Abstract

Stereo phase unwrapping (SPU) has been increasingly applied to high-speed real-time fringe projection profilometry (FPP) because it can retrieve the absolute phase or matching points in a stereo FPP system without projecting or acquiring additional fringe patterns. Based on a pre-defined measurement volume, artificial maximum/minimum phase maps can be created solely using geometric constraints of the FPP system, permitting phase unwrapping on a pixel-by-pixel basis. However, when high-frequency fringes are used, the phase ambiguities will increase which makes SPU unreliable. Several auxiliary techniques have been proposed to enhance the robustness of SPU, but their flexibility still needs to be improved. In this paper, we proposed an adaptive depth constraint (ADC) approach for high-speed real-time 3D shape measurement, where the measurement depth volume for geometric constraints is adaptively updated according to the current reconstructed geometry. By utilizing the spatio-temporal correlation of moving objects under measurement, a customized and tighter depth constraint can be defined, which helps enhance the robustness of SPU over a large measurement volume. Besides, two complementary techniques, including simplified left-right consistency check and feedback mechanism based on valid area, are introduced to further increase the robustness and flexibility of the ADC. Experimental results demonstrate the success of our proposed SPU approach in recovering absolute 3D geometries of both simple and complicated objects with only three phase-shifted fringe images.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Motion-artifact-free dynamic 3D shape measurement with hybrid Fourier-transform phase-shifting profilometry

Jiaming Qian, Tianyang Tao, Shijie Feng, Qian Chen, and Chao Zuo
Opt. Express 27(3) 2713-2731 (2019)

High-speed 3D shape measurement using the optimized composite fringe patterns and stereo-assisted structured light system

Wei Yin, Shijie Feng, Tianyang Tao, Lei Huang, Maciej Trusiak, Qian Chen, and Chao Zuo
Opt. Express 27(3) 2411-2431 (2019)

Real-time 3-D shape measurement with composite phase-shifting fringes and multi-view system

