Abstract

Bistatic radar with the separate transmitter and receiver has some attractive merits, thus obtaining many attentions. However, in a traditional bistatic radar system, there are still many problems that hinder it from practical applications. Here we introduce a bistatic radar scheme using a well-designed optical chaos system, from which the analog chaos signal could be determined by generated random binary sequence. The broad bandwidth analog signal is used as surveillance signal and the digital signal are transmitted to the receiver by optical fibers. Finally, high spatial and velocity resolutions of radar system could be obtained by using the analog chaos signal. A high-quality regeneration of the reference signal at different locations can be established by transmitting the digital sequence. Moreover, the mutual interferences could be concealed since the analog surveillance signal and the transmitted digital sequence are delivered by different paths. These could be advantageous for radar applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electro-optic chaotic system based on the reverse-time chaos theory and a nonlinear hybrid feedback loop

Xingxing Jiang, Mengfan Cheng, Fengguang Luo, Lei Deng, Songnian Fu, Changjian Ke, Minming Zhang, Ming Tang, Ping Shum, and Deming Liu
Opt. Express 24(25) 28804-28814 (2016)

High-resolution W-band ISAR imaging system utilizing a logic-operation-based photonic digital-to-analog converter

Shaowen Peng, Shangyuan Li, Xiaoxiao Xue, Xuedi Xiao, Dexin Wu, Xiaoping Zheng, and Bingkun Zhou
Opt. Express 26(2) 1978-1987 (2018)

Reproducible optical noise-like signal generation subjected by digital sequences

Xingxing Jiang, Mengfan Cheng, Chenkun Luo, Fengguang Luo, Lei Deng, Songnian Fu, Changjian Ke, Minming Zhang, Ming Tang, Ping Shum, and Deming Liu
Opt. Express 25(23) 29189-29198 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. Chetty, G. E. Smith, and K. Woodbridge, “Through-the-wall sensing of personnel using passive bistatic wifi radar at standoff distances,” IEEE Trans. Geosci. Remote Sens. 50(4), 1218–1226 (2012).
    [Crossref]
  2. K. E. Olsen and K. Woodbridge, “Performance of a multiband passive bistatic radar processing scheme—Part I,” IEEE Aerosp. Electron. Syst. Mag. 27(10), 16–25 (2012).
    [Crossref]
  3. F. Colone, C. Bongioanni, and P. Lombardo, “Multifrequency integration in FM radio-based passive bistatic radar. Part I: Target detection,” IEEE Aerosp. Electron. Syst. Mag. 28(4), 28–39 (2013).
    [Crossref]
  4. H. D. Griffiths, W. A. Al-Ashwal, K. D. Ward, R. J. A. Tough, C. J. Baker, and K. Woodbridege, “Measurement and modelling of bistatic radar sea clutter,” IET Radar Sonar & Navigation 4(2), 280–290 (2010).
    [Crossref]
  5. H. D. Griffiths and C. J. Baker, “The signal and interference environment in passive bistatic radar,” in Proc. IEEE IDC (2007), pp. 1–10.
    [Crossref]
  6. F. Colone, D. W. O’hagan, P. Lombardo, and C. J. Baker, “A multistage processing algorithm for disturbance removal and target detection in passive bistatic radar,” IEEE Trans. Aerosp. Electron. Syst. 45(2), 698–722 (2009).
    [Crossref]
  7. J. E. Palmer and S. J. Searle, “Evaluation of adaptive filter algorithms for clutter cancellation in passive bistatic radar,” in Proceeding of IEEE Radar Conference (IEEE, 2012), pp. 0493–0498.
    [Crossref]
  8. M. A. Attalah, T. Laroussi, A. Aouane, and A. Mehanaoui, “Adaptive filters for direct path and multipath interference cancellation: Application to FM-RTL-SDR based Passive Bistatic Radar,” in Proc. IEEE SETIT (2016), pp. 461–465.
    [Crossref]
  9. D. S. Garmatyuk and R. M. Narayanan, “Ultra-wideband continuous-wave random noise arc-SAR,” IEEE Trans. Geosci. Remote Sens. 40(12), 2543–2552 (2002).
    [Crossref]
  10. T. Thayaparan, M. Daković, and L. Stanković, “Mutual interference and low probability of interception capabilities of noise radar,” IET Radar Sonar & Navigation 2(4), 294–305 (2008).
    [Crossref]
  11. M. J. Callahan, B. D. Rigling, and M. Rangaswamy, “Simulated & theoretical SNR in passive bistatic noise radar processing,” in Proceeding of IEEE Radar Conference (IEEE, 2016), pp. 1–6.
    [Crossref]
  12. Y. C. Kouomou, P. Colet, L. Larger, and N. Gastaud, “Chaotic breathers in delayed electro-optical systems,” Phys. Rev. Lett. 95(20), 203903 (2005).
    [Crossref] [PubMed]
  13. A. Wang, Y. Wang, Y. Yang, M. Zhang, H. Xu, and B. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
    [Crossref]
  14. A. Wang, B. Wang, L. Li, Y. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1–10 (2015).
  15. P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol. 30(11), 1638–1644 (2012).
    [Crossref]
  16. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, and A. Bogoni, “Photonic generation and independent steering of multiple RF signals for software defined radars,” Opt. Express 21(19), 22905–22910 (2013).
    [Crossref] [PubMed]
  17. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
    [Crossref] [PubMed]
  18. J. Zheng, H. Wang, J. Fu, L. Wei, S. Pan, L. Wang, J. Liu, and N. Zhu, “Fiber-distributed Ultra-wideband noise radar with steerable power spectrum and colorless base station,” Opt. Express 22(5), 4896–4907 (2014).
    [Crossref] [PubMed]
  19. R. Li, W. Li, M. Ding, Z. Wen, Y. Li, L. Zhou, S. Yu, T. Xing, B. Gao, Y. Luan, Y. Zhu, P. Guo, Y. Tian, and X. Liang, “Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing,” Opt. Express 25(13), 14334–14340 (2017).
    [Crossref] [PubMed]
  20. F. Zhang, Q. Guo, Z. Wang, P. Zhou, G. Zhang, J. Sun, and S. Pan, “Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging,” Opt. Express 25(14), 16274–16281 (2017).
    [Crossref] [PubMed]
  21. F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
    [Crossref]
  22. V. Venkatasubramanian, H. Leung, and X. Liu, “Chaos UWB radar for through-the-wall imaging,” IEEE Trans. Image Process. 18(6), 1255–1265 (2009).
    [Crossref] [PubMed]
  23. M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE Photonics J. 6(5), 1–12 (2014).
    [Crossref]
  24. C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Generation of uncorrelated multichannel chaos by electrical heterodyning for multiple-input–multiple-output chaos radar application,” IEEE Photonics J. 8(1), 1–14 (2016).
  25. T. Yao, D. Zhu, D. Ben, and S. Pan, “Distributed MIMO chaotic radar based on wavelength-division multiplexing technology,” Opt. Lett. 40(8), 1631–1634 (2015).
    [Crossref] [PubMed]
  26. E. Gambi, F. Chiaraluce, and S. Spinsante, “Chaos-based radars for automotive applications: Theoretical issues and numerical simulation,” IEEE Trans. Vehicular Technol. 57(6), 3858–3863 (2008).
    [Crossref]
  27. J. Fu and S. Pan, “A fiber-distributed bistatic ultra-wideband radar based on optical time division multiplexing,” in Proceeding of IEEE International Topical Meeting on Microwave Photonics (IEEE, 2015), 1–4.
    [Crossref]
  28. H. Xu, B. Wang, H. Han, L. Liu, J. Li, Y. Wang, and A. Wang, “Remote imaging radar with ultra-wideband chaotic signals over fiber links,” Int. J. Bifurcat. Chaos 25(11), 1530029 (2015).
    [Crossref]
  29. B. Wang, Y. Wang, L. Kong, and A. Wang, “Multi-target real-time ranging with chaotic laser radar,” Chin. Opt. Lett. 6(11), 868–870 (2008).
    [Crossref]
  30. H. Chi, X. Zou, and J. Yao, “Analytical models for phase-modulation-based microwave photonic systems with phase modulation to intensity modulation conversion using a dispersive device,” J. Lightwave Technol. 27(5), 511–521 (2009).
    [Crossref]
  31. X. Jiang, M. Cheng, C. Luo, F. Luo, L. Deng, S. Fu, C. Ke, M. Zhang, M. Tang, P. Shum, and D. Liu, “Reproducible optical noise-like signal generation subjected by digital sequences,” Opt. Express 25(23), 29189–29198 (2017).
    [Crossref]
  32. X. Jiang, M. Cheng, F. Luo, L. Deng, S. Fu, C. Ke, M. Zhang, M. Tang, P. Shum, and D. Liu, “Electro-optic chaotic system based on the reverse-time chaos theory and a nonlinear hybrid feedback loop,” Opt. Express 24(25), 28804–28814 (2016).
    [Crossref] [PubMed]
  33. J. J. Suárez-Vargas, B. A. Márquez, and J. A. González, “Highly complex optical signal generation using electro-optical systems with non-linear, non-invertible transmission functions,” Appl. Phys. Lett. 101(7), 071115 (2012).
    [Crossref]
  34. F. Y. Lin, Y. K. Chao, and T. C. Wu, “Effective bandwidths of broadband chaotic signals,” IEEE J. Quantum Electron. 48(8), 1010–1014 (2012).
    [Crossref]
  35. F. Y. Lin and J. M. Liu, “Ambiguity functions of laser-based chaotic radar,” IEEE J. Quantum Electron. 40(12), 1732–1738 (2004).
    [Crossref]
  36. M. Dawood and R. M. Narayanan, ““Generalised wideband ambiguity function of a coherent ultrawideband random noise radar,” In Proc,” Inst. Elect. Eng. Radar Sonar Navigat. 150(5), 379–386 (2003).
    [Crossref]
  37. Q. Jin, K. M. Wong, and Z. Q. Luo, “The estimation of time delay and Doppler stretch of wideband signals,” IEEE Trans. Signal Process. 43(4), 904–916 (1995).
    [Crossref]
  38. C. Yin, S. Xu, and D. Wang, “Performance analysis of the estimation of time delay and Doppler stretch by wideband ambiguity function,” in Proceeding of IEEE International Conference on Microwave and Millimeter Wave Technology (IEEE, 1998), pp. 452–455.
  39. C. S. Pappu, B. C. Flores, P. S. Debroux, and J. E. Boehm, “An Electronic Implementation of Lorenz Chaotic Oscillator Synchronization for Bistatic Radar Applications,” IEEE Trans. Aerosp. Electron. Syst. 53(4), 2001–2013 (2017).
    [Crossref]
  40. J. Tian, Y. Cheng, N. Xie, and D. Hou, “Bistatic ISAR imaging based on phase synchronization with fiber optic link,” in Proceeding of IEEE Radar Conference (IEEE, 2016), pp. 1–5.
    [Crossref]

