Abstract

Apart from the main plasmon-polariton resonance of the surface-enhanced Raman scattering (SERS) occurring at 480 – 530 nm, an additional resonance was observed for substrates with two silver layers separated by a dielectric layer which support extra plasmon modes with decreased group velocities. The novel SERS resonance is shifted towards lower energies and has comparable amplitude, its exact energy position being determined by the thickness of the dielectric interlayer. The experimental findings provide a ground for the engineering of SERS-substrates with the spectral position of the additional resonance matched with the photon energy of the pump laser over a fairly wide range of laser wavelengths.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optimizing electromagnetic enhancement of flexible nano-imprinted hexagonally patterned surface-enhanced Raman scattering substrates

D. Z. Lin, Y. P. Chen, P. J. Jhuang, J. Y. Chu, J. T. Yeh, and J.-K. Wang
Opt. Express 19(5) 4337-4345 (2011)

Coupling discrete metal nanoparticles to photonic crystal surface resonant modes and application to Raman spectroscopy

Seok-min Kim, Wei Zhang, and Brian T. Cunningham
Opt. Express 18(5) 4300-4309 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  2. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Phys. Chem 58(1), 267–297 (2007).
    [Crossref]
  3. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
    [Crossref] [PubMed]
  4. S. Schlücker, “Surface–enhanced Raman spectroscopy: concepts and chemical applications,” Angew. Chem. Int. Ed. 53, 4756–4795 (2014).
    [Crossref]
  5. A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6, 709–713 (2012).
    [Crossref]
  6. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem.Phys.Lett. 26(2), 163–166 (1974).
  7. M. Moskovits, “Surface-enhanced spectroscopy,” Rev.Mod.Phys. 57, 783–826 (1985).
  8. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys.Rev.Lett. 78, 1667–1669 (1997).
  9. A. K. Sarychev and V. M. Shalaev, Electrodynamics of metamaterials (World Scientific Publishing, 2007).
  10. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
    [Crossref] [PubMed]
  11. S. A. Lyon and J. M. Worlock, “Role of electromagnetic resonances in the surface-enhanced Raman effect,” Phys. Rev. Lett. 51, 593–596 (1983).
    [Crossref]
  12. V. I. Kukushkin, A. B. Van’kov, and I. V. Kukushkin, “Long-range manifestation of surface-enhanced Raman scattering,” JETP Lett. 98, 64–96 (2013).
    [Crossref]
  13. V. I. Kukushkin, A. B. Van’kov, and I. V. Kukushkin, “Relationship between the giant enhancement of the Raman scattering and luminescence on nanostructured metallic surfaces,” JETP Lett. 98, 342–347 (2013).
    [Crossref]
  14. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys.Rev. 106, 874–881 (1957).
  15. E. N. Economou, “Surface plasmons in thin films,” Phys.Rev. 182, 539–554 (1969).
  16. S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007).
  17. J. B. D. Soole and C. D. Ager, “The slow-mode surface plasmon in planar metal-oxide-metal tunnel junctions,” J. Appl. Phys. 65, 1133–1139 (1989).
    [Crossref]
  18. M. P. Connolly and P. Dawson, “Optimization of the slow-mode plasmon polariton in light-emitting tunnel junctions,” J. Appl. Phys. 78, 5522–5533 (1995).
    [Crossref]
  19. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
    [Crossref]
  20. Z. Li, Y. Sun, K. Wang, J. Song, J. Shi, C. Gu, L. Liu, and Y. Luo, “Tuning the dispersion of effective surface plasmon polaritons with multilayer systems,” Opt. Express 26, 4686–4697 (2018).
    [Crossref] [PubMed]
  21. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Yok-Siang Oei, R. Nötzel, Cun-Zheng Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
    [Crossref] [PubMed]
  22. P. Neutens, P. van Dorpe, I. de Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
    [Crossref]
  23. M. Aalizadeh, A. Khavasi, B. Butun, and E. Ozbay, “Large-area, cost-effective, ultra-broadband perfect absorber utilizing manganese in metal-insulator-metal structure,” Sci. Reports 8, 9162 (2018).
    [Crossref]
  24. N. S. Mueller, S. Heeg, and S. Reich, “Surface-enhanced Raman scattering as a higher-order Raman process,” Phys.Rev.A 94, 023813 (2016).
  25. The actual surface plasmon resonance energy for a silver-air interface corresponds to ∼3.5 eV and differs considerably from the theoretical value of ωp/2 displayed in Fig. 4. It is explained by the screening effects from the bound electrons in the Ag material, which also soften the energies of both discussed MIM plasma modes.
  26. M. Rocca, Li Yibing, F. Buatier de Mongeot, and U. Valbusa, “Surface plasmon dispersion and damping on Ag(111),” Phys.Rev.B 52, 14947–14953 (1995).
  27. S. V. Tovstonog, L. V. Kulik, I. V. Kukushkin, A. V. Chaplik, J. H. Smet, K. von Klitzing, D. Schuh, and G. Abstreiter, “Acoustical and optical magnetoplasma excitations in a bilayer electron system,” Phys.Rev.B 66, 241308(R) (2002).

