Abstract

We characterize the impact of the modulator material on chirp, digital signal processing (DSP) algorithms and system-level performance in coherent digital optical links. We compare theoretically, in simulations and experimentally the lithium niobate (LiNbO3), indium phosphide (InP) and silicon (Si) integrated platforms. Distortions to vector diagrams are traced back to modulation physics, and are interpreted as quadrature crosstalk. In a back-to-back BPSK setup with an RF drive signal amplitude of 1.5Vπ, we measure chirp parameters α of ~0, 0.10 and 0.06 and error vector magnitude EVMRMS of 5.3%, 9.4% and 10.6% with the LiNbO3, InP and Si modulators respectively. Both α and EVMRMS are found to scale with the RF signal amplitude. In simulations, using a polynomial fit over a sinusoidal fit when pre-compensating the Si modulator transfer function slightly improves EVM (−0.6%). We also show that Si-related distortions can impact the efficiency of symbol timing recovery. In conclusion, phase and attenuation distortions in InP and Si modulators deteriorate the overall performance in coherent links, and cannot be neglected for large RF signal amplitudes. These results will benefit the optical communications community.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly linear heterogeneous-integrated Mach-Zehnder interferometer modulators on Si

Chong Zhang, Paul A. Morton, Jacob B. Khurgin, Jon D. Peters, and John E. Bowers
Opt. Express 24(17) 19040-19047 (2016)

Performance influence of FCA and nonlinear FCD to the Mach-Zehnder-Interference based silicon DPSK generation

Haifeng Shao, Ting Hu, Huiye Qiu, Yong Zhao, Chao Xu, Jianyi Yang, and Xiaoqing Jiang
Opt. Express 20(21) 23527-23534 (2012)

100G and 200G single carrier transmission over 2880 and 320 km using an InP IQ modulator and Stokes vector receiver

Mohammed Y. S. Sowailem, Thang M. Hoang, Mathieu Chagnon, Mohamed Morsy-Osman, Meng Qiu, Stephane Paquet, Carl Paquet, Ian Woods, Odile Liboiron-Ladouceur, and David V. Plant
Opt. Express 24(26) 30485-30493 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. May, “Coherent IQ modulator performance” (2016), retrieved https://www.neophotonics.com/coherent-iq-modulator-performance/ .
  2. M. Gokhale, “Coherent transmission modulators for 100G and 200G: Part II” (2015), retrieved https://www.neophotonics.com/coherent-transmission-modulators-100g-200g-part-ii/ .
  3. C. R. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 37 (2015).
    [Crossref]
  4. K. Goi, K. Oda, H. Kusaka, K. Ogawa, T. Y. Liow, X. Tu, and G. Q. Lo, “20-Gbps BPSK silicon Mach-Zehnder modulator with excellent chirp-free performance,” in Opto-Electronics and Communications Conference, (Optical Society of America, 2012), 238–239.
    [Crossref]
  5. K. Goi, K. Oda, H. Kusaka, Y. Terada, K. Ogawa, T.-Y. Liow, X. Tu, G.-Q. Lo, and D.-L. Kwong, “11-Gb/s 80-km transmission performance of zero-chirp silicon Mach-Zehnder modulator,” Opt. Express 20(26), B350–B356 (2012).
    [Crossref] [PubMed]
  6. C. R. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X.-M. Xu, B. Mikkelsen, and M. Givehchi, “Single-chip silicon photonics 100-Gb/s coherent transceiver,” in Optical Fiber Communication Conference, (Optical Society of America, 2014), Th5C. 1.
    [Crossref]
  7. R. A. Griffin, S. K. Jones, N. Whitbread, S. C. Heck, and L. N. Langley, “InP Mach–Zehnder modulator platform for 10/40/100/200-Gb/s operation,” IEEE J. Sel. Top. Quantum Electron. 19(6), 158–166 (2013).
    [Crossref]
  8. I. Betty, M. G. Boudreau, R. Longone, R. A. Griffin, and L. Langley, “Zero chirp 10 Gb/s MQW InP Mach-Zehnder transmitter with full-band tunability,” in Optical Fiber Communication Conference, (Optical Society of America, 2007), OWH6.
    [Crossref]
  9. P. R. Binetti, M. Lu, E. J. Norberg, R. S. Guzzon, J. S. Parker, A. Sivananthan, A. Bhardwaj, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Indium phosphide photonic integrated circuits for coherent optical links,” IEEE J. Quantum Electron. 48(2), 279–291 (2012).
    [Crossref]
  10. H. Y. Choi, T. Tsuritani, and I. Morita, “Effects of LN modulator chirp on performance of digital coherent optical transmission system,” in Proceedings of IEEE International Conference on Optical Internet, (IEEE, 2012), 50–51.
  11. R. Weis and T. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
    [Crossref]
  12. M. Izutsu, “Lithium Niobate Modulator,” in Encyclopedic handbook of integrated optics, K. Iga and Y. Kukubun, eds. (CRC, 2005), pp. 122–127.
  13. P. W. Juodawlkis, F. J. O’Donnell, R. J. Bailey, J. J. Plant, K. G. Ray, D. C. Oakley, A. Napoleone, M. R. Watts, and G. E. Betts, “InGaAsP/InP quantum-well electrorefractive modulators with sub-volt Vpi,” in Enabling Photonic Technologies for Aerospace Applications VI, (International Society for Optics and Photonics, 2004), 53–64.
  14. J. S. Weiner, D. A. Miller, and D. S. Chemla, “Quadratic electro‐optic effect due to the quantum‐confined Stark effect in quantum wells,” Appl. Phys. Lett. 50(13), 842–844 (1987).
    [Crossref]
  15. H. Klein, “Integrated InP Mach-Zehnder Modulators for 100 Gbit/s Ethernet Applications using QPSK Modulation,” PhD Thesis (Berlin: Technische Universität, 2010).
  16. G. Li and P. Yu, “Optical intensity modulators for digital and analog applications,” J. Lightwave Technol. 21(9), 2010–2030 (2003).
    [Crossref]
  17. L. Chrostowski and M. Hochberg, “Modulators,” in Silicon photonics design: from devices to systems (Cambridge University, 2015), pp. 217–222.
  18. K. Ogawa and K. Nishide, “Is silicon photonics a competitive technology to enable better and highly performing networks?” in Silicon Photonics III (Springer, 2016), pp. 447–472.
  19. R. Soref and J. Larenzo, “All-silicon active and passive guided-wave components for λ= 1.3 and 1.6 µm,” IEEE J. Quantum Electron. 22(6), 873–879 (1986).
    [Crossref]
  20. M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for Silicon over the 1–14 micron infrared wavelength range,” IEEE Photonics J. 3(6), 1171–1180 (2011).
    [Crossref]
  21. M. Streshinsky, A. Ayazi, Z. Xuan, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Highly linear silicon traveling wave Mach-Zehnder carrier depletion modulator based on differential drive,” Opt. Express 21(3), 3818–3825 (2013).
    [Crossref] [PubMed]
  22. S. Yu and T. Chu, “Study of electrical nonlinearity in analog silicon modulator,” in Proceedings of IEEE Conference on Lasers and Electro-Optics, (IEEE, 2016), JW2A.119.
    [Crossref]
  23. A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express 25(12), 13252–13262 (2017).
    [Crossref] [PubMed]
  24. A. Khilo, C. M. Sorace, and F. X. Kärtner, “Broadband linearized silicon modulator,” Opt. Express 19(5), 4485–4500 (2011).
    [Crossref] [PubMed]
  25. G. P. Agrawal, “Optical modulators,” in Lightwave technology: components and devices (John Wiley & Sons, 2004), p. 234.
  26. J. G. Proakis, “Digital Modulation Schemes,” in Digital communications (McGraw-Hill, 1995), pp. 101–107.
  27. “Digital Demodulator Block Diagram” (Keysight Technologies, 2018), retrieved http://rfmw.em.keysight.com/wireless/helpfiles/89600b/webhelp/subsystems/digdemod/content/digital_demodulator_block_diagram.htm .
  28. F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
    [Crossref]
  29. J. Cardenas, P. A. Morton, J. B. Khurgin, A. Griffith, C. B. Poitras, K. Preston, and M. Lipson, “Linearized silicon modulator based on a ring assisted Mach Zehnder inteferometer,” Opt. Express 21(19), 22549–22557 (2013).
    [Crossref] [PubMed]
  30. R. Wang, A. Bhardwaj, S. Ristic, L. Coldren, J. Bowers, P. Herczfeld, and Y. Li, “Highly linear InP phase modulator for high dynamic range RF/Photonic links,” in Proceedings of IEEE MTT-S International Microwave Symposium, (IEEE, 2010), 732–735.
  31. B. Masella and X. Zhang, “Linearized optical single sideband Mach-Zehnder electro-optic modulator for radio over fiber systems,” Opt. Express 16(12), 9181–9190 (2008).
    [Crossref] [PubMed]
  32. A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach–Zehnder interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
    [Crossref]
  33. F. Koyama and K. Oga, “Frequency chirping in external modulators,” J. Lightwave Technol. 6(1), 87–93 (1988).
    [Crossref]
  34. M. D. McKinley, K. A. Remley, M. Myslinski, J. S. Kenney, D. Schreurs, and B. Nauwelaers, “EVM calculation for broadband modulated signals,” in Microwave Measurement Conference, (ARFTG, 2004), 45–52.
  35. R. Hassun, M. Flaherty, R. Matreci, and M. Taylor, “Effective evaluation of link quality using error vector magnitude techniques,” in Proceedings of IEEE Wireless Communications Conference, (IEEE, 1997), 89–94.
    [Crossref]
  36. S. Forestier, P. Bouysse, R. Quere, A. Mallet, J.-M. Nebus, and L. Lapierre, “Joint optimization of the power-added efficiency and the error-vector measurement of 20-GHz pHEMT amplifier through a new dynamic bias-control method,” IEEE Trans. Microw. Theory Tech. 52(4), 1132–1141 (2004).
    [Crossref]
  37. M. Rausch, N. Wolf, L. Yan, K.-O. Velthaus, D. Hoffmann, M. Gruner, and M. Schell, “A performance comparison of single-ended-and differential driving scheme at 64 Gbit/s QPSK modulation for InP-based IQ-Mach-Zehnder modulators in serial-push-pull configuration,” in European Conference on Optical Communication, (IEEE, 2015), 1–3.
    [Crossref]
  38. B. Milivojevic, S. Wiese, S. Anderson, T. Brenner, M. Webster, and B. Dama, “Demonstration of optical transmission at bit rates of up to 321.4 Gb/s using compact silicon based modulator and linear BiCMOS MZM driver,” J. Lightwave Technol. 35(4), 768–774 (2017).
    [Crossref]
  39. F. M. Gardner, “Interpolation in digital modems. I. Fundamentals,” IEEE Trans. Commun. 41(3), 501–507 (1993).
    [Crossref]
  40. F. M. Gardner, “A BPSK/QPSK timing-error detector for sampled receivers,” IEEE Trans. Commun. 34(5), 423–429 (1986).
    [Crossref]
  41. H. Yamazaki, H. Takahashi, T. Goh, Y. Hashizume, S. Mino, and Y. Miyamoto, “Linear optical IQ modulator for high-order multilevel coherent transmission,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2013), OM3C.1.
    [Crossref]

