Abstract

Microlasers are ideal candidates to bring the fascinating variety of nonlinear complex dynamics found in delay-coupled systems to the realm of quantum optics. Particularly attractive is the possibility of tailoring the devices’ emission properties via non-invasive delayed optical coupling. However, until now scarce research has been done in this direction. Here, we experimentally and theoretically investigate the effects of delayed optical feedback on the mode-switching dynamics of an electrically driven bimodal quantum-dot micropillar laser, characterizing its impact on the micropillar’s output power, optical spectrum and photon statistics. Feedback is found to influence the switching dynamics and its characteristics time scales. In addition, stochastic switching is reduced with the subsequent impact on the microlaser photon statistics. Our results contribute to the comprehension of feedback-induced phenomena in micropillar lasers and pave the way towards the external control and tailoring of the properties of these key systems for the nanophotonics community.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Determining the linewidth enhancement factor via optical feedback in quantum dot micropillar lasers

Steffen Holzinger, Sören Kreinberg, Brett H. Hokr, Christian Schneider, Sven Höfling, Weng W. Chow, Xavier Porte, and Stephan Reitzenstein
Opt. Express 26(24) 31363-31371 (2018)

Micropillar lasers with site-controlled quantum dots as active medium

Arsenty Kaganskiy, Sören Kreinberg, Xavier Porte, and Stephan Reitzenstein
Optica 6(4) 404-409 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D: Appl. Phys. 43, 033001 (2010).
    [Crossref]
  2. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
    [Crossref] [PubMed]
  3. C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
    [Crossref] [PubMed]
  4. S. Ates, S. M. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett. 103, 167402 (2009).
    [Crossref] [PubMed]
  5. A. Schlehahn, A. Thoma, P. Munnelly, M. Kamp, S. Höfling, T. Heindel, C. Schneider, and S. Reitzenstein, “An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency,” APL Photon. 1, 011301 (2016).
    [Crossref]
  6. A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
    [Crossref] [PubMed]
  7. C. Gies, F. Gericke, P. Gartner, S. Holzinger, C. Hopfmann, T. Heindel, J. Wolters, C. Schneider, M. Florian, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Strong light-matter coupling in the presence of lasing,” Phys. Rev. A 96, 023806 (2017).
    [Crossref]
  8. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
    [Crossref] [PubMed]
  9. I. Prieto, J. M. Llorens, L. E. Muñoz-Camúñez, A. G. Taboada, J. Canet-Ferrer, J. M. Ripalda, C. Robles, G. Muñoz-Matutano, J. P. Martínez-Pastor, and P. A. Postigo, “Near thresholdless laser operation at room temperature,” Optica 2, 66 (2015).
    [Crossref]
  10. M. Takiguchi, H. Taniyama, H. Sumikura, M. D. Birowosuto, E. Kuramochi, A. Shinya, T. Sato, K. Takeda, S. Matsuo, and M. Notomi, “Systematic study of thresholdless oscillation in high-β buried multiple-quantum-well photonic crystal nanocavity lasers,” Opt. Express 24, 3441 (2016).
    [Crossref] [PubMed]
  11. Y. Ota, M. Kakuda, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Thresholdless quantum dot nanolaser,” Opt. Express 25, 19981 (2017).
    [Crossref] [PubMed]
  12. S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6, e17030 (2017).
    [Crossref]
  13. E. Schlottmann, S. Holzinger, B. Lingnau, K. Lüdge, C. Schneider, M. Kamp, S. Höfling, J. Wolters, and S. Reitzenstein, “Injection locking of quantum-dot microlasers operating in the few-photon regime,” Phys. Rev. Appl. 6, 044023 (2016).
    [Crossref]
  14. C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Höfling, J. Wolters, S. Reitzenstein, and K. Lüdge, “Mode-switching induced super-thermal bunching in quantum-dot microlasers,” New J. Phys. 18, 063011 (2016).
    [Crossref]
  15. M. Virte, K. Panajotov, H. Thienpont, and M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics 7, 1–6 (2012).
  16. M. Marconi, J. Javaloyes, P. Hamel, F. Raineri, A. Levenson, and A. M. Yacomotti, “Far-from-equilibrium route to superthermal light in bimodal nanolasers,” Phys. Rev. X 8, 011013 (2018).
  17. M. Soriano, J. García-Ojalvo, C. Mirasso, and I. Fischer, “Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys. 85, 421–470 (2013).
    [Crossref]
  18. M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9, 151–162 (2015).
    [Crossref]
  19. A. Carmele, J. Kabuss, F. Schulze, S. Reitzenstein, and A. Knorr, “Single photon delayed feedback: A way to stabilize intrinsic quantum cavity electrodynamics,” Phys. Rev. Lett. 110, 013601 (2013).
    [Crossref] [PubMed]
  20. S. M. Hein, F. Schulze, A. Carmele, and A. Knorr, “Optical feedback-enhanced photon entanglement from a biexciton cascade,” Phys. Rev. Lett. 113, 1–5 (2014).
    [Crossref]
  21. F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, and I. Kanter, “Observing chaos for quantum-dot microlasers with external feedback,” Nat. Commun. 2, 366 (2011).
    [Crossref] [PubMed]
  22. C. Hopfmann, F. Albert, C. Schneider, S. Höfling, M. Kamp, A. Forchel, I. Kanter, and S. Reitzenstein, “Nonlinear emission characteristics of quantum-dot micropillar lasers in the presence of polarized optical feedback,” New J. Phys. 15, 025030 (2013).
    [Crossref]
  23. P. Munnelly, B. Lingnau, M. M. Karow, T. Heindel, M. Kamp, S. Höfling, K. Lüdge, C. Schneider, and S. Reitzenstein, “On-chip optoelectronic feedback in a micropillar laser-detector assembly,” Optica 4, 303 (2017).
    [Crossref]
  24. I. Reidler, Y. Aviad, M. Rosenblum, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103, 024102 (2009).
    [Crossref] [PubMed]
  25. X. Porte, M. C. Soriano, D. Brunner, and I. Fischer, “Bidirectional private key exchange using delay-coupled semiconductor lasers,” Opt. Lett. 41, 2871 (2016).
    [Crossref] [PubMed]
  26. D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer, “Parallel photonic information processing at gigabyte per second data rates using transient states,” Nat. Commun. 4, 1364 (2013).
    [Crossref] [PubMed]
  27. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
    [Crossref]
  28. C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92, 091107 (2008).
    [Crossref]
  29. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
    [Crossref] [PubMed]
  30. S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
    [Crossref] [PubMed]
  31. R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 49, 27 (1956).
    [Crossref]
  32. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16, 3032 (2008).
    [Crossref] [PubMed]
  33. D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use SQUID sensors,” IEEE Trans. Appl. Supercond. 17, 699–704 (2007).
    [Crossref]
  34. M. Schmidt, M. V. Helversen, M. López, F. Gericke, E. Schlottmann, T. Heindel, S. Kück, S. Reitzenstein, and J. Beyer, “Photon-number-resolving transition-edge sensors for the metrology of quantum light sources,” J. Low Temp. Phys. (2018). https://doi.org/10.1007/s10909-018-1932-1 .
    [Crossref]
  35. J. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81 (5), 1110–1113 (1998).
    [Crossref]
  36. S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett. 93, 061104 (2008).
    [Crossref]
  37. C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. V. Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
    [Crossref]
  38. R. Michalzik (ed.), VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers (Springer-Verlag, 2013). https://doi.org/10.1007/978-3-642-24986-0 .
    [Crossref]
  39. P. Rice and H. Carmichael, “Photon statistics of a cavity-QED laser: A comment on the laser phase-transition analogy,” Phys. Rev. A 50 (5), 4318–4329 (1994).
    [Crossref] [PubMed]
  40. C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, “Semiconductor model for quantum-dot-based microcavity lasers,” Phys. Rev. A 75, 013803 (2007).
    [Crossref]
  41. E. Schöll, A. G. Balanov, N. B. Janson, and A. Neiman, “Controlling stochastic oscillations close to a Hopf bifurcation by time-delayed feedback,” Stoch. Dyn. 05, 281 (2007).
    [Crossref]
  42. E. Schlottmann, M. V. Helversen, M. Schmidt, M. López, F. Gericke, T. Heindel, S. Kück, S. Reitzenstein, and J. Beyer, “Exploring the photon-number distribution of bimodal microlasers with a transition edge sensor,” Phys. Rev. Appl. 9, 064030 (2018).
    [Crossref]
  43. Z. Abdul Sattar, N. Ali Kamel, and K. A. Shore, “Optical injection effects in nanolasers,” IEEE J. Quantum Electron. 52, 1–8 (2016).
  44. Y. D. Jeong, J. S. Cho, Y. H. Won, H. J. Lee, and H. Yoo, “All-optical flip-flop based on the bistability of injection locked Fabry-Perot laser diode,” Opt. Express 14, 4058–4063 (2006).
    [Crossref] [PubMed]