2018 (2)

Z. Li, Y. Sun, K. Wang, J. Song, J. Shi, C. Gu, L. Liu, and Y. Luo, “Tuning the dispersion of effective surface plasmon polaritons with multilayer systems,” Opt. Express 26, 4686–4697 (2018).
[Crossref] [PubMed]

M. Aalizadeh, A. Khavasi, B. Butun, and E. Ozbay, “Large-area, cost-effective, ultra-broadband perfect absorber utilizing manganese in metal-insulator-metal structure,” Sci. Reports 8, 9162 (2018).
[Crossref]

2016 (1)

N. S. Mueller, S. Heeg, and S. Reich, “Surface-enhanced Raman scattering as a higher-order Raman process,” Phys.Rev.A 94, 023813 (2016).

2014 (1)

S. Schlücker, “Surface–enhanced Raman spectroscopy: concepts and chemical applications,” Angew. Chem. Int. Ed. 53, 4756–4795 (2014).
[Crossref]

2013 (2)

V. I. Kukushkin, A. B. Van’kov, and I. V. Kukushkin, “Long-range manifestation of surface-enhanced Raman scattering,” JETP Lett. 98, 64–96 (2013).
[Crossref]

V. I. Kukushkin, A. B. Van’kov, and I. V. Kukushkin, “Relationship between the giant enhancement of the Raman scattering and luminescence on nanostructured metallic surfaces,” JETP Lett. 98, 342–347 (2013).
[Crossref]

2012 (1)

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6, 709–713 (2012).
[Crossref]

2011 (1)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

2009 (2)

2008 (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

2007 (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Phys. Chem 58(1), 267–297 (2007).
[Crossref]

2003 (1)

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[Crossref]

2002 (1)

S. V. Tovstonog, L. V. Kulik, I. V. Kukushkin, A. V. Chaplik, J. H. Smet, K. von Klitzing, D. Schuh, and G. Abstreiter, “Acoustical and optical magnetoplasma excitations in a bilayer electron system,” Phys.Rev.B 66, 241308(R) (2002).

1997 (2)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys.Rev.Lett. 78, 1667–1669 (1997).

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref] [PubMed]

1995 (2)

M. P. Connolly and P. Dawson, “Optimization of the slow-mode plasmon polariton in light-emitting tunnel junctions,” J. Appl. Phys. 78, 5522–5533 (1995).
[Crossref]

M. Rocca, Li Yibing, F. Buatier de Mongeot, and U. Valbusa, “Surface plasmon dispersion and damping on Ag(111),” Phys.Rev.B 52, 14947–14953 (1995).

1989 (1)

J. B. D. Soole and C. D. Ager, “The slow-mode surface plasmon in planar metal-oxide-metal tunnel junctions,” J. Appl. Phys. 65, 1133–1139 (1989).
[Crossref]

1985 (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev.Mod.Phys. 57, 783–826 (1985).

1983 (1)

S. A. Lyon and J. M. Worlock, “Role of electromagnetic resonances in the surface-enhanced Raman effect,” Phys. Rev. Lett. 51, 593–596 (1983).
[Crossref]

1974 (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem.Phys.Lett. 26(2), 163–166 (1974).