2017 (2)

2016 (1)

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach–Zehnder interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

2015 (1)

C. R. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 37 (2015).
[Crossref]

2013 (3)

2012 (2)

P. R. Binetti, M. Lu, E. J. Norberg, R. S. Guzzon, J. S. Parker, A. Sivananthan, A. Bhardwaj, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Indium phosphide photonic integrated circuits for coherent optical links,” IEEE J. Quantum Electron. 48(2), 279–291 (2012).
[Crossref]

K. Goi, K. Oda, H. Kusaka, Y. Terada, K. Ogawa, T.-Y. Liow, X. Tu, G.-Q. Lo, and D.-L. Kwong, “11-Gb/s 80-km transmission performance of zero-chirp silicon Mach-Zehnder modulator,” Opt. Express 20(26), B350–B356 (2012).
[Crossref] [PubMed]

2011 (2)

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for Silicon over the 1–14 micron infrared wavelength range,” IEEE Photonics J. 3(6), 1171–1180 (2011).
[Crossref]

A. Khilo, C. M. Sorace, and F. X. Kärtner, “Broadband linearized silicon modulator,” Opt. Express 19(5), 4485–4500 (2011).
[Crossref] [PubMed]

2010 (1)

F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
[Crossref]

2008 (1)

2004 (1)

S. Forestier, P. Bouysse, R. Quere, A. Mallet, J.-M. Nebus, and L. Lapierre, “Joint optimization of the power-added efficiency and the error-vector measurement of 20-GHz pHEMT amplifier through a new dynamic bias-control method,” IEEE Trans. Microw. Theory Tech. 52(4), 1132–1141 (2004).
[Crossref]

2003 (1)

1993 (1)

F. M. Gardner, “Interpolation in digital modems. I. Fundamentals,” IEEE Trans. Commun. 41(3), 501–507 (1993).
[Crossref]

1988 (1)

F. Koyama and K. Oga, “Frequency chirping in external modulators,” J. Lightwave Technol. 6(1), 87–93 (1988).
[Crossref]

1987 (1)

J. S. Weiner, D. A. Miller, and D. S. Chemla, “Quadratic electro‐optic effect due to the quantum‐confined Stark effect in quantum wells,” Appl. Phys. Lett. 50(13), 842–844 (1987).
[Crossref]

1986 (2)

R. Soref and J. Larenzo, “All-silicon active and passive guided-wave components for λ= 1.3 and 1.6 µm,” IEEE J. Quantum Electron. 22(6), 873–879 (1986).
[Crossref]

F. M. Gardner, “A BPSK/QPSK timing-error detector for sampled receivers,” IEEE Trans. Commun. 34(5), 423–429 (1986).
[Crossref]

1985 (1)

R. Weis and T. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Abadía, N.

Anderson, S.