2018 (2)

M. Marconi, J. Javaloyes, P. Hamel, F. Raineri, A. Levenson, and A. M. Yacomotti, “Far-from-equilibrium route to superthermal light in bimodal nanolasers,” Phys. Rev. X 8, 011013 (2018).

E. Schlottmann, M. V. Helversen, M. Schmidt, M. López, F. Gericke, T. Heindel, S. Kück, S. Reitzenstein, and J. Beyer, “Exploring the photon-number distribution of bimodal microlasers with a transition edge sensor,” Phys. Rev. Appl. 9, 064030 (2018).
[Crossref]

2017 (4)

C. Gies, F. Gericke, P. Gartner, S. Holzinger, C. Hopfmann, T. Heindel, J. Wolters, C. Schneider, M. Florian, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Strong light-matter coupling in the presence of lasing,” Phys. Rev. A 96, 023806 (2017).
[Crossref]

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6, e17030 (2017).
[Crossref]

P. Munnelly, B. Lingnau, M. M. Karow, T. Heindel, M. Kamp, S. Höfling, K. Lüdge, C. Schneider, and S. Reitzenstein, “On-chip optoelectronic feedback in a micropillar laser-detector assembly,” Optica 4, 303 (2017).
[Crossref]

Y. Ota, M. Kakuda, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Thresholdless quantum dot nanolaser,” Opt. Express 25, 19981 (2017).
[Crossref] [PubMed]

2016 (6)

M. Takiguchi, H. Taniyama, H. Sumikura, M. D. Birowosuto, E. Kuramochi, A. Shinya, T. Sato, K. Takeda, S. Matsuo, and M. Notomi, “Systematic study of thresholdless oscillation in high-β buried multiple-quantum-well photonic crystal nanocavity lasers,” Opt. Express 24, 3441 (2016).
[Crossref] [PubMed]

X. Porte, M. C. Soriano, D. Brunner, and I. Fischer, “Bidirectional private key exchange using delay-coupled semiconductor lasers,” Opt. Lett. 41, 2871 (2016).
[Crossref] [PubMed]

E. Schlottmann, S. Holzinger, B. Lingnau, K. Lüdge, C. Schneider, M. Kamp, S. Höfling, J. Wolters, and S. Reitzenstein, “Injection locking of quantum-dot microlasers operating in the few-photon regime,” Phys. Rev. Appl. 6, 044023 (2016).
[Crossref]

C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Höfling, J. Wolters, S. Reitzenstein, and K. Lüdge, “Mode-switching induced super-thermal bunching in quantum-dot microlasers,” New J. Phys. 18, 063011 (2016).
[Crossref]

A. Schlehahn, A. Thoma, P. Munnelly, M. Kamp, S. Höfling, T. Heindel, C. Schneider, and S. Reitzenstein, “An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency,” APL Photon. 1, 011301 (2016).
[Crossref]

Z. Abdul Sattar, N. Ali Kamel, and K. A. Shore, “Optical injection effects in nanolasers,” IEEE J. Quantum Electron. 52, 1–8 (2016).

2015 (2)

2014 (1)

S. M. Hein, F. Schulze, A. Carmele, and A. Knorr, “Optical feedback-enhanced photon entanglement from a biexciton cascade,” Phys. Rev. Lett. 113, 1–5 (2014).
[Crossref]

2013 (4)

A. Carmele, J. Kabuss, F. Schulze, S. Reitzenstein, and A. Knorr, “Single photon delayed feedback: A way to stabilize intrinsic quantum cavity electrodynamics,” Phys. Rev. Lett. 110, 013601 (2013).
[Crossref] [PubMed]

M. Soriano, J. García-Ojalvo, C. Mirasso, and I. Fischer, “Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys. 85, 421–470 (2013).
[Crossref]

D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer, “Parallel photonic information processing at gigabyte per second data rates using transient states,” Nat. Commun. 4, 1364 (2013).
[Crossref] [PubMed]

C. Hopfmann, F. Albert, C. Schneider, S. Höfling, M. Kamp, A. Forchel, I. Kanter, and S. Reitzenstein, “Nonlinear emission characteristics of quantum-dot micropillar lasers in the presence of polarized optical feedback,” New J. Phys. 15, 025030 (2013).
[Crossref]

2012 (2)

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref] [PubMed]

M. Virte, K. Panajotov, H. Thienpont, and M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics 7, 1–6 (2012).

2011 (1)

F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, and I. Kanter, “Observing chaos for quantum-dot microlasers with external feedback,” Nat. Commun. 2, 366 (2011).
[Crossref] [PubMed]

2010 (2)

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[Crossref] [PubMed]

S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D: Appl. Phys. 43, 033001 (2010).
[Crossref]

2009 (2)

S. Ates, S. M. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett. 103, 167402 (2009).
[Crossref] [PubMed]

I. Reidler, Y. Aviad, M. Rosenblum, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103, 024102 (2009).
[Crossref] [PubMed]

2008 (3)

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16, 3032 (2008).
[Crossref] [PubMed]

S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett. 93, 061104 (2008).
[Crossref]

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92, 091107 (2008).
[Crossref]

2007 (5)

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[Crossref] [PubMed]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use SQUID sensors,” IEEE Trans. Appl. Supercond. 17, 699–704 (2007).
[Crossref]

C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, “Semiconductor model for quantum-dot-based microcavity lasers,” Phys. Rev. A 75, 013803 (2007).
[Crossref]

E. Schöll, A. G. Balanov, N. B. Janson, and A. Neiman, “Controlling stochastic oscillations close to a Hopf bifurcation by time-delayed feedback,” Stoch. Dyn. 05, 281 (2007).
[Crossref]

2006 (2)

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref] [PubMed]

Y. D. Jeong, J. S. Cho, Y. H. Won, H. J. Lee, and H. Yoo, “All-optical flip-flop based on the bistability of injection locked Fabry-Perot laser diode,” Opt. Express 14, 4058–4063 (2006).
[Crossref] [PubMed]

2004 (1)

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

2002 (1)

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref] [PubMed]

1998 (1)

J. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81 (5), 1110–1113 (1998).
[Crossref]

1994 (1)

P. Rice and H. Carmichael, “Photon statistics of a cavity-QED laser: A comment on the laser phase-transition analogy,” Phys. Rev. A 50 (5), 4318–4329 (1994).
[Crossref] [PubMed]

1991 (1)

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. V. Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[Crossref]

1956 (1)

R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 49, 27 (1956).
[Crossref]

Abdul Sattar, Z.

Z. Abdul Sattar, N. Ali Kamel, and K. A. Shore, “Optical injection effects in nanolasers,” IEEE J. Quantum Electron. 52, 1–8 (2016).

Albert, F.

