossref]

R. M. Herman and T. A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A 8(6), 932–942 (1991).
[Crossref]

1982 (1)

R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
[Crossref]

1976 (1)

F. Capasso and P. Di Porto, “Coupled-mode theory of Raman amplification in lossless optical fibers,” J. Appl. Phys. 47(4), 1472–1476 (1976).
[Crossref]

1973 (1)

R. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22(6), 276–278 (1973).
[Crossref]

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Ballato, J.

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Bjorkholm, J.

R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
[Crossref]

Brambilla, G.

Capasso, F.

F. Capasso and P. Di Porto, “Coupled-mode theory of Raman amplification in lossless optical fibers,” J. Appl. Phys. 47(4), 1472–1476 (1976).
[Crossref]

Chen, H.

R. Ryf, M. Esmaeelpour, N. K. Fontaine, H. Chen, A. H. Gnauck, R.-J. Essiambre, J. Toulouse, Y. Sun, and R. Lingle, “Distributed Raman amplification based transmission over 1050-km few-mode fiber,” in 2015 European Conference on Optical Communication (ECOC) (IEEE, 2015), pp. 1–3.
[Crossref]

Clarkson, W. A.

Codemard, C. A.

J. Ji, C. A. Codemard, J. K. Sahu, and J. Nilsson, “Design, performance, and limitations of fibers for cladding-pumped Raman lasers,” Opt. Fiber Technol. 16(6), 428–441 (2010).
[Crossref]

C. A. Codemard, J. K. Sahu, and J. Nilsson, “Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 46(12), 1860–1869 (2010).
[Crossref]

J. Ji, C. A. Codemard, M. Ibsen, J. K. Sahu, and J. Nilsson, “Analysis of the conversion to the first Stokes in cladding-pumped fiber Raman amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 129–139 (2009).
[Crossref]

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Demas, J.

DeSantolo, A.

J. W. Nicholson, J. M. Fini, A. DeSantolo, P. S. Westbrook, R. S. Windeler, T. Kremp, C. Headley, and D. J. DiGiovanni, “A higher-order mode fiber amplifier with an axicon for output mode conversion,” Proc. SPIE 9344, 93441V (2015).
[Crossref]

DeSantolo, A. M.

Desurvire, E.

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9(2), 271–283 (1991).
[Crossref]

Di Porto, P.

F. Capasso and P. Di Porto, “Coupled-mode theory of Raman amplification in lossless optical fibers,” J. Appl. Phys. 47(4), 1472–1476 (1976).
[Crossref]

DiGiovanni, D. J.

J. W. Nicholson, J. M. Fini, A. DeSantolo, P. S. Westbrook, R. S. Windeler, T. Kremp, C. Headley, and D. J. DiGiovanni, “A higher-order mode fiber amplifier with an axicon for output mode conversion,” Proc. SPIE 9344, 93441V (2015).
[Crossref]

J. W. Nicholson, J. M. Fini, A. M. DeSantolo, E. Monberg, F. DiMarcello, J. Fleming, C. Headley, D. J. DiGiovanni, S. Ghalmi, and S. Ramachandran, “A higher-order-mode erbium-doped-fiber amplifier,” Opt. Express 18(17), 17651–17657 (2010).
[Crossref] [PubMed]

DiMarcello, F.

Dimarcello, F. V.

Dong, L.

Du, J.

Esmaeelpour, M.

R. Ryf, M. Esmaeelpour, N. K. Fontaine, H. Chen, A. H. Gnauck, R.-J. Essiambre, J. Toulouse, Y. Sun, and R. Lingle, “Distributed Raman amplification based transmission over 1050-km few-mode fiber,” in 2015 European Conference on Optical Communication (ECOC) (IEEE, 2015), pp. 1–3.
[Crossref]

Essiambre, R.-J.

R. Ryf, M. Esmaeelpour, N. K. Fontaine, H. Chen, A. H. Gnauck, R.-J. Essiambre, J. Toulouse, Y. Sun, and R. Lingle, “Distributed Raman amplification based transmission over 1050-km few-mode fiber,” in 2015 European Conference on Optical Communication (ECOC) (IEEE, 2015), pp. 1–3.
[Crossref]

Fermann, M. E.

Fini, J. M.

Fleming, J.

Fontaine, N. K.

R. Ryf, M. Esmaeelpour, N. K. Fontaine, H. Chen, A. H. Gnauck, R.-J. Essiambre, J. Toulouse, Y. Sun, and R. Lingle, “Distributed Raman amplification based transmission over 1050-km few-mode fiber,” in 2015 European Conference on Optical Communication (ECOC) (IEEE, 2015), pp. 1–3.
[Crossref]

Fu, L.

Ghalmi, S.

Giles, C. R.

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9(2), 271–283 (1991).
[Crossref]

Gnauck, A. H.