Ansheng Liu,

F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
[Crossref]

Ayazi, A.

Azemati, S.

C. R. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X.-M. Xu, B. Mikkelsen, and M. Givehchi, “Single-chip silicon photonics 100-Gb/s coherent transceiver,” in Optical Fiber Communication Conference, (Optical Society of America, 2014), Th5C. 1.
[Crossref]

Baehr-Jones, T.

Basak, J.

F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
[Crossref]

Betty, I.

I. Betty, M. G. Boudreau, R. Longone, R. A. Griffin, and L. Langley, “Zero chirp 10 Gb/s MQW InP Mach-Zehnder transmitter with full-band tunability,” in Optical Fiber Communication Conference, (Optical Society of America, 2007), OWH6.
[Crossref]

Bhardwaj, A.

P. R. Binetti, M. Lu, E. J. Norberg, R. S. Guzzon, J. S. Parker, A. Sivananthan, A. Bhardwaj, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Indium phosphide photonic integrated circuits for coherent optical links,” IEEE J. Quantum Electron. 48(2), 279–291 (2012).
[Crossref]

R. Wang, A. Bhardwaj, S. Ristic, L. Coldren, J. Bowers, P. Herczfeld, and Y. Li, “Highly linear InP phase modulator for high dynamic range RF/Photonic links,” in Proceedings of IEEE MTT-S International Microwave Symposium, (IEEE, 2010), 732–735.

Binetti, P. R.

P. R. Binetti, M. Lu, E. J. Norberg, R. S. Guzzon, J. S. Parker, A. Sivananthan, A. Bhardwaj, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Indium phosphide photonic integrated circuits for coherent optical links,” IEEE J. Quantum Electron. 48(2), 279–291 (2012).
[Crossref]

Boudreau, M. G.

I. Betty, M. G. Boudreau, R. Longone, R. A. Griffin, and L. Langley, “Zero chirp 10 Gb/s MQW InP Mach-Zehnder transmitter with full-band tunability,” in Optical Fiber Communication Conference, (Optical Society of America, 2007), OWH6.
[Crossref]

Bouysse, P.

S. Forestier, P. Bouysse, R. Quere, A. Mallet, J.-M. Nebus, and L. Lapierre, “Joint optimization of the power-added efficiency and the error-vector measurement of 20-GHz pHEMT amplifier through a new dynamic bias-control method,” IEEE Trans. Microw. Theory Tech. 52(4), 1132–1141 (2004).
[Crossref]

Bowers, J.

R. Wang, A. Bhardwaj, S. Ristic, L. Coldren, J. Bowers, P. Herczfeld, and Y. Li, “Highly linear InP phase modulator for high dynamic range RF/Photonic links,” in Proceedings of IEEE MTT-S International Microwave Symposium, (IEEE, 2010), 732–735.

Brenner, T.

Cardenas, J.

Chagnon, M.

Chemla, D. S.

J. S. Weiner, D. A. Miller, and D. S. Chemla, “Quadratic electro‐optic effect due to the quantum‐confined Stark effect in quantum wells,” Appl. Phys. Lett. 50(13), 842–844 (1987).
[Crossref]

Chen, L.

C. R. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X.-M. Xu, B. Mikkelsen, and M. Givehchi, “Single-chip silicon photonics 100-Gb/s coherent transceiver,” in Optical Fiber Communication Conference, (Optical Society of America, 2014), Th5C. 1.
[Crossref]

Choi, H. Y.

H. Y. Choi, T. Tsuritani, and I. Morita, “Effects of LN modulator chirp on performance of digital coherent optical transmission system,” in Proceedings of IEEE International Conference on Optical Internet, (IEEE, 2012), 50–51.

Coldren, L.

R. Wang, A. Bhardwaj, S. Ristic, L. Coldren, J. Bowers, P. Herczfeld, and Y. Li, “Highly linear InP phase modulator for high dynamic range RF/Photonic links,” in Proceedings of IEEE MTT-S International Microwave Symposium, (IEEE, 2010), 732–735.

Coldren, L. A.

P. R. Binetti, M. Lu, E. J. Norberg, R. S. Guzzon, J. S. Parker, A. Sivananthan, A. Bhardwaj, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Indium phosphide photonic integrated circuits for coherent optical links,” IEEE J. Quantum Electron. 48(2), 279–291 (2012).
[Crossref]

Dama, B.

Doerr, C. R.

C. R. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 37 (2015).
[Crossref]

C. R. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X.-M. Xu, B. Mikkelsen, and M. Givehchi, “Single-chip silicon photonics 100-Gb/s coherent transceiver,” in Optical Fiber Communication Conference, (Optical Society of America, 2014), Th5C. 1.
[Crossref]

El-Fiky, E.

Flaherty, M.

R. Hassun, M. Flaherty, R. Matreci, and M. Taylor, “Effective evaluation of link quality using error vector magnitude techniques,” in Proceedings of IEEE Wireless Communications Conference, (IEEE, 1997), 89–94.
[Crossref]

Forestier, S.

S. Forestier, P. Bouysse, R. Quere, A. Mallet, J.-M. Nebus, and L. Lapierre, “Joint optimization of the power-added efficiency and the error-vector measurement of 20-GHz pHEMT amplifier through a new dynamic bias-control method,” IEEE Trans. Microw. Theory Tech. 52(4), 1132–1141 (2004).
[Crossref]

Gardner, F. M.

F. M. Gardner, “Interpolation in digital modems. I. Fundamentals,” IEEE Trans. Commun. 41(3), 501–507 (1993).
[Crossref]

F. M. Gardner, “A BPSK/QPSK timing-error detector for sampled receivers,” IEEE Trans. Commun. 34(5), 423–429 (1986).
[Crossref]

Gaylord, T.

R. Weis and T. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Givehchi, M.

C. R. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X.-M. Xu, B. Mikkelsen, and M. Givehchi, “Single-chip silicon photonics 100-Gb/s coherent transceiver,” in Optical Fiber Communication Conference, (Optical Society of America, 2014), Th5C. 1.
[Crossref]

Goh, T.

H. Yamazaki, H. Takahashi, T. Goh, Y. Hashizume, S. Mino, and Y. Miyamoto, “Linear optical IQ modulator for high-order multilevel coherent transmission,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2013), OM3C.1.
[Crossref]

Goi, K.

K. Goi, K. Oda, H. Kusaka, Y. Terada, K. Ogawa, T.-Y. Liow, X. Tu, G.-Q. Lo, and D.-L. Kwong, “11-Gb/s 80-km transmission performance of zero-chirp silicon Mach-Zehnder modulator,” Opt. Express 20(26), B350–B356 (2012).
[Crossref] [PubMed]

K. Goi, K. Oda, H. Kusaka, K. Ogawa, T. Y. Liow, X. Tu, and G. Q. Lo, “20-Gbps BPSK silicon Mach-Zehnder modulator with excellent chirp-free performance,” in Opto-Electronics and Communications Conference, (Optical Society of America, 2012), 238–239.
[Crossref]

Griffin, R. A.