C. Hopfmann, F. Albert, C. Schneider, S. Höfling, M. Kamp, A. Forchel, I. Kanter, and S. Reitzenstein, “Nonlinear emission characteristics of quantum-dot micropillar lasers in the presence of polarized optical feedback,” New J. Phys. 15, 025030 (2013).
[Crossref]

F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, and I. Kanter, “Observing chaos for quantum-dot microlasers with external feedback,” Nat. Commun. 2, 366 (2011).
[Crossref] [PubMed]

Ali Kamel, N.

Z. Abdul Sattar, N. Ali Kamel, and K. A. Shore, “Optical injection effects in nanolasers,” IEEE J. Quantum Electron. 52, 1–8 (2016).

Andreani, L. C.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref] [PubMed]

Arakawa, Y.

Assmann, C.

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use SQUID sensors,” IEEE Trans. Appl. Supercond. 17, 699–704 (2007).
[Crossref]

Ates, S.

S. Ates, S. M. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett. 103, 167402 (2009).
[Crossref] [PubMed]

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[Crossref] [PubMed]

Aviad, Y.

I. Reidler, Y. Aviad, M. Rosenblum, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103, 024102 (2009).
[Crossref] [PubMed]

Badolato, A.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref] [PubMed]

Balanov, A. G.

E. Schöll, A. G. Balanov, N. B. Janson, and A. Neiman, “Controlling stochastic oscillations close to a Hopf bifurcation by time-delayed feedback,” Stoch. Dyn. 05, 281 (2007).
[Crossref]

Beveratos, A.

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[Crossref] [PubMed]

Beyer, J.

E. Schlottmann, M. V. Helversen, M. Schmidt, M. López, F. Gericke, T. Heindel, S. Kück, S. Reitzenstein, and J. Beyer, “Exploring the photon-number distribution of bimodal microlasers with a transition edge sensor,” Phys. Rev. Appl. 9, 064030 (2018).
[Crossref]

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use SQUID sensors,” IEEE Trans. Appl. Supercond. 17, 699–704 (2007).
[Crossref]

Birowosuto, M. D.

Bloch, J.

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[Crossref] [PubMed]

Böckler, C.

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92, 091107 (2008).
[Crossref]

Bouwmeester, D.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref] [PubMed]

Brunner, D.

X. Porte, M. C. Soriano, D. Brunner, and I. Fischer, “Bidirectional private key exchange using delay-coupled semiconductor lasers,” Opt. Lett. 41, 2871 (2016).
[Crossref] [PubMed]

D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer, “Parallel photonic information processing at gigabyte per second data rates using transient states,” Nat. Commun. 4, 1364 (2013).
[Crossref] [PubMed]

Canet-Ferrer, J.

Carmele, A.

S. M. Hein, F. Schulze, A. Carmele, and A. Knorr, “Optical feedback-enhanced photon entanglement from a biexciton cascade,” Phys. Rev. Lett. 113, 1–5 (2014).
[Crossref]

A. Carmele, J. Kabuss, F. Schulze, S. Reitzenstein, and A. Knorr, “Single photon delayed feedback: A way to stabilize intrinsic quantum cavity electrodynamics,” Phys. Rev. Lett. 110, 013601 (2013).
[Crossref] [PubMed]

Carmichael, H.

P. Rice and H. Carmichael, “Photon statistics of a cavity-QED laser: A comment on the laser phase-transition analogy,” Phys. Rev. A 50 (5), 4318–4329 (1994).
[Crossref] [PubMed]

Chang-Hasnain, C. J.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. V. Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[Crossref]

Cho, J. S.

Choi, Y.-S.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref] [PubMed]

Chow, W. W.

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6, e17030 (2017).
[Crossref]

Claudon, J.

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92, 091107 (2008).
[Crossref]

Costard, E.

J. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81 (5), 1110–1113 (1998).
[Crossref]

Debusmann, R.

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92, 091107 (2008).
[Crossref]

Dousse, A.

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[Crossref] [PubMed]

Drung, D.

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use SQUID sensors,” IEEE Trans. Appl. Supercond. 17, 699–704 (2007).
[Crossref]

Fainman, Y.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref] [PubMed]

Fattal, D.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref] [PubMed]

Fischer, I.

X. Porte, M. C. Soriano, D. Brunner, and I. Fischer, “Bidirectional private key exchange using delay-coupled semiconductor lasers,” Opt. Lett. 41, 2871 (2016).
[Crossref] [PubMed]

M. Soriano, J. García-Ojalvo, C. Mirasso, and I. Fischer, “Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys. 85, 421–470 (2013).
[Crossref]

D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer, “Parallel photonic information processing at gigabyte per second data rates using transient states,” Nat. Commun. 4, 1364 (2013).
[Crossref] [PubMed]

Florez, L. T.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. V. Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[Crossref]

Florian, M.

C. Gies, F. Gericke, P. Gartner, S. Holzinger, C. Hopfmann, T. Heindel, J. Wolters, C. Schneider, M. Florian, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Strong light-matter coupling in the presence of lasing,” Phys. Rev. A 96, 023806 (2017).
[Crossref]

Forchel, A.

C. Hopfmann, F. Albert, C. Schneider, S. Höfling, M. Kamp, A. Forchel, I. Kanter, and S. Reitzenstein, “Nonlinear emission characteristics of quantum-dot micropillar lasers in the presence of polarized optical feedback,” New J. Phys. 15, 025030 (2013).
[Crossref]

F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, and I. Kanter, “Observing chaos for quantum-dot microlasers with external feedback,” Nat. Commun. 2, 366 (2011).
[Crossref] [PubMed]

S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D: Appl. Phys. 43, 033001 (2010).
[Crossref]

S. Ates, S. M. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett. 103, 167402 (2009).
[Crossref] [PubMed]

S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett. 93, 061104 (2008).
[Crossref]

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92, 091107 (2008).
[Crossref]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[Crossref] [PubMed]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

García-Ojalvo, J.

M. Soriano, J. García-Ojalvo, C. Mirasso, and I. Fischer, “Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys. 85, 421–470 (2013).
[Crossref]

Gartner, P.

C. Gies, F. Gericke, P. Gartner, S. Holzinger, C. Hopfmann, T. Heindel, J. Wolters, C. Schneider, M. Florian, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Strong light-matter coupling in the presence of lasing,” Phys. Rev. A 96, 023806 (2017).
[Crossref]

Gayral, B.

J. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81 (5), 1110–1113 (1998).
[Crossref]

Gérard, J.

J. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81 (5), 1110–1113 (1998).
[Crossref]

Gérard, J. M.

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92, 091107 (2008).
[Crossref]

Gericke, F.

E. Schlottmann, M. V. Helversen, M. Schmidt, M. López, F. Gericke, T. Heindel, S. Kück, S. Reitzenstein, and J. Beyer, “Exploring the photon-number distribution of bimodal microlasers with a transition edge sensor,” Phys. Rev. Appl. 9, 064030 (2018).
[Crossref]

C. Gies, F. Gericke, P. Gartner, S. Holzinger, C. Hopfmann, T. Heindel, J. Wolters, C. Schneider, M. Florian, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Strong light-matter coupling in the presence of lasing,” Phys. Rev. A 96, 023806 (2017).
[Crossref]

Gies, C.

C. Gies, F. Gericke, P. Gartner, S. Holzinger, C. Hopfmann, T. Heindel, J. Wolters, C. Schneider, M. Florian, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Strong light-matter coupling in the presence of lasing,” Phys. Rev. A 96, 023806 (2017).
[Crossref]

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6, e17030 (2017).
[Crossref]

C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, “Semiconductor model for quantum-dot-based microcavity lasers,” Phys. Rev. A 75, 013803 (2007).
[Crossref]

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[Crossref] [PubMed]

Gorbunov, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Grenouillet, L.

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92, 091107 (2008).
[Crossref]

Hamel, P.

M. Marconi, J. Javaloyes, P. Hamel, F. Raineri, A. Levenson, and A. M. Yacomotti, “Far-from-equilibrium route to superthermal light in bimodal nanolasers,” Phys. Rev. X 8, 011013 (2018).

Hanbury Brown, R.