2017 (4)

2016 (2)

X. Jiang, M. Cheng, F. Luo, L. Deng, S. Fu, C. Ke, M. Zhang, M. Tang, P. Shum, and D. Liu, “Electro-optic chaotic system based on the reverse-time chaos theory and a nonlinear hybrid feedback loop,” Opt. Express 24(25), 28804–28814 (2016).
[Crossref] [PubMed]

C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Generation of uncorrelated multichannel chaos by electrical heterodyning for multiple-input–multiple-output chaos radar application,” IEEE Photonics J. 8(1), 1–14 (2016).

2015 (3)

T. Yao, D. Zhu, D. Ben, and S. Pan, “Distributed MIMO chaotic radar based on wavelength-division multiplexing technology,” Opt. Lett. 40(8), 1631–1634 (2015).
[Crossref] [PubMed]

H. Xu, B. Wang, H. Han, L. Liu, J. Li, Y. Wang, and A. Wang, “Remote imaging radar with ultra-wideband chaotic signals over fiber links,” Int. J. Bifurcat. Chaos 25(11), 1530029 (2015).
[Crossref]

A. Wang, B. Wang, L. Li, Y. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1–10 (2015).

2014 (3)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

J. Zheng, H. Wang, J. Fu, L. Wei, S. Pan, L. Wang, J. Liu, and N. Zhu, “Fiber-distributed Ultra-wideband noise radar with steerable power spectrum and colorless base station,” Opt. Express 22(5), 4896–4907 (2014).
[Crossref] [PubMed]

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE Photonics J. 6(5), 1–12 (2014).
[Crossref]

2013 (3)

A. Wang, Y. Wang, Y. Yang, M. Zhang, H. Xu, and B. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, and A. Bogoni, “Photonic generation and independent steering of multiple RF signals for software defined radars,” Opt. Express 21(19), 22905–22910 (2013).
[Crossref] [PubMed]

F. Colone, C. Bongioanni, and P. Lombardo, “Multifrequency integration in FM radio-based passive bistatic radar. Part I: Target detection,” IEEE Aerosp. Electron. Syst. Mag. 28(4), 28–39 (2013).
[Crossref]

2012 (5)

K. Chetty, G. E. Smith, and K. Woodbridge, “Through-the-wall sensing of personnel using passive bistatic wifi radar at standoff distances,” IEEE Trans. Geosci. Remote Sens. 50(4), 1218–1226 (2012).
[Crossref]