R. A. Griffin, S. K. Jones, N. Whitbread, S. C. Heck, and L. N. Langley, “InP Mach–Zehnder modulator platform for 10/40/100/200-Gb/s operation,” IEEE J. Sel. Top. Quantum Electron. 19(6), 158–166 (2013).
[Crossref]

I. Betty, M. G. Boudreau, R. Longone, R. A. Griffin, and L. Langley, “Zero chirp 10 Gb/s MQW InP Mach-Zehnder transmitter with full-band tunability,” in Optical Fiber Communication Conference, (Optical Society of America, 2007), OWH6.
[Crossref]

Griffith, A.

Gruner, M.

M. Rausch, N. Wolf, L. Yan, K.-O. Velthaus, D. Hoffmann, M. Gruner, and M. Schell, “A performance comparison of single-ended-and differential driving scheme at 64 Gbit/s QPSK modulation for InP-based IQ-Mach-Zehnder modulators in serial-push-pull configuration,” in European Conference on Optical Communication, (IEEE, 2015), 1–3.
[Crossref]

Guzzon, R. S.

P. R. Binetti, M. Lu, E. J. Norberg, R. S. Guzzon, J. S. Parker, A. Sivananthan, A. Bhardwaj, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Indium phosphide photonic integrated circuits for coherent optical links,” IEEE J. Quantum Electron. 48(2), 279–291 (2012).
[Crossref]

Hashizume, Y.

H. Yamazaki, H. Takahashi, T. Goh, Y. Hashizume, S. Mino, and Y. Miyamoto, “Linear optical IQ modulator for high-order multilevel coherent transmission,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2013), OM3C.1.
[Crossref]

Hassun, R.

R. Hassun, M. Flaherty, R. Matreci, and M. Taylor, “Effective evaluation of link quality using error vector magnitude techniques,” in Proceedings of IEEE Wireless Communications Conference, (IEEE, 1997), 89–94.
[Crossref]

Heck, S. C.

R. A. Griffin, S. K. Jones, N. Whitbread, S. C. Heck, and L. N. Langley, “InP Mach–Zehnder modulator platform for 10/40/100/200-Gb/s operation,” IEEE J. Sel. Top. Quantum Electron. 19(6), 158–166 (2013).
[Crossref]

Herczfeld, P.

R. Wang, A. Bhardwaj, S. Ristic, L. Coldren, J. Bowers, P. Herczfeld, and Y. Li, “Highly linear InP phase modulator for high dynamic range RF/Photonic links,” in Proceedings of IEEE MTT-S International Microwave Symposium, (IEEE, 2010), 732–735.

Hochberg, M.

Hoffmann, D.

M. Rausch, N. Wolf, L. Yan, K.-O. Velthaus, D. Hoffmann, M. Gruner, and M. Schell, “A performance comparison of single-ended-and differential driving scheme at 64 Gbit/s QPSK modulation for InP-based IQ-Mach-Zehnder modulators in serial-push-pull configuration,” in European Conference on Optical Communication, (IEEE, 2015), 1–3.
[Crossref]

Jacques, M.

Johansson, L. A.

P. R. Binetti, M. Lu, E. J. Norberg, R. S. Guzzon, J. S. Parker, A. Sivananthan, A. Bhardwaj, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Indium phosphide photonic integrated circuits for coherent optical links,” IEEE J. Quantum Electron. 48(2), 279–291 (2012).
[Crossref]

Jones, S. K.

R. A. Griffin, S. K. Jones, N. Whitbread, S. C. Heck, and L. N. Langley, “InP Mach–Zehnder modulator platform for 10/40/100/200-Gb/s operation,” IEEE J. Sel. Top. Quantum Electron. 19(6), 158–166 (2013).
[Crossref]

Kärtner, F. X.

Kenney, J. S.

M. D. McKinley, K. A. Remley, M. Myslinski, J. S. Kenney, D. Schreurs, and B. Nauwelaers, “EVM calculation for broadband modulated signals,” in Microwave Measurement Conference, (ARFTG, 2004), 45–52.

Khilo, A.

Khurgin, J. B.

Koyama, F.

F. Koyama and K. Oga, “Frequency chirping in external modulators,” J. Lightwave Technol. 6(1), 87–93 (1988).
[Crossref]

Kusaka, H.

K. Goi, K. Oda, H. Kusaka, Y. Terada, K. Ogawa, T.-Y. Liow, X. Tu, G.-Q. Lo, and D.-L. Kwong, “11-Gb/s 80-km transmission performance of zero-chirp silicon Mach-Zehnder modulator,” Opt. Express 20(26), B350–B356 (2012).
[Crossref] [PubMed]

K. Goi, K. Oda, H. Kusaka, K. Ogawa, T. Y. Liow, X. Tu, and G. Q. Lo, “20-Gbps BPSK silicon Mach-Zehnder modulator with excellent chirp-free performance,” in Opto-Electronics and Communications Conference, (Optical Society of America, 2012), 238–239.
[Crossref]

Kwong, D.-L.

Langley, L.

I. Betty, M. G. Boudreau, R. Longone, R. A. Griffin, and L. Langley, “Zero chirp 10 Gb/s MQW InP Mach-Zehnder transmitter with full-band tunability,” in Optical Fiber Communication Conference, (Optical Society of America, 2007), OWH6.
[Crossref]

Langley, L. N.

R. A. Griffin, S. K. Jones, N. Whitbread, S. C. Heck, and L. N. Langley, “InP Mach–Zehnder modulator platform for 10/40/100/200-Gb/s operation,” IEEE J. Sel. Top. Quantum Electron. 19(6), 158–166 (2013).
[Crossref]

Lapierre, L.

S. Forestier, P. Bouysse, R. Quere, A. Mallet, J.-M. Nebus, and L. Lapierre, “Joint optimization of the power-added efficiency and the error-vector measurement of 20-GHz pHEMT amplifier through a new dynamic bias-control method,” IEEE Trans. Microw. Theory Tech. 52(4), 1132–1141 (2004).
[Crossref]

Larenzo, J.

R. Soref and J. Larenzo, “All-silicon active and passive guided-wave components for λ= 1.3 and 1.6 µm,” IEEE J. Quantum Electron. 22(6), 873–879 (1986).
[Crossref]

Li, G.

Li, R.

Li, Y.

R. Wang, A. Bhardwaj, S. Ristic, L. Coldren, J. Bowers, P. Herczfeld, and Y. Li, “Highly linear InP phase modulator for high dynamic range RF/Photonic links,” in Proceedings of IEEE MTT-S International Microwave Symposium, (IEEE, 2010), 732–735.

Lim, A. E.-J.

Ling Liao, M.

F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
[Crossref]

Liow, T. Y.

K. Goi, K. Oda, H. Kusaka, K. Ogawa, T. Y. Liow, X. Tu, and G. Q. Lo, “20-Gbps BPSK silicon Mach-Zehnder modulator with excellent chirp-free performance,” in Opto-Electronics and Communications Conference, (Optical Society of America, 2012), 238–239.
[Crossref]

Liow, T.-Y.

Lipson, M.

Lo, G. Q.