R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 49, 27 (1956).
[Crossref]

Harbison, J. P.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. V. Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[Crossref]

Hasnain, G.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. V. Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[Crossref]

Hein, S. M.

S. M. Hein, F. Schulze, A. Carmele, and A. Knorr, “Optical feedback-enhanced photon entanglement from a biexciton cascade,” Phys. Rev. Lett. 113, 1–5 (2014).
[Crossref]

Heindel, T.

E. Schlottmann, M. V. Helversen, M. Schmidt, M. López, F. Gericke, T. Heindel, S. Kück, S. Reitzenstein, and J. Beyer, “Exploring the photon-number distribution of bimodal microlasers with a transition edge sensor,” Phys. Rev. Appl. 9, 064030 (2018).
[Crossref]

P. Munnelly, B. Lingnau, M. M. Karow, T. Heindel, M. Kamp, S. Höfling, K. Lüdge, C. Schneider, and S. Reitzenstein, “On-chip optoelectronic feedback in a micropillar laser-detector assembly,” Optica 4, 303 (2017).
[Crossref]

C. Gies, F. Gericke, P. Gartner, S. Holzinger, C. Hopfmann, T. Heindel, J. Wolters, C. Schneider, M. Florian, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Strong light-matter coupling in the presence of lasing,” Phys. Rev. A 96, 023806 (2017).
[Crossref]

A. Schlehahn, A. Thoma, P. Munnelly, M. Kamp, S. Höfling, T. Heindel, C. Schneider, and S. Reitzenstein, “An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency,” APL Photon. 1, 011301 (2016).
[Crossref]

S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett. 93, 061104 (2008).
[Crossref]

Helversen, M. V.

E. Schlottmann, M. V. Helversen, M. Schmidt, M. López, F. Gericke, T. Heindel, S. Kück, S. Reitzenstein, and J. Beyer, “Exploring the photon-number distribution of bimodal microlasers with a transition edge sensor,” Phys. Rev. Appl. 9, 064030 (2018).
[Crossref]

Hennessy, K.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref] [PubMed]

Höfling, S.

P. Munnelly, B. Lingnau, M. M. Karow, T. Heindel, M. Kamp, S. Höfling, K. Lüdge, C. Schneider, and S. Reitzenstein, “On-chip optoelectronic feedback in a micropillar laser-detector assembly,” Optica 4, 303 (2017).
[Crossref]

C. Gies, F. Gericke, P. Gartner, S. Holzinger, C. Hopfmann, T. Heindel, J. Wolters, C. Schneider, M. Florian, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Strong light-matter coupling in the presence of lasing,” Phys. Rev. A 96, 023806 (2017).
[Crossref]

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6, e17030 (2017).
[Crossref]

A. Schlehahn, A. Thoma, P. Munnelly, M. Kamp, S. Höfling, T. Heindel, C. Schneider, and S. Reitzenstein, “An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency,” APL Photon. 1, 011301 (2016).
[Crossref]

C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Höfling, J. Wolters, S. Reitzenstein, and K. Lüdge, “Mode-switching induced super-thermal bunching in quantum-dot microlasers,” New J. Phys. 18, 063011 (2016).
[Crossref]

E. Schlottmann, S. Holzinger, B. Lingnau, K. Lüdge, C. Schneider, M. Kamp, S. Höfling, J. Wolters, and S. Reitzenstein, “Injection locking of quantum-dot microlasers operating in the few-photon regime,” Phys. Rev. Appl. 6, 044023 (2016).
[Crossref]

C. Hopfmann, F. Albert, C. Schneider, S. Höfling, M. Kamp, A. Forchel, I. Kanter, and S. Reitzenstein, “Nonlinear emission characteristics of quantum-dot micropillar lasers in the presence of polarized optical feedback,” New J. Phys. 15, 025030 (2013).
[Crossref]

F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, and I. Kanter, “Observing chaos for quantum-dot microlasers with external feedback,” Nat. Commun. 2, 366 (2011).
[Crossref] [PubMed]

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92, 091107 (2008).
[Crossref]

S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett. 93, 061104 (2008).
[Crossref]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Hofmann, C.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[Crossref] [PubMed]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Holzinger, S.

C. Gies, F. Gericke, P. Gartner, S. Holzinger, C. Hopfmann, T. Heindel, J. Wolters, C. Schneider, M. Florian, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Strong light-matter coupling in the presence of lasing,” Phys. Rev. A 96, 023806 (2017).
[Crossref]

E. Schlottmann, S. Holzinger, B. Lingnau, K. Lüdge, C. Schneider, M. Kamp, S. Höfling, J. Wolters, and S. Reitzenstein, “Injection locking of quantum-dot microlasers operating in the few-photon regime,” Phys. Rev. Appl. 6, 044023 (2016).
[Crossref]

C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Höfling, J. Wolters, S. Reitzenstein, and K. Lüdge, “Mode-switching induced super-thermal bunching in quantum-dot microlasers,” New J. Phys. 18, 063011 (2016).
[Crossref]

Hopfmann, C.

C. Gies, F. Gericke, P. Gartner, S. Holzinger, C. Hopfmann, T. Heindel, J. Wolters, C. Schneider, M. Florian, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Strong light-matter coupling in the presence of lasing,” Phys. Rev. A 96, 023806 (2017).
[Crossref]

C. Hopfmann, F. Albert, C. Schneider, S. Höfling, M. Kamp, A. Forchel, I. Kanter, and S. Reitzenstein, “Nonlinear emission characteristics of quantum-dot micropillar lasers in the presence of polarized optical feedback,” New J. Phys. 15, 025030 (2013).
[Crossref]

F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, and I. Kanter, “Observing chaos for quantum-dot microlasers with external feedback,” Nat. Commun. 2, 366 (2011).
[Crossref] [PubMed]

Hu, E. L.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref] [PubMed]

Iwamoto, S.

Jahnke, F.

C. Gies, F. Gericke, P. Gartner, S. Holzinger, C. Hopfmann, T. Heindel, J. Wolters, C. Schneider, M. Florian, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Strong light-matter coupling in the presence of lasing,” Phys. Rev. A 96, 023806 (2017).
[Crossref]

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6, e17030 (2017).
[Crossref]

C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, “Semiconductor model for quantum-dot-based microcavity lasers,” Phys. Rev. A 75, 013803 (2007).
[Crossref]

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[Crossref] [PubMed]

Janson, N. B.

E. Schöll, A. G. Balanov, N. B. Janson, and A. Neiman, “Controlling stochastic oscillations close to a Hopf bifurcation by time-delayed feedback,” Stoch. Dyn. 05, 281 (2007).
[Crossref]

Javaloyes, J.

M. Marconi, J. Javaloyes, P. Hamel, F. Raineri, A. Levenson, and A. M. Yacomotti, “Far-from-equilibrium route to superthermal light in bimodal nanolasers,” Phys. Rev. X 8, 011013 (2018).

Jeong, Y. D.

Kabuss, J.

A. Carmele, J. Kabuss, F. Schulze, S. Reitzenstein, and A. Knorr, “Single photon delayed feedback: A way to stabilize intrinsic quantum cavity electrodynamics,” Phys. Rev. Lett. 110, 013601 (2013).
[Crossref] [PubMed]

Kakuda, M.

Kamp, M.