K. E. Olsen and K. Woodbridge, “Performance of a multiband passive bistatic radar processing scheme—Part I,” IEEE Aerosp. Electron. Syst. Mag. 27(10), 16–25 (2012).
[Crossref]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol. 30(11), 1638–1644 (2012).
[Crossref]

J. J. Suárez-Vargas, B. A. Márquez, and J. A. González, “Highly complex optical signal generation using electro-optical systems with non-linear, non-invertible transmission functions,” Appl. Phys. Lett. 101(7), 071115 (2012).
[Crossref]

F. Y. Lin, Y. K. Chao, and T. C. Wu, “Effective bandwidths of broadband chaotic signals,” IEEE J. Quantum Electron. 48(8), 1010–1014 (2012).
[Crossref]

2010 (1)

H. D. Griffiths, W. A. Al-Ashwal, K. D. Ward, R. J. A. Tough, C. J. Baker, and K. Woodbridege, “Measurement and modelling of bistatic radar sea clutter,” IET Radar Sonar & Navigation 4(2), 280–290 (2010).
[Crossref]

2009 (3)

F. Colone, D. W. O’hagan, P. Lombardo, and C. J. Baker, “A multistage processing algorithm for disturbance removal and target detection in passive bistatic radar,” IEEE Trans. Aerosp. Electron. Syst. 45(2), 698–722 (2009).
[Crossref]

V. Venkatasubramanian, H. Leung, and X. Liu, “Chaos UWB radar for through-the-wall imaging,” IEEE Trans. Image Process. 18(6), 1255–1265 (2009).
[Crossref] [PubMed]

H. Chi, X. Zou, and J. Yao, “Analytical models for phase-modulation-based microwave photonic systems with phase modulation to intensity modulation conversion using a dispersive device,” J. Lightwave Technol. 27(5), 511–521 (2009).
[Crossref]

2008 (3)

B. Wang, Y. Wang, L. Kong, and A. Wang, “Multi-target real-time ranging with chaotic laser radar,” Chin. Opt. Lett. 6(11), 868–870 (2008).
[Crossref]

E. Gambi, F. Chiaraluce, and S. Spinsante, “Chaos-based radars for automotive applications: Theoretical issues and numerical simulation,” IEEE Trans. Vehicular Technol. 57(6), 3858–3863 (2008).
[Crossref]

T. Thayaparan, M. Daković, and L. Stanković, “Mutual interference and low probability of interception capabilities of noise radar,” IET Radar Sonar & Navigation 2(4), 294–305 (2008).
[Crossref]

2005 (1)

Y. C. Kouomou, P. Colet, L. Larger, and N. Gastaud, “Chaotic breathers in delayed electro-optical systems,” Phys. Rev. Lett. 95(20), 203903 (2005).
[Crossref] [PubMed]

2004 (2)

F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[Crossref]

F. Y. Lin and J. M. Liu, “Ambiguity functions of laser-based chaotic radar,” IEEE J. Quantum Electron. 40(12), 1732–1738 (2004).
[Crossref]

2003 (1)

M. Dawood and R. M. Narayanan, ““Generalised wideband ambiguity function of a coherent ultrawideband random noise radar,” In Proc,” Inst. Elect. Eng. Radar Sonar Navigat. 150(5), 379–386 (2003).
[Crossref]

2002 (1)

D. S. Garmatyuk and R. M. Narayanan, “Ultra-wideband continuous-wave random noise arc-SAR,” IEEE Trans. Geosci. Remote Sens. 40(12), 2543–2552 (2002).
[Crossref]

1995 (1)

Q. Jin, K. M. Wong, and Z. Q. Luo, “The estimation of time delay and Doppler stretch of wideband signals,” IEEE Trans. Signal Process. 43(4), 904–916 (1995).
[Crossref]

Al-Ashwal, W. A.

H. D. Griffiths, W. A. Al-Ashwal, K. D. Ward, R. J. A. Tough, C. J. Baker, and K. Woodbridege, “Measurement and modelling of bistatic radar sea clutter,” IET Radar Sonar & Navigation 4(2), 280–290 (2010).
[Crossref]

Aouane, A.

M. A. Attalah, T. Laroussi, A. Aouane, and A. Mehanaoui, “Adaptive filters for direct path and multipath interference cancellation: Application to FM-RTL-SDR based Passive Bistatic Radar,” in Proc. IEEE SETIT (2016), pp. 461–465.
[Crossref]

Attalah, M. A.

M. A. Attalah, T. Laroussi, A. Aouane, and A. Mehanaoui, “Adaptive filters for direct path and multipath interference cancellation: Application to FM-RTL-SDR based Passive Bistatic Radar,” in Proc. IEEE SETIT (2016), pp. 461–465.
[Crossref]

Baker, C. J.

H. D. Griffiths, W. A. Al-Ashwal, K. D. Ward, R. J. A. Tough, C. J. Baker, and K. Woodbridege, “Measurement and modelling of bistatic radar sea clutter,” IET Radar Sonar & Navigation 4(2), 280–290 (2010).
[Crossref]

F. Colone, D. W. O’hagan, P. Lombardo, and C. J. Baker, “A multistage processing algorithm for disturbance removal and target detection in passive bistatic radar,” IEEE Trans. Aerosp. Electron. Syst. 45(2), 698–722 (2009).
[Crossref]

H. D. Griffiths and C. J. Baker, “The signal and interference environment in passive bistatic radar,” in Proc. IEEE IDC (2007), pp. 1–10.
[Crossref]

Ben, D.

Berizzi, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Boehm, J. E.

C. S. Pappu, B. C. Flores, P. S. Debroux, and J. E. Boehm, “An Electronic Implementation of Lorenz Chaotic Oscillator Synchronization for Bistatic Radar Applications,” IEEE Trans. Aerosp. Electron. Syst. 53(4), 2001–2013 (2017).
[Crossref]

Bogoni, A.

Bongioanni, C.

F. Colone, C. Bongioanni, and P. Lombardo, “Multifrequency integration in FM radio-based passive bistatic radar. Part I: Target detection,” IEEE Aerosp. Electron. Syst. Mag. 28(4), 28–39 (2013).
[Crossref]

Callahan, M. J.

M. J. Callahan, B. D. Rigling, and M. Rangaswamy, “Simulated & theoretical SNR in passive bistatic noise radar processing,” in Proceeding of IEEE Radar Conference (IEEE, 2016), pp. 1–6.
[Crossref]

Capria, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Chao, Y. K.