Tianyang Tao, Qian Chen, Jian Da, Shijie Feng, Yan Hu, and Chao Zuo
Opt. Express 24(18) 20253-20269 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43(8), 2666–2680 (2010).
    [Crossref]
  2. J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics 3(2), 128–160 (2011).
    [Crossref]
  3. S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Laser Eng. 48, 133–140 (2010).
    [Crossref]
  4. X. Su and Q. Zhang, “Dynamic 3-D shape measurement method: a review,” Opt. Laser Eng. 48(2), 191–204 (2010).
    [Crossref]
  5. C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, “Phase shifting algorithms for fringe projection profilometry: A review,” Opt. Laser Eng. 109, 23–59 (2018).
    [Crossref]
  6. S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Laser Eng. 48(2), 149–158 (2010).
    [Crossref]
  7. Z. Zhang, “Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques,” Opt. Laser Eng. 50(8), 1097–1106 (2012).
    [Crossref]
  8. S. V. Jeught and J. J. J. Dirckx, “Real-time structured light profilometry: a review,” Opt. Laser Eng. 87, 18–31 (2016).
    [Crossref]
  9. M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt. 22(24), 3977–3982 (1983).
    [Crossref] [PubMed]
  10. Q. Zhang and X. Su, “High-speed optical measurement for the drumhead vibration,” Opt. Express 13(8), 3110–3116 (2005).
    [Crossref] [PubMed]
  11. V. Srinivasan, H. C. Liu, and M. Halioua, “Automated phase-measuring profilometry of 3-D diffuse objects,” Appl. Opt. 23(18), 3105–3108 (1984).
    [Crossref] [PubMed]
  12. S. Lei and S. Zhang, “Flexible 3-D shape measurement using projector defocusing,” Opt. Lett. 34(20), 3080–3082 (2009).
    [Crossref] [PubMed]
  13. S. Zhang, D. Van. Der. Weide, and J. Oliver, “Superfast phase-shifting method for 3-D shape measurement,” Opt. Express 18(9), 9684–9689 (2010).
    [Crossref] [PubMed]
  14. C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, “Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second,” Opt. Laser Eng. 102, 70–91 (2018).
    [Crossref]
  15. Y. Wang and S. Zhang, “Superfast multifrequency phase-shifting technique with optimal pulse width modulation,” Opt. Express 19(6), 5149–5155 (2011).
    [Crossref] [PubMed]
  16. C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51(8), 953–960 (2013).
    [Crossref]
  17. Y. Xu, L. Ekstrand, J. Dai, and S. Zhang, “Phase error compensation for three-dimensional shape measurement with projector defocusing,” Appl. Opt. 50(17), 2572–2581 (2011).
    [Crossref] [PubMed]
  18. H. Zhao, X. Diao, H. Jiang, and X. Li, “High-speed triangular pattern phase-shifting 3D measurement based on the motion blur method,” Opt. Express 25(8), 9171–9185 (2017).
    [Crossref] [PubMed]
  19. Y. Hu, Q. Chen, S. Feng, T. Tao, H. Li, and C. Zuo, “Real-time microscopic 3-D shape measurement based on optimized pulse-width-modulation binary fringe projection,” Mea Sci Technol 28(7), 075010 (2017).
    [Crossref]
  20. K. Liu, Y. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook, “Dual-frequency pattern scheme for high-speed 3-D shape measurement,” Opt. Express 18(5), 5229–5244 (2010).
    [Crossref] [PubMed]
  21. C. Zuo, Q. Chen, G. Gu, S. Feng, and F. Feng, “High-speed three-dimensional profilometry for multiple objects with complex shapes,” Opt. Express 20(17), 19493–19510 (2012).
    [Crossref] [PubMed]
  22. T. Weise, B. Leibe, and L. Van Gool, “Fast 3d scanning with automatic motion compensation,” 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007).
  23. L. Lu, J. Xi, Y. Yu, and Q. Guo, “Improving the accuracy performance of phase-shifting profilometry for the measurement of objects in motion,” Opt. Lett. 39(23), 6715–6718 (2014).
    [Crossref] [PubMed]
  24. S. Feng, C. Zuo, T. Tao, Y. Hu, M. Zhang, Q. Chen, and G. Gu, “Robust dynamic 3-D measurements with motion-compensated phase-shifting profilometry,” Opt. Laser Eng. 103, 127–138 (2018).
    [Crossref]
  25. P. Cong, Z. Xiong, Y. Zhang, S. Zhao, and F. Wu, “Accurate dynamic 3d sensing with fourier-assisted phase shifting,” IEEE J-STSP. 9(3), 396–408 (2015).
  26. Z. Liu, P. C. Zibley, and S. Zhang, “Motion-induced error compensation for phase shifting profilometry,” Opt. Express 26(10), 12632–12637 (2018).
    [Crossref] [PubMed]
  27. G. Sansoni, M. Carocci, and R. Rodella, “Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors,” Appl. Opt. 38(31), 6565–6573 (1999).
    [Crossref]
  28. C. E. Towers, D. P. Towers, and Z. Zhang, “Time efficient color fringe projection system for 3D shape and color using optimum 3-frequency Selection,” Opt. Express 14(14), 6444–6455 (2006).
    [Crossref] [PubMed]
  29. C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review,” Opt. Lasers Eng. 85, 84–103 (2016).
    [Crossref]
  30. R. R. Garcia and A. Zakhor, “Consistent stereo-assisted absolute phase unwrapping methods for structured light systems,” IEEE J. Sel. Top. Quant. 6(5), 411–424 (2012).
    [Crossref]
  31. Y. Zhang, Z. Xiong, and F. Wu, “Unambiguous 3D measurement from speckle-embedded fringe,” Appl. Opt. 52(32), 7797–7805 (2013).
    [Crossref] [PubMed]
  32. W. Lohry and S. Zhang, “High-speed absolute three-dimensional shape measurement using three binary dithered patterns,” Opt. Express 22(22), 26752–26762 (2014).
    [Crossref] [PubMed]
  33. C. Bräuer-Burchardt, C. Munkelt, M. Heinze, P. Kühmstedt, and G. Notni, “Using geometric constraints to solve the point correspondence problem in fringe projection based 3D measuring systems,” International Conference on Image Analysis and Processing, pp. 265–274 (2011).
  34. Z. Li, K. Zhong, Y. Li, X. Zhou, and Y. Shi, “Multiview phase shifting: a full-resolution and high-speed 3D measurement framework for arbitrary shape dynamic objects,” Opt. Lett. 38(9), 1389–1391 (2013).
    [Crossref] [PubMed]
  35. T. Tao, Q. Chen, J. Da, S. Feng, Y. Hu, and C. Zuo, “Real-time 3-D shape measurement with composite phase-shifting fringes and multi-view system,” Opt. Express 24(18), 20253–20269 (2016).
    [Crossref] [PubMed]
  36. X. Liu and J. Kofman, “High-frequency background modulation fringe patterns based on a fringe-wavelength geometry-constraint model for 3d surface-shape measurement,” Opt. Express 25(14), 16618–16628 (2017).
    [Crossref] [PubMed]
  37. K. Song, S. Hu, X. Wen, and Y Yan, “Fast 3D shape measurement using fourier transform profilometry without phase unwrapping,” Opt. Lasers Eng 84, 74–81 (2016).
    [Crossref]
  38. Y. An, J. S. Hyun, and S. Zhang, “Pixel-wise absolute phase unwrapping using geometric constraints of structured light system,” Opt. Express 24(16), 18445–18459 (2016).
    [Crossref] [PubMed]
  39. X. Liu and J. Kofman, “Background and amplitude encoded fringe patterns for 3D surface-shape measurement,” Opt. Lasers Eng 94, 63–69 (2017).
    [Crossref]
  40. Y. Xing and C. Quan, “Reference-plane-based fast pixel-by-pixel absolute phase retrieval for height measurement,” Appl. Opt. 57(17), 4901–4908 (2018).
    [Crossref]
  41. A. Breitbarth, E. Müller, P. Kühmstedt, G. Notni, and J. Denzler, “Phase unwrapping of fringe images for dynamic 3D measurements without additional pattern projection,” SPIE Sensing Technology+ Applications, pp. 948903 (2015).
  42. T. Tao, Q. Chen, S. Feng, Y. Hu, M. Zhang, and C. Zuo, “High-precision real-time 3D shape measurement based on a quad-camera system,” J. Opt. 20(1), 014009 (2017).
    [Crossref]

2018 (5)

C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, “Phase shifting algorithms for fringe projection profilometry: A review,” Opt. Laser Eng. 109, 23–59 (2018).
[Crossref]

C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, “Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second,” Opt. Laser Eng. 102, 70–91 (2018).
[Crossref]

S. Feng, C. Zuo, T. Tao, Y. Hu, M. Zhang, Q. Chen, and G. Gu, “Robust dynamic 3-D measurements with motion-compensated phase-shifting profilometry,” Opt. Laser Eng. 103, 127–138 (2018).
[Crossref]

Z. Liu, P. C. Zibley, and S. Zhang, “Motion-induced error compensation for phase shifting profilometry,” Opt. Express 26(10), 12632–12637 (2018).
[Crossref] [PubMed]

Y. Xing and C. Quan, “Reference-plane-based fast pixel-by-pixel absolute phase retrieval for height measurement,” Appl. Opt. 57(17), 4901–4908 (2018).
[Crossref]

2017 (5)