P. Munnelly, B. Lingnau, M. M. Karow, T. Heindel, M. Kamp, S. Höfling, K. Lüdge, C. Schneider, and S. Reitzenstein, “On-chip optoelectronic feedback in a micropillar laser-detector assembly,” Optica 4, 303 (2017).
[Crossref]

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6, e17030 (2017).
[Crossref]

C. Gies, F. Gericke, P. Gartner, S. Holzinger, C. Hopfmann, T. Heindel, J. Wolters, C. Schneider, M. Florian, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Strong light-matter coupling in the presence of lasing,” Phys. Rev. A 96, 023806 (2017).
[Crossref]

A. Schlehahn, A. Thoma, P. Munnelly, M. Kamp, S. Höfling, T. Heindel, C. Schneider, and S. Reitzenstein, “An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency,” APL Photon. 1, 011301 (2016).
[Crossref]

C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Höfling, J. Wolters, S. Reitzenstein, and K. Lüdge, “Mode-switching induced super-thermal bunching in quantum-dot microlasers,” New J. Phys. 18, 063011 (2016).
[Crossref]

E. Schlottmann, S. Holzinger, B. Lingnau, K. Lüdge, C. Schneider, M. Kamp, S. Höfling, J. Wolters, and S. Reitzenstein, “Injection locking of quantum-dot microlasers operating in the few-photon regime,” Phys. Rev. Appl. 6, 044023 (2016).
[Crossref]

C. Hopfmann, F. Albert, C. Schneider, S. Höfling, M. Kamp, A. Forchel, I. Kanter, and S. Reitzenstein, “Nonlinear emission characteristics of quantum-dot micropillar lasers in the presence of polarized optical feedback,” New J. Phys. 15, 025030 (2013).
[Crossref]

F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, and I. Kanter, “Observing chaos for quantum-dot microlasers with external feedback,” Nat. Commun. 2, 366 (2011).
[Crossref] [PubMed]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Kanter, I.

C. Hopfmann, F. Albert, C. Schneider, S. Höfling, M. Kamp, A. Forchel, I. Kanter, and S. Reitzenstein, “Nonlinear emission characteristics of quantum-dot micropillar lasers in the presence of polarized optical feedback,” New J. Phys. 15, 025030 (2013).
[Crossref]

F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, and I. Kanter, “Observing chaos for quantum-dot microlasers with external feedback,” Nat. Commun. 2, 366 (2011).
[Crossref] [PubMed]

I. Reidler, Y. Aviad, M. Rosenblum, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103, 024102 (2009).
[Crossref] [PubMed]

Karow, M. M.

Katz, M.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref] [PubMed]

Keldysh, L. V.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Khajavikhan, M.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref] [PubMed]

Kida, T.

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92, 091107 (2008).
[Crossref]

Kinzel, W.

F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, and I. Kanter, “Observing chaos for quantum-dot microlasers with external feedback,” Nat. Commun. 2, 366 (2011).
[Crossref] [PubMed]

Kirste, A.

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use SQUID sensors,” IEEE Trans. Appl. Supercond. 17, 699–704 (2007).
[Crossref]

Kistner, C.

S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett. 93, 061104 (2008).
[Crossref]

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92, 091107 (2008).
[Crossref]

Knorr, A.

S. M. Hein, F. Schulze, A. Carmele, and A. Knorr, “Optical feedback-enhanced photon entanglement from a biexciton cascade,” Phys. Rev. Lett. 113, 1–5 (2014).
[Crossref]

A. Carmele, J. Kabuss, F. Schulze, S. Reitzenstein, and A. Knorr, “Single photon delayed feedback: A way to stabilize intrinsic quantum cavity electrodynamics,” Phys. Rev. Lett. 110, 013601 (2013).
[Crossref] [PubMed]

Krebs, O.

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[Crossref] [PubMed]

Kreinberg, S.

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6, e17030 (2017).
[Crossref]

C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Höfling, J. Wolters, S. Reitzenstein, and K. Lüdge, “Mode-switching induced super-thermal bunching in quantum-dot microlasers,” New J. Phys. 18, 063011 (2016).
[Crossref]

Kück, S.

E. Schlottmann, M. V. Helversen, M. Schmidt, M. López, F. Gericke, T. Heindel, S. Kück, S. Reitzenstein, and J. Beyer, “Exploring the photon-number distribution of bimodal microlasers with a transition edge sensor,” Phys. Rev. Appl. 9, 064030 (2018).
[Crossref]

Kuhn, S.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Kuramochi, E.

Kwon, S. H.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Lee, H. J.

Lee, J. H.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref] [PubMed]

Legrand, B.

J. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81 (5), 1110–1113 (1998).
[Crossref]

Lehmen, A. C. V.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. V. Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[Crossref]

Lemaître, A.

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[Crossref] [PubMed]

Levenson, A.

M. Marconi, J. Javaloyes, P. Hamel, F. Raineri, A. Levenson, and A. M. Yacomotti, “Far-from-equilibrium route to superthermal light in bimodal nanolasers,” Phys. Rev. X 8, 011013 (2018).

Lingnau, B.

P. Munnelly, B. Lingnau, M. M. Karow, T. Heindel, M. Kamp, S. Höfling, K. Lüdge, C. Schneider, and S. Reitzenstein, “On-chip optoelectronic feedback in a micropillar laser-detector assembly,” Optica 4, 303 (2017).
[Crossref]

C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Höfling, J. Wolters, S. Reitzenstein, and K. Lüdge, “Mode-switching induced super-thermal bunching in quantum-dot microlasers,” New J. Phys. 18, 063011 (2016).
[Crossref]

E. Schlottmann, S. Holzinger, B. Lingnau, K. Lüdge, C. Schneider, M. Kamp, S. Höfling, J. Wolters, and S. Reitzenstein, “Injection locking of quantum-dot microlasers operating in the few-photon regime,” Phys. Rev. Appl. 6, 044023 (2016).
[Crossref]

Lita, A. E.

Llorens, J. M.

Löffler, A.

S. Ates, S. M. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett. 103, 167402 (2009).
[Crossref] [PubMed]

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92, 091107 (2008).
[Crossref]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[Crossref] [PubMed]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Lomakin, V.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref] [PubMed]

López, M.

E. Schlottmann, M. V. Helversen, M. Schmidt, M. López, F. Gericke, T. Heindel, S. Kück, S. Reitzenstein, and J. Beyer, “Exploring the photon-number distribution of bimodal microlasers with a transition edge sensor,” Phys. Rev. Appl. 9, 064030 (2018).
[Crossref]

Lorke, M.

C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, “Semiconductor model for quantum-dot-based microcavity lasers,” Phys. Rev. A 75, 013803 (2007).
[Crossref]

Lüdge, K.

P. Munnelly, B. Lingnau, M. M. Karow, T. Heindel, M. Kamp, S. Höfling, K. Lüdge, C. Schneider, and S. Reitzenstein, “On-chip optoelectronic feedback in a micropillar laser-detector assembly,” Optica 4, 303 (2017).
[Crossref]

E. Schlottmann, S. Holzinger, B. Lingnau, K. Lüdge, C. Schneider, M. Kamp, S. Höfling, J. Wolters, and S. Reitzenstein, “Injection locking of quantum-dot microlasers operating in the few-photon regime,” Phys. Rev. Appl. 6, 044023 (2016).
[Crossref]

C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Höfling, J. Wolters, S. Reitzenstein, and K. Lüdge, “Mode-switching induced super-thermal bunching in quantum-dot microlasers,” New J. Phys. 18, 063011 (2016).
[Crossref]

Marconi, M.

M. Marconi, J. Javaloyes, P. Hamel, F. Raineri, A. Levenson, and A. M. Yacomotti, “Far-from-equilibrium route to superthermal light in bimodal nanolasers,” Phys. Rev. X 8, 011013 (2018).

Martínez-Pastor, J. P.

Matsuo, S.

Michler, P.

S. Ates, S. M. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett. 103, 167402 (2009).
[Crossref] [PubMed]

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[Crossref] [PubMed]

Miller, A. J.

Mirasso, C.

M. Soriano, J. García-Ojalvo, C. Mirasso, and I. Fischer, “Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys. 85, 421–470 (2013).
[Crossref]

Mirasso, C. R.

D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer, “Parallel photonic information processing at gigabyte per second data rates using transient states,” Nat. Commun. 4, 1364 (2013).
[Crossref] [PubMed]

Mizrahi, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref] [PubMed]

Munnelly, P.