1969 (1)

E. N. Economou, “Surface plasmons in thin films,” Phys.Rev. 182, 539–554 (1969).

1957 (1)

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys.Rev. 106, 874–881 (1957).

Aalizadeh, M.

M. Aalizadeh, A. Khavasi, B. Butun, and E. Ozbay, “Large-area, cost-effective, ultra-broadband perfect absorber utilizing manganese in metal-insulator-metal structure,” Sci. Reports 8, 9162 (2018).
[Crossref]

Abstreiter, G.

S. V. Tovstonog, L. V. Kulik, I. V. Kukushkin, A. V. Chaplik, J. H. Smet, K. von Klitzing, D. Schuh, and G. Abstreiter, “Acoustical and optical magnetoplasma excitations in a bilayer electron system,” Phys.Rev.B 66, 241308(R) (2002).

Ager, C. D.

J. B. D. Soole and C. D. Ager, “The slow-mode surface plasmon in planar metal-oxide-metal tunnel junctions,” J. Appl. Phys. 65, 1133–1139 (1989).
[Crossref]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Borghs, G.

P. Neutens, P. van Dorpe, I. de Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[Crossref]

Brolo, A. G.

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6, 709–713 (2012).
[Crossref]

Buatier de Mongeot, F.

M. Rocca, Li Yibing, F. Buatier de Mongeot, and U. Valbusa, “Surface plasmon dispersion and damping on Ag(111),” Phys.Rev.B 52, 14947–14953 (1995).

Butun, B.

M. Aalizadeh, A. Khavasi, B. Butun, and E. Ozbay, “Large-area, cost-effective, ultra-broadband perfect absorber utilizing manganese in metal-insulator-metal structure,” Sci. Reports 8, 9162 (2018).
[Crossref]

Chaplik, A. V.

S. V. Tovstonog, L. V. Kulik, I. V. Kukushkin, A. V. Chaplik, J. H. Smet, K. von Klitzing, D. Schuh, and G. Abstreiter, “Acoustical and optical magnetoplasma excitations in a bilayer electron system,” Phys.Rev.B 66, 241308(R) (2002).

Connolly, M. P.

M. P. Connolly and P. Dawson, “Optimization of the slow-mode plasmon polariton in light-emitting tunnel junctions,” J. Appl. Phys. 78, 5522–5533 (1995).
[Crossref]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys.Rev.Lett. 78, 1667–1669 (1997).

Dawson, P.

M. P. Connolly and P. Dawson, “Optimization of the slow-mode plasmon polariton in light-emitting tunnel junctions,” J. Appl. Phys. 78, 5522–5533 (1995).
[Crossref]

de Vlaminck, I.

P. Neutens, P. van Dorpe, I. de Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[Crossref]

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys.Rev. 182, 539–554 (1969).

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys.Rev.Lett. 78, 1667–1669 (1997).

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem.Phys.Lett. 26(2), 163–166 (1974).

Geluk, E. J.

Gu, C.

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Heeg, S.

N. S. Mueller, S. Heeg, and S. Reich, “Surface-enhanced Raman scattering as a higher-order Raman process,” Phys.Rev.A 94, 023813 (2016).

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem.Phys.Lett. 26(2), 163–166 (1974).

Hill, M. T.

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys.Rev.Lett. 78, 1667–1669 (1997).

Karouta, F.

Khavasi, A.

M. Aalizadeh, A. Khavasi, B. Butun, and E. Ozbay, “Large-area, cost-effective, ultra-broadband perfect absorber utilizing manganese in metal-insulator-metal structure,” Sci. Reports 8, 9162 (2018).
[Crossref]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys.Rev.Lett. 78, 1667–1669 (1997).

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys.Rev.Lett. 78, 1667–1669 (1997).

Kukushkin, I. V.