F. Y. Lin, Y. K. Chao, and T. C. Wu, “Effective bandwidths of broadband chaotic signals,” IEEE J. Quantum Electron. 48(8), 1010–1014 (2012).
[Crossref]

Chen, Y. C.

C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Generation of uncorrelated multichannel chaos by electrical heterodyning for multiple-input–multiple-output chaos radar application,” IEEE Photonics J. 8(1), 1–14 (2016).

Cheng, C. H.

C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Generation of uncorrelated multichannel chaos by electrical heterodyning for multiple-input–multiple-output chaos radar application,” IEEE Photonics J. 8(1), 1–14 (2016).

Cheng, M.

Cheng, Y.

J. Tian, Y. Cheng, N. Xie, and D. Hou, “Bistatic ISAR imaging based on phase synchronization with fiber optic link,” in Proceeding of IEEE Radar Conference (IEEE, 2016), pp. 1–5.
[Crossref]

Chetty, K.

K. Chetty, G. E. Smith, and K. Woodbridge, “Through-the-wall sensing of personnel using passive bistatic wifi radar at standoff distances,” IEEE Trans. Geosci. Remote Sens. 50(4), 1218–1226 (2012).
[Crossref]

Chi, H.

Chiaraluce, F.

E. Gambi, F. Chiaraluce, and S. Spinsante, “Chaos-based radars for automotive applications: Theoretical issues and numerical simulation,” IEEE Trans. Vehicular Technol. 57(6), 3858–3863 (2008).
[Crossref]

Colet, P.

Y. C. Kouomou, P. Colet, L. Larger, and N. Gastaud, “Chaotic breathers in delayed electro-optical systems,” Phys. Rev. Lett. 95(20), 203903 (2005).
[Crossref] [PubMed]

Colone, F.

F. Colone, C. Bongioanni, and P. Lombardo, “Multifrequency integration in FM radio-based passive bistatic radar. Part I: Target detection,” IEEE Aerosp. Electron. Syst. Mag. 28(4), 28–39 (2013).
[Crossref]

F. Colone, D. W. O’hagan, P. Lombardo, and C. J. Baker, “A multistage processing algorithm for disturbance removal and target detection in passive bistatic radar,” IEEE Trans. Aerosp. Electron. Syst. 45(2), 698–722 (2009).
[Crossref]

Dakovic, M.

T. Thayaparan, M. Daković, and L. Stanković, “Mutual interference and low probability of interception capabilities of noise radar,” IET Radar Sonar & Navigation 2(4), 294–305 (2008).
[Crossref]

Dawood, M.

M. Dawood and R. M. Narayanan, ““Generalised wideband ambiguity function of a coherent ultrawideband random noise radar,” In Proc,” Inst. Elect. Eng. Radar Sonar Navigat. 150(5), 379–386 (2003).
[Crossref]

Debroux, P. S.

C. S. Pappu, B. C. Flores, P. S. Debroux, and J. E. Boehm, “An Electronic Implementation of Lorenz Chaotic Oscillator Synchronization for Bistatic Radar Applications,” IEEE Trans. Aerosp. Electron. Syst. 53(4), 2001–2013 (2017).
[Crossref]

Deng, L.

Ding, M.

Flores, B. C.

C. S. Pappu, B. C. Flores, P. S. Debroux, and J. E. Boehm, “An Electronic Implementation of Lorenz Chaotic Oscillator Synchronization for Bistatic Radar Applications,” IEEE Trans. Aerosp. Electron. Syst. 53(4), 2001–2013 (2017).
[Crossref]

Fu, J.

J. Zheng, H. Wang, J. Fu, L. Wei, S. Pan, L. Wang, J. Liu, and N. Zhu, “Fiber-distributed Ultra-wideband noise radar with steerable power spectrum and colorless base station,” Opt. Express 22(5), 4896–4907 (2014).
[Crossref] [PubMed]

J. Fu and S. Pan, “A fiber-distributed bistatic ultra-wideband radar based on optical time division multiplexing,” in Proceeding of IEEE International Topical Meeting on Microwave Photonics (IEEE, 2015), 1–4.
[Crossref]

Fu, S.

Gambi, E.

E. Gambi, F. Chiaraluce, and S. Spinsante, “Chaos-based radars for automotive applications: Theoretical issues and numerical simulation,” IEEE Trans. Vehicular Technol. 57(6), 3858–3863 (2008).
[Crossref]

Gao, B.

Garmatyuk, D. S.

D. S. Garmatyuk and R. M. Narayanan, “Ultra-wideband continuous-wave random noise arc-SAR,” IEEE Trans. Geosci. Remote Sens. 40(12), 2543–2552 (2002).
[Crossref]

Gastaud, N.

Y. C. Kouomou, P. Colet, L. Larger, and N. Gastaud, “Chaotic breathers in delayed electro-optical systems,” Phys. Rev. Lett. 95(20), 203903 (2005).
[Crossref] [PubMed]

Ghelfi, P.

González, J. A.

J. J. Suárez-Vargas, B. A. Márquez, and J. A. González, “Highly complex optical signal generation using electro-optical systems with non-linear, non-invertible transmission functions,” Appl. Phys. Lett. 101(7), 071115 (2012).
[Crossref]

Griffiths, H. D.

H. D. Griffiths, W. A. Al-Ashwal, K. D. Ward, R. J. A. Tough, C. J. Baker, and K. Woodbridege, “Measurement and modelling of bistatic radar sea clutter,” IET Radar Sonar & Navigation 4(2), 280–290 (2010).
[Crossref]

H. D. Griffiths and C. J. Baker, “The signal and interference environment in passive bistatic radar,” in Proc. IEEE IDC (2007), pp. 1–10.
[Crossref]

Guo, P.

Guo, Q.

Han, H.

H. Xu, B. Wang, H. Han, L. Liu, J. Li, Y. Wang, and A. Wang, “Remote imaging radar with ultra-wideband chaotic signals over fiber links,” Int. J. Bifurcat. Chaos 25(11), 1530029 (2015).
[Crossref]

Hou, D.

J. Tian, Y. Cheng, N. Xie, and D. Hou, “Bistatic ISAR imaging based on phase synchronization with fiber optic link,” in Proceeding of IEEE Radar Conference (IEEE, 2016), pp. 1–5.
[Crossref]

Ji, Y.

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE Photonics J. 6(5), 1–12 (2014).
[Crossref]

Jiang, X.

Jin, Q.

Q. Jin, K. M. Wong, and Z. Q. Luo, “The estimation of time delay and Doppler stretch of wideband signals,” IEEE Trans. Signal Process. 43(4), 904–916 (1995).
[Crossref]

Ke, C.

Kong, L.

Kouomou, Y. C.