H. Zhao, X. Diao, H. Jiang, and X. Li, “High-speed triangular pattern phase-shifting 3D measurement based on the motion blur method,” Opt. Express 25(8), 9171–9185 (2017).
[Crossref] [PubMed]

X. Liu and J. Kofman, “High-frequency background modulation fringe patterns based on a fringe-wavelength geometry-constraint model for 3d surface-shape measurement,” Opt. Express 25(14), 16618–16628 (2017).
[Crossref] [PubMed]

X. Liu and J. Kofman, “Background and amplitude encoded fringe patterns for 3D surface-shape measurement,” Opt. Lasers Eng 94, 63–69 (2017).
[Crossref]

T. Tao, Q. Chen, S. Feng, Y. Hu, M. Zhang, and C. Zuo, “High-precision real-time 3D shape measurement based on a quad-camera system,” J. Opt. 20(1), 014009 (2017).
[Crossref]

Y. Hu, Q. Chen, S. Feng, T. Tao, H. Li, and C. Zuo, “Real-time microscopic 3-D shape measurement based on optimized pulse-width-modulation binary fringe projection,” Mea Sci Technol 28(7), 075010 (2017).
[Crossref]

2016 (5)

S. V. Jeught and J. J. J. Dirckx, “Real-time structured light profilometry: a review,” Opt. Laser Eng. 87, 18–31 (2016).
[Crossref]

K. Song, S. Hu, X. Wen, and Y Yan, “Fast 3D shape measurement using fourier transform profilometry without phase unwrapping,” Opt. Lasers Eng 84, 74–81 (2016).
[Crossref]

C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review,” Opt. Lasers Eng. 85, 84–103 (2016).
[Crossref]

Y. An, J. S. Hyun, and S. Zhang, “Pixel-wise absolute phase unwrapping using geometric constraints of structured light system,” Opt. Express 24(16), 18445–18459 (2016).
[Crossref] [PubMed]

T. Tao, Q. Chen, J. Da, S. Feng, Y. Hu, and C. Zuo, “Real-time 3-D shape measurement with composite phase-shifting fringes and multi-view system,” Opt. Express 24(18), 20253–20269 (2016).
[Crossref] [PubMed]

2015 (1)

P. Cong, Z. Xiong, Y. Zhang, S. Zhao, and F. Wu, “Accurate dynamic 3d sensing with fourier-assisted phase shifting,” IEEE J-STSP. 9(3), 396–408 (2015).

2014 (2)

2013 (3)

2012 (3)

Z. Zhang, “Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques,” Opt. Laser Eng. 50(8), 1097–1106 (2012).
[Crossref]

R. R. Garcia and A. Zakhor, “Consistent stereo-assisted absolute phase unwrapping methods for structured light systems,” IEEE J. Sel. Top. Quant. 6(5), 411–424 (2012).
[Crossref]

C. Zuo, Q. Chen, G. Gu, S. Feng, and F. Feng, “High-speed three-dimensional profilometry for multiple objects with complex shapes,” Opt. Express 20(17), 19493–19510 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (6)

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Laser Eng. 48, 133–140 (2010).
[Crossref]

X. Su and Q. Zhang, “Dynamic 3-D shape measurement method: a review,” Opt. Laser Eng. 48(2), 191–204 (2010).
[Crossref]

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Laser Eng. 48(2), 149–158 (2010).
[Crossref]

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43(8), 2666–2680 (2010).
[Crossref]

K. Liu, Y. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook, “Dual-frequency pattern scheme for high-speed 3-D shape measurement,” Opt. Express 18(5), 5229–5244 (2010).
[Crossref] [PubMed]

S. Zhang, D. Van. Der. Weide, and J. Oliver, “Superfast phase-shifting method for 3-D shape measurement,” Opt. Express 18(9), 9684–9689 (2010).
[Crossref] [PubMed]

2009 (1)

2006 (1)

2005 (1)

1999 (1)

1984 (1)

1983 (1)

An, Y.

Asundi, A.

C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, “Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second,” Opt. Laser Eng. 102, 70–91 (2018).
[Crossref]

C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review,” Opt. Lasers Eng. 85, 84–103 (2016).
[Crossref]

Bräuer-Burchardt, C.

C. Bräuer-Burchardt, C. Munkelt, M. Heinze, P. Kühmstedt, and G. Notni, “Using geometric constraints to solve the point correspondence problem in fringe projection based 3D measuring systems,” International Conference on Image Analysis and Processing, pp. 265–274 (2011).

Breitbarth, A.

A. Breitbarth, E. Müller, P. Kühmstedt, G. Notni, and J. Denzler, “Phase unwrapping of fringe images for dynamic 3D measurements without additional pattern projection,” SPIE Sensing Technology+ Applications, pp. 948903 (2015).

Carocci, M.

Chen, Q.

S. Feng, C. Zuo, T. Tao, Y. Hu, M. Zhang, Q. Chen, and G. Gu, “Robust dynamic 3-D measurements with motion-compensated phase-shifting profilometry,” Opt. Laser Eng. 103, 127–138 (2018).
[Crossref]

C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, “Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second,” Opt. Laser Eng. 102, 70–91 (2018).
[Crossref]

C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, “Phase shifting algorithms for fringe projection profilometry: A review,” Opt. Laser Eng. 109, 23–59 (2018).
[Crossref]

Y. Hu, Q. Chen, S. Feng, T. Tao, H. Li, and C. Zuo, “Real-time microscopic 3-D shape measurement based on optimized pulse-width-modulation binary fringe projection,” Mea Sci Technol 28(7), 075010 (2017).
[Crossref]

T. Tao, Q. Chen, S. Feng, Y. Hu, M. Zhang, and C. Zuo, “High-precision real-time 3D shape measurement based on a quad-camera system,” J. Opt. 20(1), 014009 (2017).
[Crossref]

T. Tao, Q. Chen, J. Da, S. Feng, Y. Hu, and C. Zuo, “Real-time 3-D shape measurement with composite phase-shifting fringes and multi-view system,” Opt. Express 24(18), 20253–20269 (2016).
[Crossref] [PubMed]

C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review,” Opt. Lasers Eng. 85, 84–103 (2016).
[Crossref]

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51(8), 953–960 (2013).
[Crossref]

C. Zuo, Q. Chen, G. Gu, S. Feng, and F. Feng, “High-speed three-dimensional profilometry for multiple objects with complex shapes,” Opt. Express 20(17), 19493–19510 (2012).
[Crossref] [PubMed]

Cong, P.