V. I. Kukushkin, A. B. Van’kov, and I. V. Kukushkin, “Long-range manifestation of surface-enhanced Raman scattering,” JETP Lett. 98, 64–96 (2013).
[Crossref]

V. I. Kukushkin, A. B. Van’kov, and I. V. Kukushkin, “Relationship between the giant enhancement of the Raman scattering and luminescence on nanostructured metallic surfaces,” JETP Lett. 98, 342–347 (2013).
[Crossref]

S. V. Tovstonog, L. V. Kulik, I. V. Kukushkin, A. V. Chaplik, J. H. Smet, K. von Klitzing, D. Schuh, and G. Abstreiter, “Acoustical and optical magnetoplasma excitations in a bilayer electron system,” Phys.Rev.B 66, 241308(R) (2002).

Kukushkin, V. I.

V. I. Kukushkin, A. B. Van’kov, and I. V. Kukushkin, “Relationship between the giant enhancement of the Raman scattering and luminescence on nanostructured metallic surfaces,” JETP Lett. 98, 342–347 (2013).
[Crossref]

V. I. Kukushkin, A. B. Van’kov, and I. V. Kukushkin, “Long-range manifestation of surface-enhanced Raman scattering,” JETP Lett. 98, 64–96 (2013).
[Crossref]

Kulik, L. V.

S. V. Tovstonog, L. V. Kulik, I. V. Kukushkin, A. V. Chaplik, J. H. Smet, K. von Klitzing, D. Schuh, and G. Abstreiter, “Acoustical and optical magnetoplasma excitations in a bilayer electron system,” Phys.Rev.B 66, 241308(R) (2002).

Lagae, L.

P. Neutens, P. van Dorpe, I. de Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[Crossref]

Leong, E. S. P.

Li, Z.

Liu, L.

Luo, Y.

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Lyon, S. A.

S. A. Lyon and J. M. Worlock, “Role of electromagnetic resonances in the surface-enhanced Raman effect,” Phys. Rev. Lett. 51, 593–596 (1983).
[Crossref]

Maier, S. A.

S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007).

Marell, M.

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

McQuillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem.Phys.Lett. 26(2), 163–166 (1974).

Moskovits, M.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev.Mod.Phys. 57, 783–826 (1985).

Mueller, N. S.

N. S. Mueller, S. Heeg, and S. Reich, “Surface-enhanced Raman scattering as a higher-order Raman process,” Phys.Rev.A 94, 023813 (2016).

Neutens, P.

P. Neutens, P. van Dorpe, I. de Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[Crossref]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref] [PubMed]

Ning, Cun-Zheng

Nötzel, R.

Oei, Yok-Siang

Ozbay, E.

M. Aalizadeh, A. Khavasi, B. Butun, and E. Ozbay, “Large-area, cost-effective, ultra-broadband perfect absorber utilizing manganese in metal-insulator-metal structure,” Sci. Reports 8, 9162 (2018).
[Crossref]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys.Rev.Lett. 78, 1667–1669 (1997).

Reich, S.

N. S. Mueller, S. Heeg, and S. Reich, “Surface-enhanced Raman scattering as a higher-order Raman process,” Phys.Rev.A 94, 023813 (2016).

Ritchie, R. H.

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys.Rev. 106, 874–881 (1957).

Rocca, M.

M. Rocca, Li Yibing, F. Buatier de Mongeot, and U. Valbusa, “Surface plasmon dispersion and damping on Ag(111),” Phys.Rev.B 52, 14947–14953 (1995).

Sarychev, A. K.

A. K. Sarychev and V. M. Shalaev, Electrodynamics of metamaterials (World Scientific Publishing, 2007).

Schlücker, S.

S. Schlücker, “Surface–enhanced Raman spectroscopy: concepts and chemical applications,” Angew. Chem. Int. Ed. 53, 4756–4795 (2014).
[Crossref]

Schuh, D.

S. V. Tovstonog, L. V. Kulik, I. V. Kukushkin, A. V. Chaplik, J. H. Smet, K. von Klitzing, D. Schuh, and G. Abstreiter, “Acoustical and optical magnetoplasma excitations in a bilayer electron system,” Phys.Rev.B 66, 241308(R) (2002).

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Shalaev, V. M.

A. K. Sarychev and V. M. Shalaev, Electrodynamics of metamaterials (World Scientific Publishing, 2007).

Shi, J.

Smalbrugge, B.

Smet, J. H.