Y. C. Kouomou, P. Colet, L. Larger, and N. Gastaud, “Chaotic breathers in delayed electro-optical systems,” Phys. Rev. Lett. 95(20), 203903 (2005).
[Crossref] [PubMed]

Laghezza, F.

Larger, L.

Y. C. Kouomou, P. Colet, L. Larger, and N. Gastaud, “Chaotic breathers in delayed electro-optical systems,” Phys. Rev. Lett. 95(20), 203903 (2005).
[Crossref] [PubMed]

Laroussi, T.

M. A. Attalah, T. Laroussi, A. Aouane, and A. Mehanaoui, “Adaptive filters for direct path and multipath interference cancellation: Application to FM-RTL-SDR based Passive Bistatic Radar,” in Proc. IEEE SETIT (2016), pp. 461–465.
[Crossref]

Lazzeri, E.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Leung, H.

V. Venkatasubramanian, H. Leung, and X. Liu, “Chaos UWB radar for through-the-wall imaging,” IEEE Trans. Image Process. 18(6), 1255–1265 (2009).
[Crossref] [PubMed]

Li, J.

H. Xu, B. Wang, H. Han, L. Liu, J. Li, Y. Wang, and A. Wang, “Remote imaging radar with ultra-wideband chaotic signals over fiber links,” Int. J. Bifurcat. Chaos 25(11), 1530029 (2015).
[Crossref]

Li, L.

A. Wang, B. Wang, L. Li, Y. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1–10 (2015).

Li, R.

Li, W.

Li, Y.

Liang, X.

Lin, F. Y.

C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Generation of uncorrelated multichannel chaos by electrical heterodyning for multiple-input–multiple-output chaos radar application,” IEEE Photonics J. 8(1), 1–14 (2016).

F. Y. Lin, Y. K. Chao, and T. C. Wu, “Effective bandwidths of broadband chaotic signals,” IEEE J. Quantum Electron. 48(8), 1010–1014 (2012).
[Crossref]

F. Y. Lin and J. M. Liu, “Ambiguity functions of laser-based chaotic radar,” IEEE J. Quantum Electron. 40(12), 1732–1738 (2004).
[Crossref]

F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[Crossref]

Liu, D.

Liu, J.

Liu, J. M.

F. Y. Lin and J. M. Liu, “Ambiguity functions of laser-based chaotic radar,” IEEE J. Quantum Electron. 40(12), 1732–1738 (2004).
[Crossref]

F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[Crossref]

Liu, L.

H. Xu, B. Wang, H. Han, L. Liu, J. Li, Y. Wang, and A. Wang, “Remote imaging radar with ultra-wideband chaotic signals over fiber links,” Int. J. Bifurcat. Chaos 25(11), 1530029 (2015).
[Crossref]

Liu, X.

V. Venkatasubramanian, H. Leung, and X. Liu, “Chaos UWB radar for through-the-wall imaging,” IEEE Trans. Image Process. 18(6), 1255–1265 (2009).
[Crossref] [PubMed]

Lombardo, P.

F. Colone, C. Bongioanni, and P. Lombardo, “Multifrequency integration in FM radio-based passive bistatic radar. Part I: Target detection,” IEEE Aerosp. Electron. Syst. Mag. 28(4), 28–39 (2013).
[Crossref]

F. Colone, D. W. O’hagan, P. Lombardo, and C. J. Baker, “A multistage processing algorithm for disturbance removal and target detection in passive bistatic radar,” IEEE Trans. Aerosp. Electron. Syst. 45(2), 698–722 (2009).
[Crossref]

Luan, Y.

Luo, C.

Luo, F.

Luo, Z. Q.

Q. Jin, K. M. Wong, and Z. Q. Luo, “The estimation of time delay and Doppler stretch of wideband signals,” IEEE Trans. Signal Process. 43(4), 904–916 (1995).
[Crossref]

Malacarne, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Márquez, B. A.

J. J. Suárez-Vargas, B. A. Márquez, and J. A. González, “Highly complex optical signal generation using electro-optical systems with non-linear, non-invertible transmission functions,” Appl. Phys. Lett. 101(7), 071115 (2012).
[Crossref]

Mehanaoui, A.

M. A. Attalah, T. Laroussi, A. Aouane, and A. Mehanaoui, “Adaptive filters for direct path and multipath interference cancellation: Application to FM-RTL-SDR based Passive Bistatic Radar,” in Proc. IEEE SETIT (2016), pp. 461–465.
[Crossref]

Narayanan, R. M.

M. Dawood and R. M. Narayanan, ““Generalised wideband ambiguity function of a coherent ultrawideband random noise radar,” In Proc,” Inst. Elect. Eng. Radar Sonar Navigat. 150(5), 379–386 (2003).
[Crossref]

D. S. Garmatyuk and R. M. Narayanan, “Ultra-wideband continuous-wave random noise arc-SAR,” IEEE Trans. Geosci. Remote Sens. 40(12), 2543–2552 (2002).
[Crossref]

O’hagan, D. W.

F. Colone, D. W. O’hagan, P. Lombardo, and C. J. Baker, “A multistage processing algorithm for disturbance removal and target detection in passive bistatic radar,” IEEE Trans. Aerosp. Electron. Syst. 45(2), 698–722 (2009).
[Crossref]

Olsen, K. E.

K. E. Olsen and K. Woodbridge, “Performance of a multiband passive bistatic radar processing scheme—Part I,” IEEE Aerosp. Electron. Syst. Mag. 27(10), 16–25 (2012).
[Crossref]

Onori, D.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Pan, S.

Pappu, C. S.

C. S. Pappu, B. C. Flores, P. S. Debroux, and J. E. Boehm, “An Electronic Implementation of Lorenz Chaotic Oscillator Synchronization for Bistatic Radar Applications,” IEEE Trans. Aerosp. Electron. Syst. 53(4), 2001–2013 (2017).
[Crossref]

Pinna, S.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, and A. Bogoni, “Photonic generation and independent steering of multiple RF signals for software defined radars,” Opt. Express 21(19), 22905–22910 (2013).
[Crossref] [PubMed]

Porzi, C.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Rangaswamy, M.

M. J. Callahan, B. D. Rigling, and M. Rangaswamy, “Simulated & theoretical SNR in passive bistatic noise radar processing,” in Proceeding of IEEE Radar Conference (IEEE, 2016), pp. 1–6.
[Crossref]

Rigling, B. D.

M. J. Callahan, B. D. Rigling, and M. Rangaswamy, “Simulated & theoretical SNR in passive bistatic noise radar processing,” in Proceeding of IEEE Radar Conference (IEEE, 2016), pp. 1–6.
[Crossref]

Scaffardi, M.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Scotti, F.