P. Munnelly, B. Lingnau, M. M. Karow, T. Heindel, M. Kamp, S. Höfling, K. Lüdge, C. Schneider, and S. Reitzenstein, “On-chip optoelectronic feedback in a micropillar laser-detector assembly,” Optica 4, 303 (2017).
[Crossref]

A. Schlehahn, A. Thoma, P. Munnelly, M. Kamp, S. Höfling, T. Heindel, C. Schneider, and S. Reitzenstein, “An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency,” APL Photon. 1, 011301 (2016).
[Crossref]

Muñoz-Camúñez, L. E.

Muñoz-Matutano, G.

Nam, S. W.

Neiman, A.

E. Schöll, A. G. Balanov, N. B. Janson, and A. Neiman, “Controlling stochastic oscillations close to a Hopf bifurcation by time-delayed feedback,” Stoch. Dyn. 05, 281 (2007).
[Crossref]

Notomi, M.

Ota, Y.

Panajotov, K.

M. Virte, K. Panajotov, H. Thienpont, and M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics 7, 1–6 (2012).

Peters, M.

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use SQUID sensors,” IEEE Trans. Appl. Supercond. 17, 699–704 (2007).
[Crossref]

Petroff, P. M.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref] [PubMed]

Porte, X.

Postigo, P. A.

Prieto, I.

Rahimi-Iman, A.

S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett. 93, 061104 (2008).
[Crossref]

Raineri, F.

M. Marconi, J. Javaloyes, P. Hamel, F. Raineri, A. Levenson, and A. M. Yacomotti, “Far-from-equilibrium route to superthermal light in bimodal nanolasers,” Phys. Rev. X 8, 011013 (2018).

Rakher, M. T.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref] [PubMed]

Redlich, C.

C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Höfling, J. Wolters, S. Reitzenstein, and K. Lüdge, “Mode-switching induced super-thermal bunching in quantum-dot microlasers,” New J. Phys. 18, 063011 (2016).
[Crossref]

Reidler, I.

I. Reidler, Y. Aviad, M. Rosenblum, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103, 024102 (2009).
[Crossref] [PubMed]

Reinecke, T. L.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Reithmaier, J. P.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Reitzenstein, S.

E. Schlottmann, M. V. Helversen, M. Schmidt, M. López, F. Gericke, T. Heindel, S. Kück, S. Reitzenstein, and J. Beyer, “Exploring the photon-number distribution of bimodal microlasers with a transition edge sensor,” Phys. Rev. Appl. 9, 064030 (2018).
[Crossref]

P. Munnelly, B. Lingnau, M. M. Karow, T. Heindel, M. Kamp, S. Höfling, K. Lüdge, C. Schneider, and S. Reitzenstein, “On-chip optoelectronic feedback in a micropillar laser-detector assembly,” Optica 4, 303 (2017).
[Crossref]

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6, e17030 (2017).
[Crossref]

C. Gies, F. Gericke, P. Gartner, S. Holzinger, C. Hopfmann, T. Heindel, J. Wolters, C. Schneider, M. Florian, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Strong light-matter coupling in the presence of lasing,” Phys. Rev. A 96, 023806 (2017).
[Crossref]

A. Schlehahn, A. Thoma, P. Munnelly, M. Kamp, S. Höfling, T. Heindel, C. Schneider, and S. Reitzenstein, “An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency,” APL Photon. 1, 011301 (2016).
[Crossref]

E. Schlottmann, S. Holzinger, B. Lingnau, K. Lüdge, C. Schneider, M. Kamp, S. Höfling, J. Wolters, and S. Reitzenstein, “Injection locking of quantum-dot microlasers operating in the few-photon regime,” Phys. Rev. Appl. 6, 044023 (2016).
[Crossref]

C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Höfling, J. Wolters, S. Reitzenstein, and K. Lüdge, “Mode-switching induced super-thermal bunching in quantum-dot microlasers,” New J. Phys. 18, 063011 (2016).
[Crossref]

C. Hopfmann, F. Albert, C. Schneider, S. Höfling, M. Kamp, A. Forchel, I. Kanter, and S. Reitzenstein, “Nonlinear emission characteristics of quantum-dot micropillar lasers in the presence of polarized optical feedback,” New J. Phys. 15, 025030 (2013).
[Crossref]

A. Carmele, J. Kabuss, F. Schulze, S. Reitzenstein, and A. Knorr, “Single photon delayed feedback: A way to stabilize intrinsic quantum cavity electrodynamics,” Phys. Rev. Lett. 110, 013601 (2013).
[Crossref] [PubMed]

F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, and I. Kanter, “Observing chaos for quantum-dot microlasers with external feedback,” Nat. Commun. 2, 366 (2011).
[Crossref] [PubMed]

S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D: Appl. Phys. 43, 033001 (2010).
[Crossref]

S. Ates, S. M. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett. 103, 167402 (2009).
[Crossref] [PubMed]

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92, 091107 (2008).
[Crossref]

S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett. 93, 061104 (2008).
[Crossref]

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[Crossref] [PubMed]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Rice, P.

P. Rice and H. Carmichael, “Photon statistics of a cavity-QED laser: A comment on the laser phase-transition analogy,” Phys. Rev. A 50 (5), 4318–4329 (1994).
[Crossref] [PubMed]

Ripalda, J. M.

Robles, C.

Rosenblum, M.

I. Reidler, Y. Aviad, M. Rosenblum, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103, 024102 (2009).
[Crossref] [PubMed]

Ruede, F.

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use SQUID sensors,” IEEE Trans. Appl. Supercond. 17, 699–704 (2007).
[Crossref]

Sagnes, I.

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[Crossref] [PubMed]

Santori, C.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref] [PubMed]

Sato, T.

Schlehahn, A.

A. Schlehahn, A. Thoma, P. Munnelly, M. Kamp, S. Höfling, T. Heindel, C. Schneider, and S. Reitzenstein, “An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency,” APL Photon. 1, 011301 (2016).
[Crossref]

Schlottmann, E.

E. Schlottmann, M. V. Helversen, M. Schmidt, M. López, F. Gericke, T. Heindel, S. Kück, S. Reitzenstein, and J. Beyer, “Exploring the photon-number distribution of bimodal microlasers with a transition edge sensor,” Phys. Rev. Appl. 9, 064030 (2018).
[Crossref]

E. Schlottmann, S. Holzinger, B. Lingnau, K. Lüdge, C. Schneider, M. Kamp, S. Höfling, J. Wolters, and S. Reitzenstein, “Injection locking of quantum-dot microlasers operating in the few-photon regime,” Phys. Rev. Appl. 6, 044023 (2016).
[Crossref]

C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Höfling, J. Wolters, S. Reitzenstein, and K. Lüdge, “Mode-switching induced super-thermal bunching in quantum-dot microlasers,” New J. Phys. 18, 063011 (2016).
[Crossref]

Schmidt, M.

E. Schlottmann, M. V. Helversen, M. Schmidt, M. López, F. Gericke, T. Heindel, S. Kück, S. Reitzenstein, and J. Beyer, “Exploring the photon-number distribution of bimodal microlasers with a transition edge sensor,” Phys. Rev. Appl. 9, 064030 (2018).
[Crossref]

Schneider, C.