S. V. Tovstonog, L. V. Kulik, I. V. Kukushkin, A. V. Chaplik, J. H. Smet, K. von Klitzing, D. Schuh, and G. Abstreiter, “Acoustical and optical magnetoplasma excitations in a bilayer electron system,” Phys.Rev.B 66, 241308(R) (2002).

Smit, M. K.

Song, J.

Soole, J. B. D.

J. B. D. Soole and C. D. Ager, “The slow-mode surface plasmon in planar metal-oxide-metal tunnel junctions,” J. Appl. Phys. 65, 1133–1139 (1989).
[Crossref]

Sun, M.

Sun, Y.

Tanaka, K.

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[Crossref]

Tanaka, M.

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[Crossref]

Tovstonog, S. V.

S. V. Tovstonog, L. V. Kulik, I. V. Kukushkin, A. V. Chaplik, J. H. Smet, K. von Klitzing, D. Schuh, and G. Abstreiter, “Acoustical and optical magnetoplasma excitations in a bilayer electron system,” Phys.Rev.B 66, 241308(R) (2002).

Valbusa, U.

M. Rocca, Li Yibing, F. Buatier de Mongeot, and U. Valbusa, “Surface plasmon dispersion and damping on Ag(111),” Phys.Rev.B 52, 14947–14953 (1995).

van Dorpe, P.

P. Neutens, P. van Dorpe, I. de Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[Crossref]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Phys. Chem 58(1), 267–297 (2007).
[Crossref]

van Veldhoven, P. J.

Van’kov, A. B.

V. I. Kukushkin, A. B. Van’kov, and I. V. Kukushkin, “Relationship between the giant enhancement of the Raman scattering and luminescence on nanostructured metallic surfaces,” JETP Lett. 98, 342–347 (2013).
[Crossref]

V. I. Kukushkin, A. B. Van’kov, and I. V. Kukushkin, “Long-range manifestation of surface-enhanced Raman scattering,” JETP Lett. 98, 64–96 (2013).
[Crossref]

von Klitzing, K.

S. V. Tovstonog, L. V. Kulik, I. V. Kukushkin, A. V. Chaplik, J. H. Smet, K. von Klitzing, D. Schuh, and G. Abstreiter, “Acoustical and optical magnetoplasma excitations in a bilayer electron system,” Phys.Rev.B 66, 241308(R) (2002).

Wang, K.

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys.Rev.Lett. 78, 1667–1669 (1997).

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Phys. Chem 58(1), 267–297 (2007).
[Crossref]

Worlock, J. M.

S. A. Lyon and J. M. Worlock, “Role of electromagnetic resonances in the surface-enhanced Raman effect,” Phys. Rev. Lett. 51, 593–596 (1983).
[Crossref]

Yibing, Li

M. Rocca, Li Yibing, F. Buatier de Mongeot, and U. Valbusa, “Surface plasmon dispersion and damping on Ag(111),” Phys.Rev.B 52, 14947–14953 (1995).

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zhu, Y.

Angew. Chem. Int. Ed. (1)

S. Schlücker, “Surface–enhanced Raman spectroscopy: concepts and chemical applications,” Angew. Chem. Int. Ed. 53, 4756–4795 (2014).
[Crossref]

Annu. Phys. Chem (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Phys. Chem 58(1), 267–297 (2007).
[Crossref]

Appl. Phys. Lett. (1)

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[Crossref]

Chem. Rev. (1)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Chem.Phys.Lett. (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem.Phys.Lett. 26(2), 163–166 (1974).

J. Appl. Phys. (2)

J. B. D. Soole and C. D. Ager, “The slow-mode surface plasmon in planar metal-oxide-metal tunnel junctions,” J. Appl. Phys. 65, 1133–1139 (1989).
[Crossref]

M. P. Connolly and P. Dawson, “Optimization of the slow-mode plasmon polariton in light-emitting tunnel junctions,” J. Appl. Phys. 78, 5522–5533 (1995).
[Crossref]

JETP Lett. (2)

V. I. Kukushkin, A. B. Van’kov, and I. V. Kukushkin, “Long-range manifestation of surface-enhanced Raman scattering,” JETP Lett. 98, 64–96 (2013).
[Crossref]