R. Ryf, M. Esmaeelpour, N. K. Fontaine, H. Chen, A. H. Gnauck, R.-J. Essiambre, J. Toulouse, Y. Sun, and R. Lingle, “Distributed Raman amplification based transmission over 1050-km few-mode fiber,” in 2015 European Conference on Optical Communication (ECOC) (IEEE, 2015), pp. 1–3.
[Crossref]

Gregg, P.

Hawkins, T.

He, Z.

Headley, C.

J. W. Nicholson, J. M. Fini, A. DeSantolo, P. S. Westbrook, R. S. Windeler, T. Kremp, C. Headley, and D. J. DiGiovanni, “A higher-order mode fiber amplifier with an axicon for output mode conversion,” Proc. SPIE 9344, 93441V (2015).
[Crossref]

J. W. Nicholson, J. M. Fini, A. M. DeSantolo, E. Monberg, F. DiMarcello, J. Fleming, C. Headley, D. J. DiGiovanni, S. Ghalmi, and S. Ramachandran, “A higher-order-mode erbium-doped-fiber amplifier,” Opt. Express 18(17), 17651–17657 (2010).
[Crossref] [PubMed]

Herman, R. M.

Ibsen, M.

J. Ji, C. A. Codemard, M. Ibsen, J. K. Sahu, and J. Nilsson, “Analysis of the conversion to the first Stokes in cladding-pumped fiber Raman amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 129–139 (2009).
[Crossref]

Ippen, E. P.

R. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22(6), 276–278 (1973).
[Crossref]

Jain, D.

Jeong, Y.

Ji, J.

J. Ji, C. A. Codemard, J. K. Sahu, and J. Nilsson, “Design, performance, and limitations of fibers for cladding-pumped Raman lasers,” Opt. Fiber Technol. 16(6), 428–441 (2010).
[Crossref]

J. Ji, C. A. Codemard, M. Ibsen, J. K. Sahu, and J. Nilsson, “Analysis of the conversion to the first Stokes in cladding-pumped fiber Raman amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 129–139 (2009).
[Crossref]

Jones, M.

Jung, Y.

Knight, J. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Kremp, T.

J. W. Nicholson, J. M. Fini, A. DeSantolo, P. S. Westbrook, R. S. Windeler, T. Kremp, C. Headley, and D. J. DiGiovanni, “A higher-order mode fiber amplifier with an axicon for output mode conversion,” Proc. SPIE 9344, 93441V (2015).
[Crossref]

Li, J.

Li, M. J.

Lingle, R.

R. Ryf, M. Esmaeelpour, N. K. Fontaine, H. Chen, A. H. Gnauck, R.-J. Essiambre, J. Toulouse, Y. Sun, and R. Lingle, “Distributed Raman amplification based transmission over 1050-km few-mode fiber,” in 2015 European Conference on Optical Communication (ECOC) (IEEE, 2015), pp. 1–3.
[Crossref]

Ma, L.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Marcinkevicius, A.

Mckay, H. A.

Monberg, E.

Nicholson, J. W.

Nilsson, J.

J. Ji, C. A. Codemard, J. K. Sahu, and J. Nilsson, “Design, performance, and limitations of fibers for cladding-pumped Raman lasers,” Opt. Fiber Technol. 16(6), 428–441 (2010).
[Crossref]

C. A. Codemard, J. K. Sahu, and J. Nilsson, “Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 46(12), 1860–1869 (2010).
[Crossref]

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
[Crossref]

J. Ji, C. A. Codemard, M. Ibsen, J. K. Sahu, and J. Nilsson, “Analysis of the conversion to the first Stokes in cladding-pumped fiber Raman amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 129–139 (2009).
[Crossref]

Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004).
[Crossref] [PubMed]

Nunez-Velazquez, M.

Pachava, S.

Payne, D.

Pidishety, S.

Prabhakar, G.

Ramachandran, S.

S. Pidishety, S. Pachava, P. Gregg, S. Ramachandran, G. Brambilla, and B. Srinivasan, “Orbital angular momentum beam excitation using an all-fiber weakly fused mode selective coupler,” Opt. Lett. 42(21), 4347–4350 (2017).
[Crossref] [PubMed]

L. Rishøj, M. Jones, J. Demas, P. Gregg, G. Prabhakar, L. Yan, T. Hawkins, J. Ballato, and S. Ramachandran, “Polymer-clad silica fibers for tailoring modal area and dispersion,” Opt. Lett. 41(15), 3587–3590 (2016).
[Crossref] [PubMed]

J. Demas, L. Rishøj, and S. Ramachandran, “Free-space beam shaping for precise control and conversion of modes in optical fiber,” Opt. Express 23(22), 28531–28545 (2015).
[Crossref] [PubMed]