P. Munnelly, B. Lingnau, M. M. Karow, T. Heindel, M. Kamp, S. Höfling, K. Lüdge, C. Schneider, and S. Reitzenstein, “On-chip optoelectronic feedback in a micropillar laser-detector assembly,” Optica 4, 303 (2017).
[Crossref]

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6, e17030 (2017).
[Crossref]

C. Gies, F. Gericke, P. Gartner, S. Holzinger, C. Hopfmann, T. Heindel, J. Wolters, C. Schneider, M. Florian, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Strong light-matter coupling in the presence of lasing,” Phys. Rev. A 96, 023806 (2017).
[Crossref]

A. Schlehahn, A. Thoma, P. Munnelly, M. Kamp, S. Höfling, T. Heindel, C. Schneider, and S. Reitzenstein, “An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency,” APL Photon. 1, 011301 (2016).
[Crossref]

E. Schlottmann, S. Holzinger, B. Lingnau, K. Lüdge, C. Schneider, M. Kamp, S. Höfling, J. Wolters, and S. Reitzenstein, “Injection locking of quantum-dot microlasers operating in the few-photon regime,” Phys. Rev. Appl. 6, 044023 (2016).
[Crossref]

C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Höfling, J. Wolters, S. Reitzenstein, and K. Lüdge, “Mode-switching induced super-thermal bunching in quantum-dot microlasers,” New J. Phys. 18, 063011 (2016).
[Crossref]

C. Hopfmann, F. Albert, C. Schneider, S. Höfling, M. Kamp, A. Forchel, I. Kanter, and S. Reitzenstein, “Nonlinear emission characteristics of quantum-dot micropillar lasers in the presence of polarized optical feedback,” New J. Phys. 15, 025030 (2013).
[Crossref]

F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, and I. Kanter, “Observing chaos for quantum-dot microlasers with external feedback,” Nat. Commun. 2, 366 (2011).
[Crossref] [PubMed]

S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett. 93, 061104 (2008).
[Crossref]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Schöll, E.

E. Schöll, A. G. Balanov, N. B. Janson, and A. Neiman, “Controlling stochastic oscillations close to a Hopf bifurcation by time-delayed feedback,” Stoch. Dyn. 05, 281 (2007).
[Crossref]

Schulze, F.

S. M. Hein, F. Schulze, A. Carmele, and A. Knorr, “Optical feedback-enhanced photon entanglement from a biexciton cascade,” Phys. Rev. Lett. 113, 1–5 (2014).
[Crossref]

A. Carmele, J. Kabuss, F. Schulze, S. Reitzenstein, and A. Knorr, “Single photon delayed feedback: A way to stabilize intrinsic quantum cavity electrodynamics,” Phys. Rev. Lett. 110, 013601 (2013).
[Crossref] [PubMed]

Schurig, T.

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use SQUID sensors,” IEEE Trans. Appl. Supercond. 17, 699–704 (2007).
[Crossref]

Sciamanna, M.

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9, 151–162 (2015).
[Crossref]

M. Virte, K. Panajotov, H. Thienpont, and M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics 7, 1–6 (2012).

Sek, G.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Senellart, P.

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[Crossref] [PubMed]

Sermage, B.

J. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81 (5), 1110–1113 (1998).
[Crossref]

Shinya, A.

Shore, K. A.

Z. Abdul Sattar, N. Ali Kamel, and K. A. Shore, “Optical injection effects in nanolasers,” IEEE J. Quantum Electron. 52, 1–8 (2016).

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9, 151–162 (2015).
[Crossref]

Simic, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref] [PubMed]

Slutsky, B.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref] [PubMed]

Solomon, G. S.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref] [PubMed]

Soriano, M.

M. Soriano, J. García-Ojalvo, C. Mirasso, and I. Fischer, “Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys. 85, 421–470 (2013).
[Crossref]

Soriano, M. C.

X. Porte, M. C. Soriano, D. Brunner, and I. Fischer, “Bidirectional private key exchange using delay-coupled semiconductor lasers,” Opt. Lett. 41, 2871 (2016).
[Crossref] [PubMed]

D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer, “Parallel photonic information processing at gigabyte per second data rates using transient states,” Nat. Commun. 4, 1364 (2013).
[Crossref] [PubMed]

Stoffel, N. G.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. V. Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[Crossref]

Strauf, S.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref] [PubMed]

Strauß, M.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Suffczynski, J.

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[Crossref] [PubMed]

Sumikura, H.

Taboada, A. G.

Takeda, K.

Takiguchi, M.

Taniyama, H.

Thienpont, H.

M. Virte, K. Panajotov, H. Thienpont, and M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics 7, 1–6 (2012).

Thierry-Mieg, V.

J. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81 (5), 1110–1113 (1998).
[Crossref]

Thoma, A.

A. Schlehahn, A. Thoma, P. Munnelly, M. Kamp, S. Höfling, T. Heindel, C. Schneider, and S. Reitzenstein, “An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency,” APL Photon. 1, 011301 (2016).
[Crossref]

Twiss, R. Q.

R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 49, 27 (1956).
[Crossref]

Ulrich, S. M.

S. Ates, S. M. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett. 103, 167402 (2009).
[Crossref] [PubMed]

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[Crossref] [PubMed]

Virte, M.

M. Virte, K. Panajotov, H. Thienpont, and M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics 7, 1–6 (2012).

Voisin, P.

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[Crossref] [PubMed]

Vuckovic, J.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref] [PubMed]

Watanabe, K.

Wiersig, J.

C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, “Semiconductor model for quantum-dot-based microcavity lasers,” Phys. Rev. A 75, 013803 (2007).
[Crossref]

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[Crossref] [PubMed]

Wolters, J.

C. Gies, F. Gericke, P. Gartner, S. Holzinger, C. Hopfmann, T. Heindel, J. Wolters, C. Schneider, M. Florian, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Strong light-matter coupling in the presence of lasing,” Phys. Rev. A 96, 023806 (2017).
[Crossref]

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6, e17030 (2017).
[Crossref]

C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Höfling, J. Wolters, S. Reitzenstein, and K. Lüdge, “Mode-switching induced super-thermal bunching in quantum-dot microlasers,” New J. Phys. 18, 063011 (2016).
[Crossref]

E. Schlottmann, S. Holzinger, B. Lingnau, K. Lüdge, C. Schneider, M. Kamp, S. Höfling, J. Wolters, and S. Reitzenstein, “Injection locking of quantum-dot microlasers operating in the few-photon regime,” Phys. Rev. Appl. 6, 044023 (2016).
[Crossref]

Won, Y. H.

Worschech, L.

F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, and I. Kanter, “Observing chaos for quantum-dot microlasers with external feedback,” Nat. Commun. 2, 366 (2011).
[Crossref] [PubMed]

Yacomotti, A. M.

M. Marconi, J. Javaloyes, P. Hamel, F. Raineri, A. Levenson, and A. M. Yacomotti, “Far-from-equilibrium route to superthermal light in bimodal nanolasers,” Phys. Rev. X 8, 011013 (2018).

Yamamoto, Y.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref] [PubMed]

Yoo, H.

APL Photon. (1)

A. Schlehahn, A. Thoma, P. Munnelly, M. Kamp, S. Höfling, T. Heindel, C. Schneider, and S. Reitzenstein, “An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency,” APL Photon. 1, 011301 (2016).
[Crossref]

Appl. Phys. Lett. (3)

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92, 091107 (2008).
[Crossref]

S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett. 93, 061104 (2008).
[Crossref]

IEEE J. Quantum Electron. (2)

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. V. Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[Crossref]

Z. Abdul Sattar, N. Ali Kamel, and K. A. Shore, “Optical injection effects in nanolasers,” IEEE J. Quantum Electron. 52, 1–8 (2016).