K. Goi, K. Oda, H. Kusaka, K. Ogawa, T. Y. Liow, X. Tu, and G. Q. Lo, “20-Gbps BPSK silicon Mach-Zehnder modulator with excellent chirp-free performance,” in Opto-Electronics and Communications Conference, (Optical Society of America, 2012), 238–239.
[Crossref]

Lo, G.-Q.

Longone, R.

I. Betty, M. G. Boudreau, R. Longone, R. A. Griffin, and L. Langley, “Zero chirp 10 Gb/s MQW InP Mach-Zehnder transmitter with full-band tunability,” in Optical Fiber Communication Conference, (Optical Society of America, 2007), OWH6.
[Crossref]

Lu, M.

P. R. Binetti, M. Lu, E. J. Norberg, R. S. Guzzon, J. S. Parker, A. Sivananthan, A. Bhardwaj, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Indium phosphide photonic integrated circuits for coherent optical links,” IEEE J. Quantum Electron. 48(2), 279–291 (2012).
[Crossref]

Mallet, A.

S. Forestier, P. Bouysse, R. Quere, A. Mallet, J.-M. Nebus, and L. Lapierre, “Joint optimization of the power-added efficiency and the error-vector measurement of 20-GHz pHEMT amplifier through a new dynamic bias-control method,” IEEE Trans. Microw. Theory Tech. 52(4), 1132–1141 (2004).
[Crossref]

Masella, B.

Mashanovich, G. Z.

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for Silicon over the 1–14 micron infrared wavelength range,” IEEE Photonics J. 3(6), 1171–1180 (2011).
[Crossref]

Matreci, R.

R. Hassun, M. Flaherty, R. Matreci, and M. Taylor, “Effective evaluation of link quality using error vector magnitude techniques,” in Proceedings of IEEE Wireless Communications Conference, (IEEE, 1997), 89–94.
[Crossref]

McBrien, G.

C. R. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X.-M. Xu, B. Mikkelsen, and M. Givehchi, “Single-chip silicon photonics 100-Gb/s coherent transceiver,” in Optical Fiber Communication Conference, (Optical Society of America, 2014), Th5C. 1.
[Crossref]

McKinley, M. D.

M. D. McKinley, K. A. Remley, M. Myslinski, J. S. Kenney, D. Schreurs, and B. Nauwelaers, “EVM calculation for broadband modulated signals,” in Microwave Measurement Conference, (ARFTG, 2004), 45–52.

Mikkelsen, B.

C. R. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X.-M. Xu, B. Mikkelsen, and M. Givehchi, “Single-chip silicon photonics 100-Gb/s coherent transceiver,” in Optical Fiber Communication Conference, (Optical Society of America, 2014), Th5C. 1.
[Crossref]

Milivojevic, B.

Miller, D. A.

J. S. Weiner, D. A. Miller, and D. S. Chemla, “Quadratic electro‐optic effect due to the quantum‐confined Stark effect in quantum wells,” Appl. Phys. Lett. 50(13), 842–844 (1987).
[Crossref]

Mino, S.

H. Yamazaki, H. Takahashi, T. Goh, Y. Hashizume, S. Mino, and Y. Miyamoto, “Linear optical IQ modulator for high-order multilevel coherent transmission,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2013), OM3C.1.
[Crossref]

Mirshafiei, M.

F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
[Crossref]

Miyamoto, Y.

H. Yamazaki, H. Takahashi, T. Goh, Y. Hashizume, S. Mino, and Y. Miyamoto, “Linear optical IQ modulator for high-order multilevel coherent transmission,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2013), OM3C.1.
[Crossref]

Morita, I.

H. Y. Choi, T. Tsuritani, and I. Morita, “Effects of LN modulator chirp on performance of digital coherent optical transmission system,” in Proceedings of IEEE International Conference on Optical Internet, (IEEE, 2012), 50–51.

Morton, P. A.

Myslinski, M.

M. D. McKinley, K. A. Remley, M. Myslinski, J. S. Kenney, D. Schreurs, and B. Nauwelaers, “EVM calculation for broadband modulated signals,” in Microwave Measurement Conference, (ARFTG, 2004), 45–52.

Nauwelaers, B.

M. D. McKinley, K. A. Remley, M. Myslinski, J. S. Kenney, D. Schreurs, and B. Nauwelaers, “EVM calculation for broadband modulated signals,” in Microwave Measurement Conference, (ARFTG, 2004), 45–52.

Nebus, J.-M.

S. Forestier, P. Bouysse, R. Quere, A. Mallet, J.-M. Nebus, and L. Lapierre, “Joint optimization of the power-added efficiency and the error-vector measurement of 20-GHz pHEMT amplifier through a new dynamic bias-control method,” IEEE Trans. Microw. Theory Tech. 52(4), 1132–1141 (2004).
[Crossref]

Nedeljkovic, M.

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for Silicon over the 1–14 micron infrared wavelength range,” IEEE Photonics J. 3(6), 1171–1180 (2011).
[Crossref]

Nielsen, T.

C. R. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X.-M. Xu, B. Mikkelsen, and M. Givehchi, “Single-chip silicon photonics 100-Gb/s coherent transceiver,” in Optical Fiber Communication Conference, (Optical Society of America, 2014), Th5C. 1.
[Crossref]

Norberg, E. J.

P. R. Binetti, M. Lu, E. J. Norberg, R. S. Guzzon, J. S. Parker, A. Sivananthan, A. Bhardwaj, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Indium phosphide photonic integrated circuits for coherent optical links,” IEEE J. Quantum Electron. 48(2), 279–291 (2012).
[Crossref]

Oda, K.

K. Goi, K. Oda, H. Kusaka, Y. Terada, K. Ogawa, T.-Y. Liow, X. Tu, G.-Q. Lo, and D.-L. Kwong, “11-Gb/s 80-km transmission performance of zero-chirp silicon Mach-Zehnder modulator,” Opt. Express 20(26), B350–B356 (2012).
[Crossref] [PubMed]

K. Goi, K. Oda, H. Kusaka, K. Ogawa, T. Y. Liow, X. Tu, and G. Q. Lo, “20-Gbps BPSK silicon Mach-Zehnder modulator with excellent chirp-free performance,” in Opto-Electronics and Communications Conference, (Optical Society of America, 2012), 238–239.
[Crossref]

Oga, K.

F. Koyama and K. Oga, “Frequency chirping in external modulators,” J. Lightwave Technol. 6(1), 87–93 (1988).
[Crossref]

Ogawa, K.

K. Goi, K. Oda, H. Kusaka, Y. Terada, K. Ogawa, T.-Y. Liow, X. Tu, G.-Q. Lo, and D.-L. Kwong, “11-Gb/s 80-km transmission performance of zero-chirp silicon Mach-Zehnder modulator,” Opt. Express 20(26), B350–B356 (2012).
[Crossref] [PubMed]

K. Goi, K. Oda, H. Kusaka, K. Ogawa, T. Y. Liow, X. Tu, and G. Q. Lo, “20-Gbps BPSK silicon Mach-Zehnder modulator with excellent chirp-free performance,” in Opto-Electronics and Communications Conference, (Optical Society of America, 2012), 238–239.
[Crossref]

Paniccia,

F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
[Crossref]

Parker, J. S.