P. Cong, Z. Xiong, Y. Zhang, S. Zhao, and F. Wu, “Accurate dynamic 3d sensing with fourier-assisted phase shifting,” IEEE J-STSP. 9(3), 396–408 (2015).

Da, J.

Dai, J.

Denzler, J.

A. Breitbarth, E. Müller, P. Kühmstedt, G. Notni, and J. Denzler, “Phase unwrapping of fringe images for dynamic 3D measurements without additional pattern projection,” SPIE Sensing Technology+ Applications, pp. 948903 (2015).

Diao, X.

Dirckx, J. J. J.

S. V. Jeught and J. J. J. Dirckx, “Real-time structured light profilometry: a review,” Opt. Laser Eng. 87, 18–31 (2016).
[Crossref]

Ekstrand, L.

Feng, F.

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51(8), 953–960 (2013).
[Crossref]

C. Zuo, Q. Chen, G. Gu, S. Feng, and F. Feng, “High-speed three-dimensional profilometry for multiple objects with complex shapes,” Opt. Express 20(17), 19493–19510 (2012).
[Crossref] [PubMed]

Feng, S.

S. Feng, C. Zuo, T. Tao, Y. Hu, M. Zhang, Q. Chen, and G. Gu, “Robust dynamic 3-D measurements with motion-compensated phase-shifting profilometry,” Opt. Laser Eng. 103, 127–138 (2018).
[Crossref]

C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, “Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second,” Opt. Laser Eng. 102, 70–91 (2018).
[Crossref]

C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, “Phase shifting algorithms for fringe projection profilometry: A review,” Opt. Laser Eng. 109, 23–59 (2018).
[Crossref]

Y. Hu, Q. Chen, S. Feng, T. Tao, H. Li, and C. Zuo, “Real-time microscopic 3-D shape measurement based on optimized pulse-width-modulation binary fringe projection,” Mea Sci Technol 28(7), 075010 (2017).
[Crossref]

T. Tao, Q. Chen, S. Feng, Y. Hu, M. Zhang, and C. Zuo, “High-precision real-time 3D shape measurement based on a quad-camera system,” J. Opt. 20(1), 014009 (2017).
[Crossref]

T. Tao, Q. Chen, J. Da, S. Feng, Y. Hu, and C. Zuo, “Real-time 3-D shape measurement with composite phase-shifting fringes and multi-view system,” Opt. Express 24(18), 20253–20269 (2016).
[Crossref] [PubMed]

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51(8), 953–960 (2013).
[Crossref]

C. Zuo, Q. Chen, G. Gu, S. Feng, and F. Feng, “High-speed three-dimensional profilometry for multiple objects with complex shapes,” Opt. Express 20(17), 19493–19510 (2012).
[Crossref] [PubMed]

Fernandez, S.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43(8), 2666–2680 (2010).
[Crossref]

Garcia, R. R.

R. R. Garcia and A. Zakhor, “Consistent stereo-assisted absolute phase unwrapping methods for structured light systems,” IEEE J. Sel. Top. Quant. 6(5), 411–424 (2012).
[Crossref]

Geng, J.

J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics 3(2), 128–160 (2011).
[Crossref]

Gorthi, S. S.

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Laser Eng. 48, 133–140 (2010).
[Crossref]

Gu, G.

S. Feng, C. Zuo, T. Tao, Y. Hu, M. Zhang, Q. Chen, and G. Gu, “Robust dynamic 3-D measurements with motion-compensated phase-shifting profilometry,” Opt. Laser Eng. 103, 127–138 (2018).
[Crossref]

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51(8), 953–960 (2013).
[Crossref]

C. Zuo, Q. Chen, G. Gu, S. Feng, and F. Feng, “High-speed three-dimensional profilometry for multiple objects with complex shapes,” Opt. Express 20(17), 19493–19510 (2012).
[Crossref] [PubMed]

Guo, Q.

Halioua, M.

Hao, Q.

Hassebrook, L. G.

Heinze, M.

C. Bräuer-Burchardt, C. Munkelt, M. Heinze, P. Kühmstedt, and G. Notni, “Using geometric constraints to solve the point correspondence problem in fringe projection based 3D measuring systems,” International Conference on Image Analysis and Processing, pp. 265–274 (2011).

Hu, S.

K. Song, S. Hu, X. Wen, and Y Yan, “Fast 3D shape measurement using fourier transform profilometry without phase unwrapping,” Opt. Lasers Eng 84, 74–81 (2016).
[Crossref]

Hu, Y.