IEEE Trans. Appl. Supercond. (1)

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use SQUID sensors,” IEEE Trans. Appl. Supercond. 17, 699–704 (2007).
[Crossref]

J. Phys. D: Appl. Phys. (1)

S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D: Appl. Phys. 43, 033001 (2010).
[Crossref]

Light: Sci. Appl. (1)

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6, e17030 (2017).
[Crossref]

Nat. Commun. (2)

D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer, “Parallel photonic information processing at gigabyte per second data rates using transient states,” Nat. Commun. 4, 1364 (2013).
[Crossref] [PubMed]

F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, and I. Kanter, “Observing chaos for quantum-dot microlasers with external feedback,” Nat. Commun. 2, 366 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

M. Virte, K. Panajotov, H. Thienpont, and M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics 7, 1–6 (2012).

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9, 151–162 (2015).
[Crossref]

Nature (5)

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref] [PubMed]

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[Crossref] [PubMed]

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref] [PubMed]

R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 49, 27 (1956).
[Crossref]

New J. Phys. (2)

C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Höfling, J. Wolters, S. Reitzenstein, and K. Lüdge, “Mode-switching induced super-thermal bunching in quantum-dot microlasers,” New J. Phys. 18, 063011 (2016).
[Crossref]

C. Hopfmann, F. Albert, C. Schneider, S. Höfling, M. Kamp, A. Forchel, I. Kanter, and S. Reitzenstein, “Nonlinear emission characteristics of quantum-dot micropillar lasers in the presence of polarized optical feedback,” New J. Phys. 15, 025030 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Optica (2)

Phys. Rev. A (3)

C. Gies, F. Gericke, P. Gartner, S. Holzinger, C. Hopfmann, T. Heindel, J. Wolters, C. Schneider, M. Florian, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Strong light-matter coupling in the presence of lasing,” Phys. Rev. A 96, 023806 (2017).
[Crossref]

P. Rice and H. Carmichael, “Photon statistics of a cavity-QED laser: A comment on the laser phase-transition analogy,” Phys. Rev. A 50 (5), 4318–4329 (1994).
[Crossref] [PubMed]

C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, “Semiconductor model for quantum-dot-based microcavity lasers,” Phys. Rev. A 75, 013803 (2007).
[Crossref]

Phys. Rev. Appl. (2)

E. Schlottmann, M. V. Helversen, M. Schmidt, M. López, F. Gericke, T. Heindel, S. Kück, S. Reitzenstein, and J. Beyer, “Exploring the photon-number distribution of bimodal microlasers with a transition edge sensor,” Phys. Rev. Appl. 9, 064030 (2018).
[Crossref]

E. Schlottmann, S. Holzinger, B. Lingnau, K. Lüdge, C. Schneider, M. Kamp, S. Höfling, J. Wolters, and S. Reitzenstein, “Injection locking of quantum-dot microlasers operating in the few-photon regime,” Phys. Rev. Appl. 6, 044023 (2016).
[Crossref]

Phys. Rev. Lett. (7)

A. Carmele, J. Kabuss, F. Schulze, S. Reitzenstein, and A. Knorr, “Single photon delayed feedback: A way to stabilize intrinsic quantum cavity electrodynamics,” Phys. Rev. Lett. 110, 013601 (2013).
[Crossref] [PubMed]

S. M. Hein, F. Schulze, A. Carmele, and A. Knorr, “Optical feedback-enhanced photon entanglement from a biexciton cascade,” Phys. Rev. Lett. 113, 1–5 (2014).
[Crossref]

S. Ates, S. M. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett. 103, 167402 (2009).
[Crossref] [PubMed]

I. Reidler, Y. Aviad, M. Rosenblum, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103, 024102 (2009).
[Crossref] [PubMed]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref] [PubMed]

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[Crossref] [PubMed]

J. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81 (5), 1110–1113 (1998).
[Crossref]

Phys. Rev. X (1)

M. Marconi, J. Javaloyes, P. Hamel, F. Raineri, A. Levenson, and A. M. Yacomotti, “Far-from-equilibrium route to superthermal light in bimodal nanolasers,” Phys. Rev. X 8, 011013 (2018).

Rev. Mod. Phys. (1)

M. Soriano, J. García-Ojalvo, C. Mirasso, and I. Fischer, “Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys. 85, 421–470 (2013).
[Crossref]

Stoch. Dyn. (1)

E. Schöll, A. G. Balanov, N. B. Janson, and A. Neiman, “Controlling stochastic oscillations close to a Hopf bifurcation by time-delayed feedback,” Stoch. Dyn. 05, 281 (2007).
[Crossref]

Other (2)

R. Michalzik (ed.), VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers (Springer-Verlag, 2013). https://doi.org/10.1007/978-3-642-24986-0 .
[Crossref]

M. Schmidt, M. V. Helversen, M. López, F. Gericke, E. Schlottmann, T. Heindel, S. Kück, S. Reitzenstein, and J. Beyer, “Photon-number-resolving transition-edge sensors for the metrology of quantum light sources,” J. Low Temp. Phys. (2018). https://doi.org/10.1007/s10909-018-1932-1 .
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Sketch of the micro-photoluminescence (μPL) setup used for our measurements. The micropillar is kept at cryogenic temperatures (T ∼ 5 – 40 K) inside a He-flow cryostat. The spectral properties are measured with a grating spectrometer equipped with a CCD camera, or alternatively with a high-resolution Fabry-Perot interferometer (FPI). The dynamical signatures and the photon statistics are characterized via single-photon counting modules (SPCMs) (in different configurations depending on the measurement) and via a photon-number resolving transition-edge sensor (TES) detector.
Fig. 2
Fig. 2 Input-output characteristics of the micropillar laser with and without feedback (FB). Experimentally measured data points are indicated by symbols whereas numerical simulations are shown as solid lines. The lasing threshold current (Ith) is indicated by a dashed line and the intensity crossing points without and with FB (Ix and I x FB respectively) are indicated by dashed-dotted lines.
Fig. 3
Fig. 3 Measured and simulated pump dependence of the second-order autocorrelation function (a) and correlation time scales (b,c). For comparison with τcorr, we show in panels (b) and (c) the measured coherence times τcoh (colored dashed lines). The vertical dotted and dash-dotted lines indicate the threshold and intensity crossing currents respectively [Fig. 2].
Fig. 4
Fig. 4 Measured optical spectra (left panels) and corresponding g(2)(τ) (right panels) for both solitary and feedback scenarios. The optical spectra have been recorded using the FPI with 75 MHz frequency resolution. The pump current condition is I x FB for panels (a)–(d) and Ix for panels (e)–(h).
Fig. 5
Fig. 5 Cross-correlation of strong and weak modes g SM WM ( 2 ) ( τ ). Panel (a) depicts the measured g SM WM ( 2 ) for different pump currents without feedback (black) and with feedback (red). Panel (b) shows measured and simulated data for g SM WM ( 2 ) at τ = 0 as a function of the pump current. Numerical simulations and experimental data are plotted in solid lines and points respectively.
Fig. 6
Fig. 6 Statistics and bistability of the input-output characteristics. Panels (a) and (c) are depicting the strong mode without and with feedback, respectively, while (b) and (d) show the emission of the weak mode. Vertical blue dashed lines indicate the currents where the photon-number distribution is measured with the TES detector [Fig. 7].
Fig. 7
Fig. 7 Photon statistics. Bars in the histogram represent experimental data recorded with the TES, while solid lines are vertical slices of the simulated stochastic data shown in Fig. 6. The latter are referenced with the top axis representing the intracavity photon number and are rescaled for better comparison. Panels (a) and (b) depict the photon-number distribution for I = 6.0 μA for the strong mode (a) and for the weak mode (b), respectively. Same for panels (c) and (d) but for a higher pump of I = 8.6 μA.

Tables (1)

Tables Icon

Table 1 Table of additional parameters used for the simulations if not stated otherwise in the main text.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d d t E j ( t ) = 1 2 h ν 0 0 b g 2 Z Q D V g j ( 1 + i α ) [ 2 ρ ( t ) 1 ] E j ( t ) κ j ( E j ( t ) K j E j ( t τ FB ) ) + h ν 0 0 b g 2 Z Q D V β ρ τ sp ξ ( t )
d d t ρ ( t ) = j { s w } g j [ 2 ρ ( t ) 1 ] | E j ( t ) | 2 ρ ( t ) τ sp + S in n r ( t ) [ 1 ρ ( t ) ]
d d t n r ( t ) = η e 0 A ( I I p ) S in n r ( t ) 2 Z Q D A [ 1 ρ ( t ) ] S in 2 Z i n a c A ρ i n a c τ sp n r ( t ) τ r
with g j = | μ j | 2 T 2 2 2 ( 1 + ε j s ε ˜ | E s ( t ) | 2 + ε j w ε ˜ | E w ( t ) | 2 ) 1

Metrics