J. W. Nicholson, J. M. Fini, A. M. DeSantolo, E. Monberg, F. DiMarcello, J. Fleming, C. Headley, D. J. DiGiovanni, S. Ghalmi, and S. Ramachandran, “A higher-order-mode erbium-doped-fiber amplifier,” Opt. Express 18(17), 17651–17657 (2010).
[Crossref] [PubMed]

J. M. Fini and S. Ramachandran, “Natural bend-distortion immunity of higher-order-mode large-mode-area fibers,” Opt. Lett. 32(7), 748–750 (2007).
[Crossref] [PubMed]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31(12), 1797–1799 (2006).
[Crossref] [PubMed]

S. Ramachandran, “Dispersion-tailored few-mode fibers: a versatile platform for in-fiber photonic devices,” J. Lightwave Technol. 23(11), 3426–3443 (2005).
[Crossref]

Richardson, D. J.

Rishøj, L.

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Russell, P. S.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Ryf, R.

R. Ryf, M. Esmaeelpour, N. K. Fontaine, H. Chen, A. H. Gnauck, R.-J. Essiambre, J. Toulouse, Y. Sun, and R. Lingle, “Distributed Raman amplification based transmission over 1050-km few-mode fiber,” in 2015 European Conference on Optical Communication (ECOC) (IEEE, 2015), pp. 1–3.
[Crossref]

Sahu, J.

Sahu, J. K.

D. Jain, Y. Jung, M. Nunez-Velazquez, and J. K. Sahu, “Extending single mode performance of all-solid large-mode-area single trench fiber,” Opt. Express 22(25), 31078–31091 (2014).
[Crossref] [PubMed]

J. Ji, C. A. Codemard, J. K. Sahu, and J. Nilsson, “Design, performance, and limitations of fibers for cladding-pumped Raman lasers,” Opt. Fiber Technol. 16(6), 428–441 (2010).
[Crossref]

C. A. Codemard, J. K. Sahu, and J. Nilsson, “Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 46(12), 1860–1869 (2010).
[Crossref]

J. Ji, C. A. Codemard, M. Ibsen, J. K. Sahu, and J. Nilsson, “Analysis of the conversion to the first Stokes in cladding-pumped fiber Raman amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 129–139 (2009).
[Crossref]

Srinivasan, B.

Stolen, R.

R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
[Crossref]

R. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22(6), 276–278 (1973).
[Crossref]

Sun, Y.

R. Ryf, M. Esmaeelpour, N. K. Fontaine, H. Chen, A. H. Gnauck, R.-J. Essiambre, J. Toulouse, Y. Sun, and R. Lingle, “Distributed Raman amplification based transmission over 1050-km few-mode fiber,” in 2015 European Conference on Optical Communication (ECOC) (IEEE, 2015), pp. 1–3.
[Crossref]

Thomas, B. K.

Toulouse, J.

R. Ryf, M. Esmaeelpour, N. K. Fontaine, H. Chen, A. H. Gnauck, R.-J. Essiambre, J. Toulouse, Y. Sun, and R. Lingle, “Distributed Raman amplification based transmission over 1050-km few-mode fiber,” in 2015 European Conference on Optical Communication (ECOC) (IEEE, 2015), pp. 1–3.
[Crossref]

Westbrook, P. S.

J. W. Nicholson, J. M. Fini, A. DeSantolo, P. S. Westbrook, R. S. Windeler, T. Kremp, C. Headley, and D. J. DiGiovanni, “A higher-order mode fiber amplifier with an axicon for output mode conversion,” Proc. SPIE 9344, 93441V (2015).
[Crossref]

Wiggins, T. A.

Windeler, R. S.

J. W. Nicholson, J. M. Fini, A. DeSantolo, P. S. Westbrook, R. S. Windeler, T. Kremp, C. Headley, and D. J. DiGiovanni, “A higher-order mode fiber amplifier with an axicon for output mode conversion,” Proc. SPIE 9344, 93441V (2015).
[Crossref]

Wisk, P.

Xu, K.

Yan, L.

Yan, M. F.

Appl. Phys. Lett. (1)

R. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22(6), 276–278 (1973).
[Crossref]

IEEE J. Quantum Electron. (2)

C. A. Codemard, J. K. Sahu, and J. Nilsson, “Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 46(12), 1860–1869 (2010).
[Crossref]

R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Ji, C. A. Codemard, M. Ibsen, J. K. Sahu, and J. Nilsson, “Analysis of the conversion to the first Stokes in cladding-pumped fiber Raman amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 129–139 (2009).
[Crossref]

J. Appl. Phys. (1)

F. Capasso and P. Di Porto, “Coupled-mode theory of Raman amplification in lossless optical fibers,” J. Appl. Phys. 47(4), 1472–1476 (1976).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Express (5)