Serafino, G.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, and A. Bogoni, “Photonic generation and independent steering of multiple RF signals for software defined radars,” Opt. Express 21(19), 22905–22910 (2013).
[Crossref] [PubMed]

Shore, K. A.

A. Wang, B. Wang, L. Li, Y. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1–10 (2015).

Shum, P.

Smith, G. E.

K. Chetty, G. E. Smith, and K. Woodbridge, “Through-the-wall sensing of personnel using passive bistatic wifi radar at standoff distances,” IEEE Trans. Geosci. Remote Sens. 50(4), 1218–1226 (2012).
[Crossref]

Spinsante, S.

E. Gambi, F. Chiaraluce, and S. Spinsante, “Chaos-based radars for automotive applications: Theoretical issues and numerical simulation,” IEEE Trans. Vehicular Technol. 57(6), 3858–3863 (2008).
[Crossref]

Stankovic, L.

T. Thayaparan, M. Daković, and L. Stanković, “Mutual interference and low probability of interception capabilities of noise radar,” IET Radar Sonar & Navigation 2(4), 294–305 (2008).
[Crossref]

Suárez-Vargas, J. J.

J. J. Suárez-Vargas, B. A. Márquez, and J. A. González, “Highly complex optical signal generation using electro-optical systems with non-linear, non-invertible transmission functions,” Appl. Phys. Lett. 101(7), 071115 (2012).
[Crossref]

Sun, J.

Tang, M.

Thayaparan, T.

T. Thayaparan, M. Daković, and L. Stanković, “Mutual interference and low probability of interception capabilities of noise radar,” IET Radar Sonar & Navigation 2(4), 294–305 (2008).
[Crossref]

Tian, J.

J. Tian, Y. Cheng, N. Xie, and D. Hou, “Bistatic ISAR imaging based on phase synchronization with fiber optic link,” in Proceeding of IEEE Radar Conference (IEEE, 2016), pp. 1–5.
[Crossref]

Tian, Y.

Tough, R. J. A.

H. D. Griffiths, W. A. Al-Ashwal, K. D. Ward, R. J. A. Tough, C. J. Baker, and K. Woodbridege, “Measurement and modelling of bistatic radar sea clutter,” IET Radar Sonar & Navigation 4(2), 280–290 (2010).
[Crossref]

Venkatasubramanian, V.

V. Venkatasubramanian, H. Leung, and X. Liu, “Chaos UWB radar for through-the-wall imaging,” IEEE Trans. Image Process. 18(6), 1255–1265 (2009).
[Crossref] [PubMed]

Vercesi, V.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Wang, A.

A. Wang, B. Wang, L. Li, Y. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1–10 (2015).

H. Xu, B. Wang, H. Han, L. Liu, J. Li, Y. Wang, and A. Wang, “Remote imaging radar with ultra-wideband chaotic signals over fiber links,” Int. J. Bifurcat. Chaos 25(11), 1530029 (2015).
[Crossref]

A. Wang, Y. Wang, Y. Yang, M. Zhang, H. Xu, and B. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

B. Wang, Y. Wang, L. Kong, and A. Wang, “Multi-target real-time ranging with chaotic laser radar,” Chin. Opt. Lett. 6(11), 868–870 (2008).
[Crossref]

Wang, B.

H. Xu, B. Wang, H. Han, L. Liu, J. Li, Y. Wang, and A. Wang, “Remote imaging radar with ultra-wideband chaotic signals over fiber links,” Int. J. Bifurcat. Chaos 25(11), 1530029 (2015).
[Crossref]

A. Wang, B. Wang, L. Li, Y. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1–10 (2015).

A. Wang, Y. Wang, Y. Yang, M. Zhang, H. Xu, and B. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

B. Wang, Y. Wang, L. Kong, and A. Wang, “Multi-target real-time ranging with chaotic laser radar,” Chin. Opt. Lett. 6(11), 868–870 (2008).
[Crossref]

Wang, D.

C. Yin, S. Xu, and D. Wang, “Performance analysis of the estimation of time delay and Doppler stretch by wideband ambiguity function,” in Proceeding of IEEE International Conference on Microwave and Millimeter Wave Technology (IEEE, 1998), pp. 452–455.

Wang, H.

Wang, L.

Wang, Y.

H. Xu, B. Wang, H. Han, L. Liu, J. Li, Y. Wang, and A. Wang, “Remote imaging radar with ultra-wideband chaotic signals over fiber links,” Int. J. Bifurcat. Chaos 25(11), 1530029 (2015).
[Crossref]

A. Wang, B. Wang, L. Li, Y. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1–10 (2015).

A. Wang, Y. Wang, Y. Yang, M. Zhang, H. Xu, and B. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

B. Wang, Y. Wang, L. Kong, and A. Wang, “Multi-target real-time ranging with chaotic laser radar,” Chin. Opt. Lett. 6(11), 868–870 (2008).
[Crossref]

Wang, Z.

Ward, K. D.

H. D. Griffiths, W. A. Al-Ashwal, K. D. Ward, R. J. A. Tough, C. J. Baker, and K. Woodbridege, “Measurement and modelling of bistatic radar sea clutter,” IET Radar Sonar & Navigation 4(2), 280–290 (2010).
[Crossref]

Wei, L.

Wen, Z.

Wong, K. M.

Q. Jin, K. M. Wong, and Z. Q. Luo, “The estimation of time delay and Doppler stretch of wideband signals,” IEEE Trans. Signal Process. 43(4), 904–916 (1995).
[Crossref]

Woodbridege, K.

H. D. Griffiths, W. A. Al-Ashwal, K. D. Ward, R. J. A. Tough, C. J. Baker, and K. Woodbridege, “Measurement and modelling of bistatic radar sea clutter,” IET Radar Sonar & Navigation 4(2), 280–290 (2010).
[Crossref]

Woodbridge, K.

K. Chetty, G. E. Smith, and K. Woodbridge, “Through-the-wall sensing of personnel using passive bistatic wifi radar at standoff distances,” IEEE Trans. Geosci. Remote Sens. 50(4), 1218–1226 (2012).
[Crossref]

K. E. Olsen and K. Woodbridge, “Performance of a multiband passive bistatic radar processing scheme—Part I,” IEEE Aerosp. Electron. Syst. Mag. 27(10), 16–25 (2012).
[Crossref]

Wu, T. C.

F. Y. Lin, Y. K. Chao, and T. C. Wu, “Effective bandwidths of broadband chaotic signals,” IEEE J. Quantum Electron. 48(8), 1010–1014 (2012).
[Crossref]

Wu, Y.

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE Photonics J. 6(5), 1–12 (2014).
[Crossref]

Xie, N.