S. Feng, C. Zuo, T. Tao, Y. Hu, M. Zhang, Q. Chen, and G. Gu, “Robust dynamic 3-D measurements with motion-compensated phase-shifting profilometry,” Opt. Laser Eng. 103, 127–138 (2018).
[Crossref]

Y. Hu, Q. Chen, S. Feng, T. Tao, H. Li, and C. Zuo, “Real-time microscopic 3-D shape measurement based on optimized pulse-width-modulation binary fringe projection,” Mea Sci Technol 28(7), 075010 (2017).
[Crossref]

T. Tao, Q. Chen, S. Feng, Y. Hu, M. Zhang, and C. Zuo, “High-precision real-time 3D shape measurement based on a quad-camera system,” J. Opt. 20(1), 014009 (2017).
[Crossref]

T. Tao, Q. Chen, J. Da, S. Feng, Y. Hu, and C. Zuo, “Real-time 3-D shape measurement with composite phase-shifting fringes and multi-view system,” Opt. Express 24(18), 20253–20269 (2016).
[Crossref] [PubMed]

Huang, L.

C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, “Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second,” Opt. Laser Eng. 102, 70–91 (2018).
[Crossref]

C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, “Phase shifting algorithms for fringe projection profilometry: A review,” Opt. Laser Eng. 109, 23–59 (2018).
[Crossref]

C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review,” Opt. Lasers Eng. 85, 84–103 (2016).
[Crossref]

Hyun, J. S.

Jeught, S. V.

S. V. Jeught and J. J. J. Dirckx, “Real-time structured light profilometry: a review,” Opt. Laser Eng. 87, 18–31 (2016).
[Crossref]

Jiang, H.

Kofman, J.

Kühmstedt, P.

A. Breitbarth, E. Müller, P. Kühmstedt, G. Notni, and J. Denzler, “Phase unwrapping of fringe images for dynamic 3D measurements without additional pattern projection,” SPIE Sensing Technology+ Applications, pp. 948903 (2015).

C. Bräuer-Burchardt, C. Munkelt, M. Heinze, P. Kühmstedt, and G. Notni, “Using geometric constraints to solve the point correspondence problem in fringe projection based 3D measuring systems,” International Conference on Image Analysis and Processing, pp. 265–274 (2011).

Lau, D. L.

Lei, S.

Leibe, B.

T. Weise, B. Leibe, and L. Van Gool, “Fast 3d scanning with automatic motion compensation,” 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007).

Li, H.

Y. Hu, Q. Chen, S. Feng, T. Tao, H. Li, and C. Zuo, “Real-time microscopic 3-D shape measurement based on optimized pulse-width-modulation binary fringe projection,” Mea Sci Technol 28(7), 075010 (2017).
[Crossref]

Li, R.

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51(8), 953–960 (2013).
[Crossref]

Li, X.

Li, Y.

Li, Z.

Liu, H. C.

Liu, K.

Liu, X.

Liu, Z.

Llado, X.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43(8), 2666–2680 (2010).
[Crossref]

Lohry, W.

Lu, L.

Müller, E.

A. Breitbarth, E. Müller, P. Kühmstedt, G. Notni, and J. Denzler, “Phase unwrapping of fringe images for dynamic 3D measurements without additional pattern projection,” SPIE Sensing Technology+ Applications, pp. 948903 (2015).

Munkelt, C.

C. Bräuer-Burchardt, C. Munkelt, M. Heinze, P. Kühmstedt, and G. Notni, “Using geometric constraints to solve the point correspondence problem in fringe projection based 3D measuring systems,” International Conference on Image Analysis and Processing, pp. 265–274 (2011).

Mutoh, K.

Notni, G.

C. Bräuer-Burchardt, C. Munkelt, M. Heinze, P. Kühmstedt, and G. Notni, “Using geometric constraints to solve the point correspondence problem in fringe projection based 3D measuring systems,” International Conference on Image Analysis and Processing, pp. 265–274 (2011).

A. Breitbarth, E. Müller, P. Kühmstedt, G. Notni, and J. Denzler, “Phase unwrapping of fringe images for dynamic 3D measurements without additional pattern projection,” SPIE Sensing Technology+ Applications, pp. 948903 (2015).

Oliver, J.

Pribanic, T.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43(8), 2666–2680 (2010).
[Crossref]

Quan, C.

Rastogi, P.

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Laser Eng. 48, 133–140 (2010).
[Crossref]

Rodella, R.

Salvi, J.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43(8), 2666–2680 (2010).
[Crossref]

Sansoni, G.

Shen, G.

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51(8), 953–960 (2013).
[Crossref]

Shi, Y.

Song, K.

K. Song, S. Hu, X. Wen, and Y Yan, “Fast 3D shape measurement using fourier transform profilometry without phase unwrapping,” Opt. Lasers Eng 84, 74–81 (2016).
[Crossref]

Srinivasan, V.

Su, X.

X. Su and Q. Zhang, “Dynamic 3-D shape measurement method: a review,” Opt. Laser Eng. 48(2), 191–204 (2010).
[Crossref]

Q. Zhang and X. Su, “High-speed optical measurement for the drumhead vibration,” Opt. Express 13(8), 3110–3116 (2005).
[Crossref] [PubMed]

Takeda, M.

Tao, T.

C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, “Phase shifting algorithms for fringe projection profilometry: A review,” Opt. Laser Eng. 109, 23–59 (2018).
[Crossref]

C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, “Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second,” Opt. Laser Eng. 102, 70–91 (2018).
[Crossref]

S. Feng, C. Zuo, T. Tao, Y. Hu, M. Zhang, Q. Chen, and G. Gu, “Robust dynamic 3-D measurements with motion-compensated phase-shifting profilometry,” Opt. Laser Eng. 103, 127–138 (2018).
[Crossref]

Y. Hu, Q. Chen, S. Feng, T. Tao, H. Li, and C. Zuo, “Real-time microscopic 3-D shape measurement based on optimized pulse-width-modulation binary fringe projection,” Mea Sci Technol 28(7), 075010 (2017).
[Crossref]

T. Tao, Q. Chen, S. Feng, Y. Hu, M. Zhang, and C. Zuo, “High-precision real-time 3D shape measurement based on a quad-camera system,” J. Opt. 20(1), 014009 (2017).
[Crossref]

T. Tao, Q. Chen, J. Da, S. Feng, Y. Hu, and C. Zuo, “Real-time 3-D shape measurement with composite phase-shifting fringes and multi-view system,” Opt. Express 24(18), 20253–20269 (2016).
[Crossref] [PubMed]

Towers, C. E.