P. R. Binetti, M. Lu, E. J. Norberg, R. S. Guzzon, J. S. Parker, A. Sivananthan, A. Bhardwaj, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Indium phosphide photonic integrated circuits for coherent optical links,” IEEE J. Quantum Electron. 48(2), 279–291 (2012).
[Crossref]

Patel, D.

Plant, D. V.

Poitras, C. B.

Preston, K.

Quere, R.

S. Forestier, P. Bouysse, R. Quere, A. Mallet, J.-M. Nebus, and L. Lapierre, “Joint optimization of the power-added efficiency and the error-vector measurement of 20-GHz pHEMT amplifier through a new dynamic bias-control method,” IEEE Trans. Microw. Theory Tech. 52(4), 1132–1141 (2004).
[Crossref]

Rausch, M.

M. Rausch, N. Wolf, L. Yan, K.-O. Velthaus, D. Hoffmann, M. Gruner, and M. Schell, “A performance comparison of single-ended-and differential driving scheme at 64 Gbit/s QPSK modulation for InP-based IQ-Mach-Zehnder modulators in serial-push-pull configuration,” in European Conference on Optical Communication, (IEEE, 2015), 1–3.
[Crossref]

Remley, K. A.

M. D. McKinley, K. A. Remley, M. Myslinski, J. S. Kenney, D. Schreurs, and B. Nauwelaers, “EVM calculation for broadband modulated signals,” in Microwave Measurement Conference, (ARFTG, 2004), 45–52.

Ristic, S.

R. Wang, A. Bhardwaj, S. Ristic, L. Coldren, J. Bowers, P. Herczfeld, and Y. Li, “Highly linear InP phase modulator for high dynamic range RF/Photonic links,” in Proceedings of IEEE MTT-S International Microwave Symposium, (IEEE, 2010), 732–735.

Rodwell, M. J.

P. R. Binetti, M. Lu, E. J. Norberg, R. S. Guzzon, J. S. Parker, A. Sivananthan, A. Bhardwaj, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Indium phosphide photonic integrated circuits for coherent optical links,” IEEE J. Quantum Electron. 48(2), 279–291 (2012).
[Crossref]

Rusch, L. A.

F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
[Crossref]

Samani, A.

Schell, M.

M. Rausch, N. Wolf, L. Yan, K.-O. Velthaus, D. Hoffmann, M. Gruner, and M. Schell, “A performance comparison of single-ended-and differential driving scheme at 64 Gbit/s QPSK modulation for InP-based IQ-Mach-Zehnder modulators in serial-push-pull configuration,” in European Conference on Optical Communication, (IEEE, 2015), 1–3.
[Crossref]

Schreurs, D.

M. D. McKinley, K. A. Remley, M. Myslinski, J. S. Kenney, D. Schreurs, and B. Nauwelaers, “EVM calculation for broadband modulated signals,” in Microwave Measurement Conference, (ARFTG, 2004), 45–52.

Sivananthan, A.

P. R. Binetti, M. Lu, E. J. Norberg, R. S. Guzzon, J. S. Parker, A. Sivananthan, A. Bhardwaj, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Indium phosphide photonic integrated circuits for coherent optical links,” IEEE J. Quantum Electron. 48(2), 279–291 (2012).
[Crossref]

Sorace, C. M.

Soref, R.

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for Silicon over the 1–14 micron infrared wavelength range,” IEEE Photonics J. 3(6), 1171–1180 (2011).
[Crossref]

R. Soref and J. Larenzo, “All-silicon active and passive guided-wave components for λ= 1.3 and 1.6 µm,” IEEE J. Quantum Electron. 22(6), 873–879 (1986).
[Crossref]

Streshinsky, M.

Stulz, S.

C. R. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X.-M. Xu, B. Mikkelsen, and M. Givehchi, “Single-chip silicon photonics 100-Gb/s coherent transceiver,” in Optical Fiber Communication Conference, (Optical Society of America, 2014), Th5C. 1.
[Crossref]

Takahashi, H.

H. Yamazaki, H. Takahashi, T. Goh, Y. Hashizume, S. Mino, and Y. Miyamoto, “Linear optical IQ modulator for high-order multilevel coherent transmission,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2013), OM3C.1.
[Crossref]

Taylor, M.

R. Hassun, M. Flaherty, R. Matreci, and M. Taylor, “Effective evaluation of link quality using error vector magnitude techniques,” in Proceedings of IEEE Wireless Communications Conference, (IEEE, 1997), 89–94.
[Crossref]

Terada, Y.

Tsuritani, T.

H. Y. Choi, T. Tsuritani, and I. Morita, “Effects of LN modulator chirp on performance of digital coherent optical transmission system,” in Proceedings of IEEE International Conference on Optical Internet, (IEEE, 2012), 50–51.

Tu, X.

K. Goi, K. Oda, H. Kusaka, Y. Terada, K. Ogawa, T.-Y. Liow, X. Tu, G.-Q. Lo, and D.-L. Kwong, “11-Gb/s 80-km transmission performance of zero-chirp silicon Mach-Zehnder modulator,” Opt. Express 20(26), B350–B356 (2012).
[Crossref] [PubMed]

K. Goi, K. Oda, H. Kusaka, K. Ogawa, T. Y. Liow, X. Tu, and G. Q. Lo, “20-Gbps BPSK silicon Mach-Zehnder modulator with excellent chirp-free performance,” in Opto-Electronics and Communications Conference, (Optical Society of America, 2012), 238–239.
[Crossref]

Vacondio, F.

F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
[Crossref]

Veerasubramanian, V.

Velthaus, K.-O.

M. Rausch, N. Wolf, L. Yan, K.-O. Velthaus, D. Hoffmann, M. Gruner, and M. Schell, “A performance comparison of single-ended-and differential driving scheme at 64 Gbit/s QPSK modulation for InP-based IQ-Mach-Zehnder modulators in serial-push-pull configuration,” in European Conference on Optical Communication, (IEEE, 2015), 1–3.
[Crossref]

Vermeulen, D.

C. R. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X.-M. Xu, B. Mikkelsen, and M. Givehchi, “Single-chip silicon photonics 100-Gb/s coherent transceiver,” in Optical Fiber Communication Conference, (Optical Society of America, 2014), Th5C. 1.
[Crossref]

Wang, R.

R. Wang, A. Bhardwaj, S. Ristic, L. Coldren, J. Bowers, P. Herczfeld, and Y. Li, “Highly linear InP phase modulator for high dynamic range RF/Photonic links,” in Proceedings of IEEE MTT-S International Microwave Symposium, (IEEE, 2010), 732–735.

Webster, M.

Weiner, J. S.

J. S. Weiner, D. A. Miller, and D. S. Chemla, “Quadratic electro‐optic effect due to the quantum‐confined Stark effect in quantum wells,” Appl. Phys. Lett. 50(13), 842–844 (1987).
[Crossref]

Weis, R.