J. Tian, Y. Cheng, N. Xie, and D. Hou, “Bistatic ISAR imaging based on phase synchronization with fiber optic link,” in Proceeding of IEEE Radar Conference (IEEE, 2016), pp. 1–5.
[Crossref]

Xing, T.

Xu, H.

H. Xu, B. Wang, H. Han, L. Liu, J. Li, Y. Wang, and A. Wang, “Remote imaging radar with ultra-wideband chaotic signals over fiber links,” Int. J. Bifurcat. Chaos 25(11), 1530029 (2015).
[Crossref]

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE Photonics J. 6(5), 1–12 (2014).
[Crossref]

A. Wang, Y. Wang, Y. Yang, M. Zhang, H. Xu, and B. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

Xu, S.

C. Yin, S. Xu, and D. Wang, “Performance analysis of the estimation of time delay and Doppler stretch by wideband ambiguity function,” in Proceeding of IEEE International Conference on Microwave and Millimeter Wave Technology (IEEE, 1998), pp. 452–455.

Xu, W.

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE Photonics J. 6(5), 1–12 (2014).
[Crossref]

Yang, Y.

A. Wang, Y. Wang, Y. Yang, M. Zhang, H. Xu, and B. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

Yao, J.

Yao, T.

Yin, C.

C. Yin, S. Xu, and D. Wang, “Performance analysis of the estimation of time delay and Doppler stretch by wideband ambiguity function,” in Proceeding of IEEE International Conference on Microwave and Millimeter Wave Technology (IEEE, 1998), pp. 452–455.

Yu, S.

Zhang, F.

Zhang, G.

Zhang, M.

Zhang, Y.

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE Photonics J. 6(5), 1–12 (2014).
[Crossref]

Zheng, J.

Zhou, L.

Zhou, P.

Zhu, D.

Zhu, N.

Zhu, Y.

Zou, X.

Appl. Phys. Lett. (2)

A. Wang, Y. Wang, Y. Yang, M. Zhang, H. Xu, and B. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

J. J. Suárez-Vargas, B. A. Márquez, and J. A. González, “Highly complex optical signal generation using electro-optical systems with non-linear, non-invertible transmission functions,” Appl. Phys. Lett. 101(7), 071115 (2012).
[Crossref]

Chin. Opt. Lett. (1)

IEEE Aerosp. Electron. Syst. Mag. (2)

K. E. Olsen and K. Woodbridge, “Performance of a multiband passive bistatic radar processing scheme—Part I,” IEEE Aerosp. Electron. Syst. Mag. 27(10), 16–25 (2012).
[Crossref]

F. Colone, C. Bongioanni, and P. Lombardo, “Multifrequency integration in FM radio-based passive bistatic radar. Part I: Target detection,” IEEE Aerosp. Electron. Syst. Mag. 28(4), 28–39 (2013).
[Crossref]

IEEE J. Quantum Electron. (3)

F. Y. Lin, Y. K. Chao, and T. C. Wu, “Effective bandwidths of broadband chaotic signals,” IEEE J. Quantum Electron. 48(8), 1010–1014 (2012).
[Crossref]

F. Y. Lin and J. M. Liu, “Ambiguity functions of laser-based chaotic radar,” IEEE J. Quantum Electron. 40(12), 1732–1738 (2004).
[Crossref]

F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Wang, B. Wang, L. Li, Y. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1–10 (2015).

IEEE Photonics J. (2)

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE Photonics J. 6(5), 1–12 (2014).
[Crossref]

C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Generation of uncorrelated multichannel chaos by electrical heterodyning for multiple-input–multiple-output chaos radar application,” IEEE Photonics J. 8(1), 1–14 (2016).

IEEE Trans. Aerosp. Electron. Syst. (2)

F. Colone, D. W. O’hagan, P. Lombardo, and C. J. Baker, “A multistage processing algorithm for disturbance removal and target detection in passive bistatic radar,” IEEE Trans. Aerosp. Electron. Syst. 45(2), 698–722 (2009).
[Crossref]

C. S. Pappu, B. C. Flores, P. S. Debroux, and J. E. Boehm, “An Electronic Implementation of Lorenz Chaotic Oscillator Synchronization for Bistatic Radar Applications,” IEEE Trans. Aerosp. Electron. Syst. 53(4), 2001–2013 (2017).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (2)

D. S. Garmatyuk and R. M. Narayanan, “Ultra-wideband continuous-wave random noise arc-SAR,” IEEE Trans. Geosci. Remote Sens. 40(12), 2543–2552 (2002).
[Crossref]

K. Chetty, G. E. Smith, and K. Woodbridge, “Through-the-wall sensing of personnel using passive bistatic wifi radar at standoff distances,” IEEE Trans. Geosci. Remote Sens. 50(4), 1218–1226 (2012).
[Crossref]

IEEE Trans. Image Process. (1)

V. Venkatasubramanian, H. Leung, and X. Liu, “Chaos UWB radar for through-the-wall imaging,” IEEE Trans. Image Process. 18(6), 1255–1265 (2009).
[Crossref] [PubMed]

IEEE Trans. Signal Process. (1)

Q. Jin, K. M. Wong, and Z. Q. Luo, “The estimation of time delay and Doppler stretch of wideband signals,” IEEE Trans. Signal Process. 43(4), 904–916 (1995).
[Crossref]

IEEE Trans. Vehicular Technol. (1)

E. Gambi, F. Chiaraluce, and S. Spinsante, “Chaos-based radars for automotive applications: Theoretical issues and numerical simulation,” IEEE Trans. Vehicular Technol. 57(6), 3858–3863 (2008).
[Crossref]

IET Radar Sonar & Navigation (2)

T. Thayaparan, M. Daković, and L. Stanković, “Mutual interference and low probability of interception capabilities of noise radar,” IET Radar Sonar & Navigation 2(4), 294–305 (2008).
[Crossref]

H. D. Griffiths, W. A. Al-Ashwal, K. D. Ward, R. J. A. Tough, C. J. Baker, and K. Woodbridege, “Measurement and modelling of bistatic radar sea clutter,” IET Radar Sonar & Navigation 4(2), 280–290 (2010).
[Crossref]

Inst. Elect. Eng. Radar Sonar Navigat. (1)

M. Dawood and R. M. Narayanan, ““Generalised wideband ambiguity function of a coherent ultrawideband random noise radar,” In Proc,” Inst. Elect. Eng. Radar Sonar Navigat. 150(5), 379–386 (2003).
[Crossref]

Int. J. Bifurcat. Chaos (1)

H. Xu, B. Wang, H. Han, L. Liu, J. Li, Y. Wang, and A. Wang, “Remote imaging radar with ultra-wideband chaotic signals over fiber links,” Int. J. Bifurcat. Chaos 25(11), 1530029 (2015).
[Crossref]