Towers, D. P.

Van Gool, L.

T. Weise, B. Leibe, and L. Van Gool, “Fast 3d scanning with automatic motion compensation,” 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007).

Van. Der. Weide, D.

Wang, Y.

Weise, T.

T. Weise, B. Leibe, and L. Van Gool, “Fast 3d scanning with automatic motion compensation,” 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007).

Wen, X.

K. Song, S. Hu, X. Wen, and Y Yan, “Fast 3D shape measurement using fourier transform profilometry without phase unwrapping,” Opt. Lasers Eng 84, 74–81 (2016).
[Crossref]

Wu, F.

P. Cong, Z. Xiong, Y. Zhang, S. Zhao, and F. Wu, “Accurate dynamic 3d sensing with fourier-assisted phase shifting,” IEEE J-STSP. 9(3), 396–408 (2015).

Y. Zhang, Z. Xiong, and F. Wu, “Unambiguous 3D measurement from speckle-embedded fringe,” Appl. Opt. 52(32), 7797–7805 (2013).
[Crossref] [PubMed]

Xi, J.

Xing, Y.

Xiong, Z.

P. Cong, Z. Xiong, Y. Zhang, S. Zhao, and F. Wu, “Accurate dynamic 3d sensing with fourier-assisted phase shifting,” IEEE J-STSP. 9(3), 396–408 (2015).

Y. Zhang, Z. Xiong, and F. Wu, “Unambiguous 3D measurement from speckle-embedded fringe,” Appl. Opt. 52(32), 7797–7805 (2013).
[Crossref] [PubMed]

Xu, Y.

Yan, Y

K. Song, S. Hu, X. Wen, and Y Yan, “Fast 3D shape measurement using fourier transform profilometry without phase unwrapping,” Opt. Lasers Eng 84, 74–81 (2016).
[Crossref]

Yin, W.

C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, “Phase shifting algorithms for fringe projection profilometry: A review,” Opt. Laser Eng. 109, 23–59 (2018).
[Crossref]

Yu, Y.

Zakhor, A.

R. R. Garcia and A. Zakhor, “Consistent stereo-assisted absolute phase unwrapping methods for structured light systems,” IEEE J. Sel. Top. Quant. 6(5), 411–424 (2012).
[Crossref]

Zhang, M.

S. Feng, C. Zuo, T. Tao, Y. Hu, M. Zhang, Q. Chen, and G. Gu, “Robust dynamic 3-D measurements with motion-compensated phase-shifting profilometry,” Opt. Laser Eng. 103, 127–138 (2018).
[Crossref]

T. Tao, Q. Chen, S. Feng, Y. Hu, M. Zhang, and C. Zuo, “High-precision real-time 3D shape measurement based on a quad-camera system,” J. Opt. 20(1), 014009 (2017).
[Crossref]

C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review,” Opt. Lasers Eng. 85, 84–103 (2016).
[Crossref]

Zhang, Q.

X. Su and Q. Zhang, “Dynamic 3-D shape measurement method: a review,” Opt. Laser Eng. 48(2), 191–204 (2010).
[Crossref]

Q. Zhang and X. Su, “High-speed optical measurement for the drumhead vibration,” Opt. Express 13(8), 3110–3116 (2005).
[Crossref] [PubMed]

Zhang, S.

Zhang, Y.

P. Cong, Z. Xiong, Y. Zhang, S. Zhao, and F. Wu, “Accurate dynamic 3d sensing with fourier-assisted phase shifting,” IEEE J-STSP. 9(3), 396–408 (2015).

Y. Zhang, Z. Xiong, and F. Wu, “Unambiguous 3D measurement from speckle-embedded fringe,” Appl. Opt. 52(32), 7797–7805 (2013).
[Crossref] [PubMed]

Zhang, Z.

Z. Zhang, “Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques,” Opt. Laser Eng. 50(8), 1097–1106 (2012).
[Crossref]

C. E. Towers, D. P. Towers, and Z. Zhang, “Time efficient color fringe projection system for 3D shape and color using optimum 3-frequency Selection,” Opt. Express 14(14), 6444–6455 (2006).
[Crossref] [PubMed]

Zhao, H.

Zhao, S.

P. Cong, Z. Xiong, Y. Zhang, S. Zhao, and F. Wu, “Accurate dynamic 3d sensing with fourier-assisted phase shifting,” IEEE J-STSP. 9(3), 396–408 (2015).

Zhong, K.

Zhou, X.

Zibley, P. C.

Zuo, C.

C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, “Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second,” Opt. Laser Eng. 102, 70–91 (2018).
[Crossref]

C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, “Phase shifting algorithms for fringe projection profilometry: A review,” Opt. Laser Eng. 109, 23–59 (2018).
[Crossref]

S. Feng, C. Zuo, T. Tao, Y. Hu, M. Zhang, Q. Chen, and G. Gu, “Robust dynamic 3-D measurements with motion-compensated phase-shifting profilometry,” Opt. Laser Eng. 103, 127–138 (2018).
[Crossref]

Y. Hu, Q. Chen, S. Feng, T. Tao, H. Li, and C. Zuo, “Real-time microscopic 3-D shape measurement based on optimized pulse-width-modulation binary fringe projection,” Mea Sci Technol 28(7), 075010 (2017).
[Crossref]