V. I. Kukushkin, A. B. Van’kov, and I. V. Kukushkin, “Relationship between the giant enhancement of the Raman scattering and luminescence on nanostructured metallic surfaces,” JETP Lett. 98, 342–347 (2013).
[Crossref]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Nat. Photonics (2)

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6, 709–713 (2012).
[Crossref]

P. Neutens, P. van Dorpe, I. de Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[Crossref]

Opt. Express (2)

Phys. Rev. Lett. (1)

S. A. Lyon and J. M. Worlock, “Role of electromagnetic resonances in the surface-enhanced Raman effect,” Phys. Rev. Lett. 51, 593–596 (1983).
[Crossref]

Phys.Rev. (2)

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys.Rev. 106, 874–881 (1957).

E. N. Economou, “Surface plasmons in thin films,” Phys.Rev. 182, 539–554 (1969).

Phys.Rev.A (1)

N. S. Mueller, S. Heeg, and S. Reich, “Surface-enhanced Raman scattering as a higher-order Raman process,” Phys.Rev.A 94, 023813 (2016).

Phys.Rev.B (2)

M. Rocca, Li Yibing, F. Buatier de Mongeot, and U. Valbusa, “Surface plasmon dispersion and damping on Ag(111),” Phys.Rev.B 52, 14947–14953 (1995).

S. V. Tovstonog, L. V. Kulik, I. V. Kukushkin, A. V. Chaplik, J. H. Smet, K. von Klitzing, D. Schuh, and G. Abstreiter, “Acoustical and optical magnetoplasma excitations in a bilayer electron system,” Phys.Rev.B 66, 241308(R) (2002).

Phys.Rev.Lett. (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys.Rev.Lett. 78, 1667–1669 (1997).

Rev.Mod.Phys. (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev.Mod.Phys. 57, 783–826 (1985).

Sci. Reports (1)

M. Aalizadeh, A. Khavasi, B. Butun, and E. Ozbay, “Large-area, cost-effective, ultra-broadband perfect absorber utilizing manganese in metal-insulator-metal structure,” Sci. Reports 8, 9162 (2018).
[Crossref]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref] [PubMed]

Other (3)

S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007).

A. K. Sarychev and V. M. Shalaev, Electrodynamics of metamaterials (World Scientific Publishing, 2007).

The actual surface plasmon resonance energy for a silver-air interface corresponds to ∼3.5 eV and differs considerably from the theoretical value of ωp/2 displayed in Fig. 4. It is explained by the screening effects from the bound electrons in the Ag material, which also soften the energies of both discussed MIM plasma modes.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Inelastic light scattering spectra measured on the reference SERS substrate (without an additional thick silver layer) for two analytes: TMB (a) and 4 - ABT (b) under a 532 nm laser photoexcitation.
Fig. 2
Fig. 2 (a) SERS spectra measured for a mono-molecular analyte layer (4 - ABT) on the surface of a standard SERS substrate. The spectra were measured at four different laser wavelengths, 488 nm, 532 nm, 568 nm and 647 nm, and with the same photoexcitation power density. (b) Raman spectra measured under identical experimental conditions from a modified SERS substrate with the buried thick silver layer below the top SERS-active silver layers; the two layers are separated by a 50 nm-thick dielectric slab.
Fig. 3
Fig. 3 Spectral dependencies of the normalized SERS enhancement factor measured for the reference structure (a), as well as for three structures with an additional metal layer separated from the upper SERS layer by an insulator with the thickness dins = 30 nm (b), 50 nm (c) and 100 nm (d).
Fig. 4
Fig. 4 Spectra of plasmon-polariton excitations in two different structures: containing a single metallic layer (a), and containing a metallic layer separated from the infinitely thick metallic layer by a dielectric slab with the thickness dins (b). The upper bulk-like plasma mode starting from ωp at k = 0 with a positive dispersion is not shown.
Fig. 5
Fig. 5 Dependence of the measured energy shift of the additional SERS resonance on the inverse distance dins.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

c 1 = c [ 1 ( λ p / 2 d ins ) ( 1 + coth ( d m / λ p ) ) ]
Δ E ~ ( c c 1 ) / a ~ 1 / d ins

Metrics