Opt. Fiber Technol. (1)

J. Ji, C. A. Codemard, J. K. Sahu, and J. Nilsson, “Design, performance, and limitations of fibers for cladding-pumped Raman lasers,” Opt. Fiber Technol. 16(6), 428–441 (2010).
[Crossref]

Opt. Lett. (4)

Proc. SPIE (1)

J. W. Nicholson, J. M. Fini, A. DeSantolo, P. S. Westbrook, R. S. Windeler, T. Kremp, C. Headley, and D. J. DiGiovanni, “A higher-order mode fiber amplifier with an axicon for output mode conversion,” Proc. SPIE 9344, 93441V (2015).
[Crossref]

Science (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Other (7)

D. Jain, Novel Optical Fibers for High Power Lasers, PhD Thesis, University of Southampton (2015).

S. Ramachandran, K. Brar, S. Ghalmi, K. Aiso, M. Yan, D. Trevor, J. Fleming, C. Headley, and P. Wisk, “High-power amplification in a 2040-µm2 higher order mode,” in SPIE Photonics West, San Jose, 2007.

R. Ryf, M. Esmaeelpour, N. K. Fontaine, H. Chen, A. H. Gnauck, R.-J. Essiambre, J. Toulouse, Y. Sun, and R. Lingle, “Distributed Raman amplification based transmission over 1050-km few-mode fiber,” in 2015 European Conference on Optical Communication (ECOC) (IEEE, 2015), pp. 1–3.
[Crossref]

C. A. Codemard, High-Power Cladding-Pumped Raman and Erbium-Ytterbium Doped Fibre Sources, PhD Thesis, University of Southampton (2007).

R. P. Photonics, “Fiber-Optic Simulation and Design Software RP Fiber Power,” https://www.rp-photonics.com/fiberpower.html .

G. Agrawal, Nonlinear Fiber Optics (Elsevier, 2006), Chap. 2.

S. Zhu, S. Pidishety, Y. Feng, J. Demas, S. Ramachandran, B. Srinivasan, and J. Nilsson, “Multimode Raman pumping for power-scaling of large area higher order modes in fiber amplifiers,” in Laser Congress 2017 (ASSL, LAC), OSA Technical Digest (online) (Optical Society of America, 2017), paper ATh4A.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Evolution of LP08 mode purity in FRA (red curve) and YDFA (black curve) as the LP08-power grows along the fiber against the signal power normalized to the launched pump power; (b) Comparison of gain in target HOM (dashed curves) and total signal (solid curves) in FRA (red curves) and YDFA (black curves); (c) Normalized transverse intensity profiles of input and output signal of FRA (curves are indistinguishable) and (d) YDFA.
Fig. 2
Fig. 2 Schematic of experimental setup for the fiber Raman amplification experiment consisting of the signal arm (top) and the pump arm (bottom) originating from a pulsed laser at 1060 nm.
Fig. 3
Fig. 3 (a) Measured average-power gain and average pump depletion versus launched peak pump power; (b) Pump pulse at input (black curve) and output (red curve) of Raman amplifier at 18 dB signal gain; (c) Signal pulse at input (black curve) and output (blue curve) of FRA at 16 dB gain. Note different scales for input and output signal. (d) Spectra of amplified signal measured with 0.5 nm resolution for average gain between 0 dB (bottom) and 18.0 dB (top);
Fig. 4
Fig. 4 Signal output beams. Images at gain levels of (a) 0 dB, (b) 15.7 dB and (c) 18 dB. The greyscale is in log scale and normalized to enhance contrast. The bright spot in the center corresponds to maximum intensity. (d) Normalized intensity line profiles (in log scale) for different gain values, 0 dB (black curve), 15.7 dB (red curve), and 18 dB (green curve). Data recorded by a silicon camera.

Tables (1)

Tables Icon

Table 1 Parameters used in the simulations

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

g w (z)= 0 0 2π N 0 [ ( σ e w + σ a w ) n 2 (z,r,ϕ) σ a w ] ψ i w (r,ϕ)rdrdϕ
n 2 = I P σ a P / h ν P + I S σ a S / h ν S I P ( σ a P + σ e P )/ h ν P + I S ( σ a S + σ e S )/ h ν S +1/τ
d P i P (z) dz = λ S λ P g R k=1 N S P i P (z) P k S (z) A i,i,k,k eff ,
d P j S (z) dz = g R k=1 N P P k P (z) P j S (z) A j,j,k,k eff
( A i,i,j,j eff ) 1 = 0 2π 0 ψ i (r,θ) ψ j (r,θ)rdrdθ 0 2π 0 ψ i (r,θ)rdrdθ 0 2π 0 ψ j (r,θ)rdrdθ
η depletion = P S out (t) η P (t)dt P S out (t)dt ,

Metrics