T. Tao, Q. Chen, S. Feng, Y. Hu, M. Zhang, and C. Zuo, “High-precision real-time 3D shape measurement based on a quad-camera system,” J. Opt. 20(1), 014009 (2017).
[Crossref]

T. Tao, Q. Chen, J. Da, S. Feng, Y. Hu, and C. Zuo, “Real-time 3-D shape measurement with composite phase-shifting fringes and multi-view system,” Opt. Express 24(18), 20253–20269 (2016).
[Crossref] [PubMed]

C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review,” Opt. Lasers Eng. 85, 84–103 (2016).
[Crossref]

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51(8), 953–960 (2013).
[Crossref]

C. Zuo, Q. Chen, G. Gu, S. Feng, and F. Feng, “High-speed three-dimensional profilometry for multiple objects with complex shapes,” Opt. Express 20(17), 19493–19510 (2012).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics 3(2), 128–160 (2011).
[Crossref]

Appl. Opt. (6)

IEEE J-STSP. (1)

P. Cong, Z. Xiong, Y. Zhang, S. Zhao, and F. Wu, “Accurate dynamic 3d sensing with fourier-assisted phase shifting,” IEEE J-STSP. 9(3), 396–408 (2015).

IEEE J. Sel. Top. Quant. (1)

R. R. Garcia and A. Zakhor, “Consistent stereo-assisted absolute phase unwrapping methods for structured light systems,” IEEE J. Sel. Top. Quant. 6(5), 411–424 (2012).
[Crossref]

J. Opt. (1)

T. Tao, Q. Chen, S. Feng, Y. Hu, M. Zhang, and C. Zuo, “High-precision real-time 3D shape measurement based on a quad-camera system,” J. Opt. 20(1), 014009 (2017).
[Crossref]

Mea Sci Technol (1)

Y. Hu, Q. Chen, S. Feng, T. Tao, H. Li, and C. Zuo, “Real-time microscopic 3-D shape measurement based on optimized pulse-width-modulation binary fringe projection,” Mea Sci Technol 28(7), 075010 (2017).
[Crossref]

Opt. Express (12)

W. Lohry and S. Zhang, “High-speed absolute three-dimensional shape measurement using three binary dithered patterns,” Opt. Express 22(22), 26752–26762 (2014).
[Crossref] [PubMed]

C. Zuo, Q. Chen, G. Gu, S. Feng, and F. Feng, “High-speed three-dimensional profilometry for multiple objects with complex shapes,” Opt. Express 20(17), 19493–19510 (2012).
[Crossref] [PubMed]

Y. An, J. S. Hyun, and S. Zhang, “Pixel-wise absolute phase unwrapping using geometric constraints of structured light system,” Opt. Express 24(16), 18445–18459 (2016).
[Crossref] [PubMed]

T. Tao, Q. Chen, J. Da, S. Feng, Y. Hu, and C. Zuo, “Real-time 3-D shape measurement with composite phase-shifting fringes and multi-view system,” Opt. Express 24(18), 20253–20269 (2016).
[Crossref] [PubMed]

H. Zhao, X. Diao, H. Jiang, and X. Li, “High-speed triangular pattern phase-shifting 3D measurement based on the motion blur method,” Opt. Express 25(8), 9171–9185 (2017).
[Crossref] [PubMed]

X. Liu and J. Kofman, “High-frequency background modulation fringe patterns based on a fringe-wavelength geometry-constraint model for 3d surface-shape measurement,” Opt. Express 25(14), 16618–16628 (2017).
[Crossref] [PubMed]

Z. Liu, P. C. Zibley, and S. Zhang, “Motion-induced error compensation for phase shifting profilometry,” Opt. Express 26(10), 12632–12637 (2018).
[Crossref] [PubMed]

Q. Zhang and X. Su, “High-speed optical measurement for the drumhead vibration,” Opt. Express 13(8), 3110–3116 (2005).
[Crossref] [PubMed]

C. E. Towers, D. P. Towers, and Z. Zhang, “Time efficient color fringe projection system for 3D shape and color using optimum 3-frequency Selection,” Opt. Express 14(14), 6444–6455 (2006).
[Crossref] [PubMed]

K. Liu, Y. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook, “Dual-frequency pattern scheme for high-speed 3-D shape measurement,” Opt. Express 18(5), 5229–5244 (2010).
[Crossref] [PubMed]

S. Zhang, D. Van. Der. Weide, and J. Oliver, “Superfast phase-shifting method for 3-D shape measurement,” Opt. Express 18(9), 9684–9689 (2010).
[Crossref] [PubMed]

Y. Wang and S. Zhang, “Superfast multifrequency phase-shifting technique with optimal pulse width modulation,” Opt. Express 19(6), 5149–5155 (2011).
[Crossref] [PubMed]

Opt. Laser Eng. (9)

S. Feng, C. Zuo, T. Tao, Y. Hu, M. Zhang, Q. Chen, and G. Gu, “Robust dynamic 3-D measurements with motion-compensated phase-shifting profilometry,” Opt. Laser Eng. 103, 127–138 (2018).
[Crossref]

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Laser Eng. 48, 133–140 (2010).
[Crossref]

X. Su and Q. Zhang, “Dynamic 3-D shape measurement method: a review,” Opt. Laser Eng. 48(2), 191–204 (2010).
[Crossref]

C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, “Phase shifting algorithms for fringe projection profilometry: A review,” Opt. Laser Eng. 109, 23–59 (2018).
[Crossref]

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Laser Eng. 48(2), 149–158 (2010).
[Crossref]

Z. Zhang, “Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques,” Opt. Laser Eng. 50(8), 1097–1106 (2012).
[Crossref]

S. V. Jeught and J. J. J. Dirckx, “Real-time structured light profilometry: a review,” Opt. Laser Eng. 87, 18–31 (2016).
[Crossref]