R. Weis and T. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Whitbread, N.

R. A. Griffin, S. K. Jones, N. Whitbread, S. C. Heck, and L. N. Langley, “InP Mach–Zehnder modulator platform for 10/40/100/200-Gb/s operation,” IEEE J. Sel. Top. Quantum Electron. 19(6), 158–166 (2013).
[Crossref]

Wiese, S.

Wolf, N.

M. Rausch, N. Wolf, L. Yan, K.-O. Velthaus, D. Hoffmann, M. Gruner, and M. Schell, “A performance comparison of single-ended-and differential driving scheme at 64 Gbit/s QPSK modulation for InP-based IQ-Mach-Zehnder modulators in serial-push-pull configuration,” in European Conference on Optical Communication, (IEEE, 2015), 1–3.
[Crossref]

Xu, X.-M.

C. R. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X.-M. Xu, B. Mikkelsen, and M. Givehchi, “Single-chip silicon photonics 100-Gb/s coherent transceiver,” in Optical Fiber Communication Conference, (Optical Society of America, 2014), Th5C. 1.
[Crossref]

Xuan, Z.

Yamazaki, H.

H. Yamazaki, H. Takahashi, T. Goh, Y. Hashizume, S. Mino, and Y. Miyamoto, “Linear optical IQ modulator for high-order multilevel coherent transmission,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2013), OM3C.1.
[Crossref]

Yan, L.

M. Rausch, N. Wolf, L. Yan, K.-O. Velthaus, D. Hoffmann, M. Gruner, and M. Schell, “A performance comparison of single-ended-and differential driving scheme at 64 Gbit/s QPSK modulation for InP-based IQ-Mach-Zehnder modulators in serial-push-pull configuration,” in European Conference on Optical Communication, (IEEE, 2015), 1–3.
[Crossref]

Yu, P.

Zhang, X.

Appl. Phys. Lett. (1)

J. S. Weiner, D. A. Miller, and D. S. Chemla, “Quadratic electro‐optic effect due to the quantum‐confined Stark effect in quantum wells,” Appl. Phys. Lett. 50(13), 842–844 (1987).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

R. Weis and T. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Front. Phys. (1)

C. R. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 37 (2015).
[Crossref]

IEEE J. Quantum Electron. (2)

R. Soref and J. Larenzo, “All-silicon active and passive guided-wave components for λ= 1.3 and 1.6 µm,” IEEE J. Quantum Electron. 22(6), 873–879 (1986).
[Crossref]

P. R. Binetti, M. Lu, E. J. Norberg, R. S. Guzzon, J. S. Parker, A. Sivananthan, A. Bhardwaj, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Indium phosphide photonic integrated circuits for coherent optical links,” IEEE J. Quantum Electron. 48(2), 279–291 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

R. A. Griffin, S. K. Jones, N. Whitbread, S. C. Heck, and L. N. Langley, “InP Mach–Zehnder modulator platform for 10/40/100/200-Gb/s operation,” IEEE J. Sel. Top. Quantum Electron. 19(6), 158–166 (2013).
[Crossref]

F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
[Crossref]

IEEE Photonics J. (2)

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach–Zehnder interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for Silicon over the 1–14 micron infrared wavelength range,” IEEE Photonics J. 3(6), 1171–1180 (2011).
[Crossref]

IEEE Trans. Commun. (2)

F. M. Gardner, “Interpolation in digital modems. I. Fundamentals,” IEEE Trans. Commun. 41(3), 501–507 (1993).
[Crossref]

F. M. Gardner, “A BPSK/QPSK timing-error detector for sampled receivers,” IEEE Trans. Commun. 34(5), 423–429 (1986).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

S. Forestier, P. Bouysse, R. Quere, A. Mallet, J.-M. Nebus, and L. Lapierre, “Joint optimization of the power-added efficiency and the error-vector measurement of 20-GHz pHEMT amplifier through a new dynamic bias-control method,” IEEE Trans. Microw. Theory Tech. 52(4), 1132–1141 (2004).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (6)

Other (20)

M. Rausch, N. Wolf, L. Yan, K.-O. Velthaus, D. Hoffmann, M. Gruner, and M. Schell, “A performance comparison of single-ended-and differential driving scheme at 64 Gbit/s QPSK modulation for InP-based IQ-Mach-Zehnder modulators in serial-push-pull configuration,” in European Conference on Optical Communication, (IEEE, 2015), 1–3.
[Crossref]

H. Yamazaki, H. Takahashi, T. Goh, Y. Hashizume, S. Mino, and Y. Miyamoto, “Linear optical IQ modulator for high-order multilevel coherent transmission,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2013), OM3C.1.
[Crossref]

M. D. McKinley, K. A. Remley, M. Myslinski, J. S. Kenney, D. Schreurs, and B. Nauwelaers, “EVM calculation for broadband modulated signals,” in Microwave Measurement Conference, (ARFTG, 2004), 45–52.

R. Hassun, M. Flaherty, R. Matreci, and M. Taylor, “Effective evaluation of link quality using error vector magnitude techniques,” in Proceedings of IEEE Wireless Communications Conference, (IEEE, 1997), 89–94.
[Crossref]

S. Yu and T. Chu, “Study of electrical nonlinearity in analog silicon modulator,” in Proceedings of IEEE Conference on Lasers and Electro-Optics, (IEEE, 2016), JW2A.119.
[Crossref]

R. Wang, A. Bhardwaj, S. Ristic, L. Coldren, J. Bowers, P. Herczfeld, and Y. Li, “Highly linear InP phase modulator for high dynamic range RF/Photonic links,” in Proceedings of IEEE MTT-S International Microwave Symposium, (IEEE, 2010), 732–735.

M. Izutsu, “Lithium Niobate Modulator,” in Encyclopedic handbook of integrated optics, K. Iga and Y. Kukubun, eds. (CRC, 2005), pp. 122–127.

P. W. Juodawlkis, F. J. O’Donnell, R. J. Bailey, J. J. Plant, K. G. Ray, D. C. Oakley, A. Napoleone, M. R. Watts, and G. E. Betts, “InGaAsP/InP quantum-well electrorefractive modulators with sub-volt Vpi,” in Enabling Photonic Technologies for Aerospace Applications VI, (International Society for Optics and Photonics, 2004), 53–64.

G. P. Agrawal, “Optical modulators,” in Lightwave technology: components and devices (John Wiley & Sons, 2004), p. 234.

J. G. Proakis, “Digital Modulation Schemes,” in Digital communications (McGraw-Hill, 1995), pp. 101–107.

“Digital Demodulator Block Diagram” (Keysight Technologies, 2018), retrieved http://rfmw.em.keysight.com/wireless/helpfiles/89600b/webhelp/subsystems/digdemod/content/digital_demodulator_block_diagram.htm .

K. Goi, K. Oda, H. Kusaka, K. Ogawa, T. Y. Liow, X. Tu, and G. Q. Lo, “20-Gbps BPSK silicon Mach-Zehnder modulator with excellent chirp-free performance,” in Opto-Electronics and Communications Conference, (Optical Society of America, 2012), 238–239.
[Crossref]

L. Chrostowski and M. Hochberg, “Modulators,” in Silicon photonics design: from devices to systems (Cambridge University, 2015), pp. 217–222.