J. Lightwave Technol. (2)

Nature (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Opt. Express (6)

J. Zheng, H. Wang, J. Fu, L. Wei, S. Pan, L. Wang, J. Liu, and N. Zhu, “Fiber-distributed Ultra-wideband noise radar with steerable power spectrum and colorless base station,” Opt. Express 22(5), 4896–4907 (2014).
[Crossref] [PubMed]

R. Li, W. Li, M. Ding, Z. Wen, Y. Li, L. Zhou, S. Yu, T. Xing, B. Gao, Y. Luan, Y. Zhu, P. Guo, Y. Tian, and X. Liang, “Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing,” Opt. Express 25(13), 14334–14340 (2017).
[Crossref] [PubMed]

F. Zhang, Q. Guo, Z. Wang, P. Zhou, G. Zhang, J. Sun, and S. Pan, “Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging,” Opt. Express 25(14), 16274–16281 (2017).
[Crossref] [PubMed]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, and A. Bogoni, “Photonic generation and independent steering of multiple RF signals for software defined radars,” Opt. Express 21(19), 22905–22910 (2013).
[Crossref] [PubMed]

X. Jiang, M. Cheng, C. Luo, F. Luo, L. Deng, S. Fu, C. Ke, M. Zhang, M. Tang, P. Shum, and D. Liu, “Reproducible optical noise-like signal generation subjected by digital sequences,” Opt. Express 25(23), 29189–29198 (2017).
[Crossref]

X. Jiang, M. Cheng, F. Luo, L. Deng, S. Fu, C. Ke, M. Zhang, M. Tang, P. Shum, and D. Liu, “Electro-optic chaotic system based on the reverse-time chaos theory and a nonlinear hybrid feedback loop,” Opt. Express 24(25), 28804–28814 (2016).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

Y. C. Kouomou, P. Colet, L. Larger, and N. Gastaud, “Chaotic breathers in delayed electro-optical systems,” Phys. Rev. Lett. 95(20), 203903 (2005).
[Crossref] [PubMed]

Other (7)

J. Fu and S. Pan, “A fiber-distributed bistatic ultra-wideband radar based on optical time division multiplexing,” in Proceeding of IEEE International Topical Meeting on Microwave Photonics (IEEE, 2015), 1–4.
[Crossref]

H. D. Griffiths and C. J. Baker, “The signal and interference environment in passive bistatic radar,” in Proc. IEEE IDC (2007), pp. 1–10.
[Crossref]

M. J. Callahan, B. D. Rigling, and M. Rangaswamy, “Simulated & theoretical SNR in passive bistatic noise radar processing,” in Proceeding of IEEE Radar Conference (IEEE, 2016), pp. 1–6.
[Crossref]

J. E. Palmer and S. J. Searle, “Evaluation of adaptive filter algorithms for clutter cancellation in passive bistatic radar,” in Proceeding of IEEE Radar Conference (IEEE, 2012), pp. 0493–0498.
[Crossref]

M. A. Attalah, T. Laroussi, A. Aouane, and A. Mehanaoui, “Adaptive filters for direct path and multipath interference cancellation: Application to FM-RTL-SDR based Passive Bistatic Radar,” in Proc. IEEE SETIT (2016), pp. 461–465.
[Crossref]

C. Yin, S. Xu, and D. Wang, “Performance analysis of the estimation of time delay and Doppler stretch by wideband ambiguity function,” in Proceeding of IEEE International Conference on Microwave and Millimeter Wave Technology (IEEE, 1998), pp. 452–455.

J. Tian, Y. Cheng, N. Xie, and D. Hou, “Bistatic ISAR imaging based on phase synchronization with fiber optic link,” in Proceeding of IEEE Radar Conference (IEEE, 2016), pp. 1–5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 The structure of chaos system.
Fig. 2
Fig. 2 (a) The waveform, and (b) frequency spectrum of the chaos signal x.
Fig. 3
Fig. 3 The correlation between the digital signal and generated chaos signal.
Fig. 4
Fig. 4 The AMF of chaos signal.
Fig. 5
Fig. 5 (a) The “zero-doppler cut” and (b) “zero-delay cut” of the AMF of chaos signal.
Fig. 6
Fig. 6 The CMF of the chaos signals generated different times.
Fig. 7
Fig. 7 The CMF of the chaos signal generated with different initial values of SR.
Fig. 8
Fig. 8 (a) The waveform, and (b) frequency spectrum of generated chaos signal in experiment.
Fig. 9
Fig. 9 The 2-D AMF of the chaos signal generated in the experiment.
Fig. 10
Fig. 10 (a) The “zero-doppler cut” and (b) “zero-delay cut” of the AMF of chaos signal generated in the experiment.
Fig. 11
Fig. 11 (a)The CMF of the chaos signals generated at different times. (b) The CMF of the chaos signal generated with different initial values of SR.
Fig. 12
Fig. 12 Typical bistatic radar system.
Fig. 13
Fig. 13 The detection CMF of traditional bistatic radar.
Fig. 14
Fig. 14 The structure of the bistatic radar based on the chaos system and optical fiber line.
Fig. 15
Fig. 15 The waveforms of (a) the transmitted signal x1, (b) the regenerated reference signal x2, (c) The correlation relationship between x1 and x2.
Fig. 16
Fig. 16 The CMF of the echo signal and the reference signal in proposing bistatic radar system.

Tables (2)

Tables Icon

Table 1 Static Targets

Tables Icon

Table 2 Moving Targets

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E(t)= P 0 exp[j( ω 0 t+ φ 0 +ms(t)],
s(t)=A s n ,nΔTt(n+1)ΔT,
s n { 0,1 },n=0,1,2...
H(ω)=exp[j d 2 (ω ω 0 ) 2 ],
x=γ P 1 cos 2 ( m 1 Nor(| E 1 E 1 * |)+ φ 1 ).
s n =f(g( x(tΔt)δ(t n f T 2 )) γ 2 P 2 )),
g(y)={ round(y 2 8 ),y<1 1 2 9 2 8 1,y1 1 2 9 ,
f(y)=ymod2,
χ(τ,α,T)= t t+T r(t)s((1+α)tτ) dt,
e(t)= β 0 d(t)+ i=1 β i d(t τ i ) + j=1 μ j d(t τ j ) + m=1 (1α) γ m d((1α)t τ m ) + η e (t).
r(t)= A ref d(t)+ Nf=1 A Nf d(t τ Nf ) + η r (t).
ρ= ( x 1 (t) x 1 (t))( x 2 (t) x 2 (t)) ( x 1 (t) x 1 (t)) 2 ( x 2 (t) x 2 (t)) 2 ,

Metrics