C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, “Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second,” Opt. Laser Eng. 102, 70–91 (2018).
[Crossref]

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51(8), 953–960 (2013).
[Crossref]

Opt. Lasers Eng (2)

K. Song, S. Hu, X. Wen, and Y Yan, “Fast 3D shape measurement using fourier transform profilometry without phase unwrapping,” Opt. Lasers Eng 84, 74–81 (2016).
[Crossref]

X. Liu and J. Kofman, “Background and amplitude encoded fringe patterns for 3D surface-shape measurement,” Opt. Lasers Eng 94, 63–69 (2017).
[Crossref]

Opt. Lasers Eng. (1)

C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review,” Opt. Lasers Eng. 85, 84–103 (2016).
[Crossref]

Opt. Lett. (3)

Pattern Recogn. (1)

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43(8), 2666–2680 (2010).
[Crossref]

Other (3)

T. Weise, B. Leibe, and L. Van Gool, “Fast 3d scanning with automatic motion compensation,” 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007).

C. Bräuer-Burchardt, C. Munkelt, M. Heinze, P. Kühmstedt, and G. Notni, “Using geometric constraints to solve the point correspondence problem in fringe projection based 3D measuring systems,” International Conference on Image Analysis and Processing, pp. 265–274 (2011).

A. Breitbarth, E. Müller, P. Kühmstedt, G. Notni, and J. Denzler, “Phase unwrapping of fringe images for dynamic 3D measurements without additional pattern projection,” SPIE Sensing Technology+ Applications, pp. 948903 (2015).

Supplementary Material (5)

NameDescription
» Visualization 1       Measured results of David statue
» Visualization 2       Measured results of a plastic ball and a geometry model
» Visualization 3       Measured results with the simplified left-right consistency check
» Visualization 4       The real-time measurement process and results
» Visualization 5       The real-time measurement process and results

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Diagram of SPU and conventional depth constraint (CDC).
Fig. 2
Fig. 2 Diagram of the cross-section of Fig. 1
Fig. 3
Fig. 3 Diagram of GADC for measuring single object
Fig. 4
Fig. 4 Diagram of GADC for measuring two isolated objects
Fig. 5
Fig. 5 Diagram of PWADC for measuring two isolated objects
Fig. 6
Fig. 6 Diagram of simplified left-right consistency check
Fig. 7
Fig. 7 Flowchart of the proposed method
Fig. 8
Fig. 8 Measured results of David statue (see Visualization 1 for the whole results). (a)–(d) The absolute phase maps acquired by conventional multi-frequency PSP, CDC, GADC, and PWADC. (e)–(h) The 3D reconstruction corresponding to (a)–(d).
Fig. 9
Fig. 9 Measured results of a plastic ball and a geometry model (see Visualization 2 for the whole results). (a)–(d) The absolute phase maps acquired by conventional multi-frequency PSP, CDC, GADC, and PWADC. (e)–(h) The 3D reconstruction corresponding to (a)–(d). (i)–(l) Depth volumes corresponding to (e)–(h).
Fig. 10
Fig. 10 Measured results with the simplified left-right consistency check (see Visualization 3 for the whole results). (a)–(h) The results corresponding to Fig. 9(a)Fig. 9(h). (i)–(l) enlarged details corresponding to (e)–(h).
Fig. 11
Fig. 11 The real-time measurement process and results using our method based on (a) quad-camera system (see Visualization 4 for the whole process) and (b) dual-camera system (see Visualization 5 for the whole process).

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I 1 c ( u c , v c ) = A c ( u c , v c ) + B c ( u c , v c ) cos ( Φ c ( u c , v c ) ) ,
I 2 c ( u c , v c ) = A c ( u c , v c ) + B c ( u c , v c ) cos ( Φ c ( u c , v c ) + 2 π 3 ) ,
I 3 c ( u c , v c ) = A c ( u c , v c ) + B c ( u c , v c ) cos ( Φ c ( u c , v c ) + 4 π 3 ) .
u p ( u c , v c ) = Φ c ( u c , v c ) R 2 N π ,
Z w ( u c , v c ) = D c p ( u c , v c ) + E c p ( u c , v c ) F c p ( u c , v c ) u p ( u c , v c ) + 1 ,
X w ( u c , v c ) = G c p ( u c , v c ) Z ( u c , v c ) + J c p ( u c , v c ) ,
Y w ( u c , v c ) = L c p ( u c , v c ) Z ( u c , v c ) + M c p ( u c , v c ) ,
ϕ c ( u c , v c ) = tan 1 3 [ I 1 c ( u c , v c ) I 3 c ( u c , v c ) ] [ 2 I 2 c ( u c , v c ) I 1 c ( u c , v c ) I 3 c ( u c , v c ) ] .
Φ c ( u c , v c ) = ϕ c ( u c , v c ) + 2 K c ( u c , v c ) π , K c ( u c , v c ) [ 0 , N 1 ] ,
Z min Z w ( o c 1 , K n c 1 ) Z max
H ( floor ( Z W ( o C 1 ) Z min Δ Z ) ) H ( floor ( Z W ( o C 1 ) Z min Δ Z ) ) + 1 ,
Z w ( o c 1 ) = nan , if Z w ( o c 1 ) < Z min global + Δ Z motion or Z w ( o c 1 ) > Z max global Δ Z motion ,
{ Z min pixel ( o c 1 ) = min ( Z w i , j = r i , j = r ( u c 1 i , v c 1 j ) ) Δ Z motion Z max pixel ( o c 1 ) = max ( Z w i , j = r i , j = r ( u c 1 i , v c 1 j ) ) + Δ Z motion ,
Ω o c 1 ( o c 1 , K n c 1 ( o c 1 ) ) = 1 ,
S 1 S 2 S min

Metrics