K. Ogawa and K. Nishide, “Is silicon photonics a competitive technology to enable better and highly performing networks?” in Silicon Photonics III (Springer, 2016), pp. 447–472.

I. Betty, M. G. Boudreau, R. Longone, R. A. Griffin, and L. Langley, “Zero chirp 10 Gb/s MQW InP Mach-Zehnder transmitter with full-band tunability,” in Optical Fiber Communication Conference, (Optical Society of America, 2007), OWH6.
[Crossref]

H. Y. Choi, T. Tsuritani, and I. Morita, “Effects of LN modulator chirp on performance of digital coherent optical transmission system,” in Proceedings of IEEE International Conference on Optical Internet, (IEEE, 2012), 50–51.

H. Klein, “Integrated InP Mach-Zehnder Modulators for 100 Gbit/s Ethernet Applications using QPSK Modulation,” PhD Thesis (Berlin: Technische Universität, 2010).

W. May, “Coherent IQ modulator performance” (2016), retrieved https://www.neophotonics.com/coherent-iq-modulator-performance/ .

M. Gokhale, “Coherent transmission modulators for 100G and 200G: Part II” (2015), retrieved https://www.neophotonics.com/coherent-transmission-modulators-100g-200g-part-ii/ .

C. R. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X.-M. Xu, B. Mikkelsen, and M. Givehchi, “Single-chip silicon photonics 100-Gb/s coherent transceiver,” in Optical Fiber Communication Conference, (Optical Society of America, 2014), Th5C. 1.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Attenuation and rel. phase versus applied voltage for ‘Ideal’, InP and Si phase shifters.
Fig. 2
Fig. 2 (a) Dual-drive MZM circuit simulated in Lumerical Interconnect. (b) ‘Ideal’, InP and Si MZM DC transfer functions showing 2 V π  push-pull operation around −3 V bias. Input optical power is 10 mW. The DC V π  values at −3 V are 1.6 V for the Ideal device, 1.9 V for InP and 5.2 V for Si. (c) Normalized E field TFs at −3 V bias (left) and −6 V bias (right). Insets: first distortion peaks for both bias points, shown in the range (−0.5± 0.1) V π  .
Fig. 3
Fig. 3 Single-pol., back-to-back coherent circuit simulated in Lumerical Interconnect, comprising lasers, drivers, an IQ modulator with push-pull MZMs, a 90 ° hybrid, balanced photodiodes (homodyne detection) and measurement tools. The driver shown is for B/QPSK modulation, but can easily be adapted to higher-order QAM formats. Its inverter (±1) is used to generate the push-pull signal. Optical 50/50 Y-branch splitters/combiners are not shown for clarity. The +/− prefix in a block name means it is disabled in simulations unless otherwise stated.
Fig. 4
Fig. 4 28 Gbaud BPSK (a) and QPSK (b) vector diagrams resulting from the simulation of the circuit of Fig. 3 with ideal (left), InP (middle) and Si (right) modulator materials, with impairments enabled in the circuit. The color of data samples reflects their relative local spatial density (warmer color for higher density).
Fig. 5
Fig. 5 Simulated back-to-back 28 Gbaud QPSK bit error rate versus OSNR for the three modulator platforms and for different RF drive amplitudes. The launch power after the EDFA and noise loading is fixed at 0 dBm. The HD-FEC threshold is 3.8 × 10-3.
Fig. 6
Fig. 6 Experimental single-pol., back-to-back coherent circuit for BPSK measurements with the LiNbO3, InP and Si modulators.
Fig. 7
Fig. 7 Measured back-to-back 10 Gbit/s BPSK vector diagrams using the LiNbO3 IQM (top), InP IQM (middle) and Si TW-MZM (bottom). Modulators are driven at (a) 1.5 V π and (b) 0.75 V π RF signal amplitude. Insets: symbol location (red dots) after OMA processing on a subset of 103 symbols.
Fig. 8
Fig. 8 (a) Sinusoidal and polynomial fits for the Si MZM DC TF (−3V bias). (b) Simulated 28 Gbaud 16-QAM vector diagrams for the Si IQM, without pre-compensation (left), with sinusoidal fit (middle) and with polynomial fit (right). Circuit impairments are disabled. (c) EVM simulation results across platforms and pre-compensation methods with circuit impairments enabled. The RF swing is 2 V π for all simulations.
Fig. 9
Fig. 9 Oscilloscope time traces (a) and electrical eyes (b) from the in-phase branch (arbitrary) after detection, for the 28 Gbaud QPSK simulations of the Fig. 3 circuit without impairments.
Fig. 10
Fig. 10 Matlab symbol synchronizer phase-locked loop applied to the QPSK data from Interconnect simulations of Fig. 4(b). (a) Si constellation after PLL, when down-sampling to 2 samples/symbol has been done at best (left) and worst (right) phase. (b) Comparison of EVMRMS after PLL for all modulator platforms, at best and worst sampling instants (2 samples/symbol).

Tables (2)

Tables Icon

Table 1 Main Parameters of Coherent Circuit Simulation in Lumerical Interconnect

Tables Icon

Table 2 Performance Metrics of the 3 Modulator Platforms for Back-To-Back 28 Gbaud QPSK When a Constant Noise Load of 1E15 W/Hz Is Applied After the Transmitter.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

x 2 n x 2 + y 2 n y 2 + z 2 n z 2 =1,
x 2 ( 1 n o 2 + r 13 E z )+ y 2 ( 1 n o 2 + r 13 E z )+ z 2 ( 1 n e 2 + r 33 E z )=1,
Δ n z,LiNb O 3 n e 1 2 n o 2 r 33 E   z .
Δ n InP k E 2 ,
Δ n InP a E b ,
Δ n Si k 1 Δ N p 1 + k 2 Δ P p 2 ,
ΔN,ΔP={ c 1 [ 1+( 1  | d |/ c 2 ) e ( qV/ k B T   1 ) ]minority carrier side 0depletion region N D , N A majority carrier side ,
Δ n Si aE+b E 2 +c E 3 +(...),
P out P in = 1 2 + 1 2 cos( φ i ( V i ) ) .
φ(V)= 2πΔ n eff (V)  l eff / λ 0 ,
Δv(t)=  1 4 V π   d dt  [ V 1 (t)+  V 2 (t) ].
S ideal =Re{ E c 2 e j ω c t [ a I cos( φ I (t))+ a Q sin( φ Q (t))] },
S nonideal =Re{ E c 2 e j ω c t ( a I n=1 N [ b n cos( φ I (t))+ c n sin( φ I (t)) ] + a Q n=1 N [ p n cos( φ Q (t))+ q n sin( φ Q (t)) ] ) },
α= (dφ/dt)/ [(1/E) (dE/dt)] ,
EV M RMS =100  [ 1 N r=1 N   | s ideal, r   s meas,r | 2 1 N r=1 N   | s ideal, r | 2 ] 1/2 ,
u(r)=  y I (r 1/2)[   y I (r)  y I (r1) ] +  y Q (r 1/2)[   y Q (r)  y Q (r1) ] ,

Metrics