Abstract

Quantitative analysis is of importance for surface-enhanced Raman scattering (SERS). However, due to fluctuations in the enhancing performance of the substrates, it is difficult to obtain reliable results. In this paper, a reliable quantitative method is introduced to overcome this problem with graphene on the top of Ag nanoholes structure as SERS substrates by an internal standard method. To achieve the internal standard method, Ag nanoholes are firstly prepared by surface plasmon (SP) lithography technology. Then a monolayer graphene is transferred onto the surface of the Ag nanoholes structure. 2D Raman peak of graphene is used as an internal standard to normalize the intensity of analyte molecules. The random representative and averaged Raman intensity of different concentration of rhodamine 6G (R6G) is collected with graphene/Ag nanoholes (GE/AgNHs) structures as SERS substrates, and the corresponding normalized intensity is also calculated and discussed in details. The relative standard deviation (RSD) is reduced from 25% (Raman intensity) to 12% (normalized intensity). The quantification of R6G is demonstrated down to the detection limit of 10−15 M.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative SERS by electromagnetic enhancement normalization with carbon nanotube as an internal standard

Zhang Jie, Yin Zenghe, Zhang Xiaolei, and Zhu Yong
Opt. Express 26(18) 23534-23539 (2018)

Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum

Yuanyuan Xu, Cheng Yang, Minghong Wang, Xiaoxiao Pan, Chao Zhang, Mei Liu, ShiCai Xu, Shouzheng Jiang, and Baoyuan Man
Opt. Express 25(14) 16437-16451 (2017)

Highly reproducible and stable surface-enhanced Raman scattering substrates of graphene-Ag nanohole arrays fabricated by sub-diffraction plasmonic lithography

Tiancheng Gong, Yunfei Luo, Chengwei Zhao, Weisheng Yue, Jie Zhang, Yong Zhu, Mingbo Pu, Zuojun Zhang, Changtao Wang, and Xiangang Luo
OSA Continuum 2(3) 582-594 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
    [Crossref] [PubMed]
  2. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  3. H. H. Tian, N. Zhang, L. M. Tong, and J. Zhang, “In situ quantitative graphene-based surface-enhanced Raman spectroscopy,” Small Methods 1(6), 1700126 (2017).
    [Crossref]
  4. E. C. Le Ru and P. G. Etchegoin, “Single-molecule surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem. 63(1), 65–87 (2012).
    [Crossref] [PubMed]
  5. E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the [E](4) enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423(1–3), 63–66 (2006).
    [Crossref]
  6. J. Zhang, X. Zhang, S. Chen, T. Gong, and Y. Zhu, “Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles,” Carbon 100, 395–407 (2016).
    [Crossref]
  7. C. C. Ho, K. Zhao, and T.-Y. Lee, “Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere Lithography,” Nanoscale 6(15), 8606–8611 (2014).
    [Crossref] [PubMed]
  8. X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
    [Crossref] [PubMed]
  9. S. L. Kleinman, R. R. Frontiera, A.-I. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15(1), 21–36 (2013).
    [Crossref] [PubMed]
  10. Y. Ryu, G. Kang, C.-W. Lee, and K. Kim, “Porous metallic nanocone arrays for high-density SERS hot spots via solvent-assisted nanoimprint lithography of block copolymer,” RSC Advances 5(93), 76085–76091 (2015).
    [Crossref]
  11. B. Radha, S. H. Lim, M. S. M. Saifullah, and G. U. Kulkarni, “Metal hierarchical patterning by direct nanoimprint lithography,” Sci. Rep. 3(1), 1078 (2013).
    [Crossref] [PubMed]
  12. R. H. Que, M. W. Shao, S. J. Zhuo, C. Y. Wen, S. D. Wang, and S.-T. Lee, “Highly reproducible surface-enhanced Raman scattering on a capillarity-assisted gold nanoparticle assembly,” Adv. Funct. Mater. 21(17), 3337–3343 (2011).
    [Crossref]
  13. J. Quan, J. Zhang, X. Qi, J. Li, N. Wang, and Y. Zhu, “A study on the correlation between the dewetting temperature of Ag film and SERS intensity,” Sci. Rep. 7(1), 14771 (2017).
    [Crossref] [PubMed]
  14. A. B. Serrano-Montes, D. Jimenez de Aberasturi, J. Langer, J. J. Giner-Casares, L. Scarabelli, A. Herrero, and L. M. Liz-Marzán, “A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers,” Langmuir 31(33), 9205–9213 (2015).
    [Crossref] [PubMed]
  15. C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
    [Crossref] [PubMed]
  16. Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, B. Man, and B. Y. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
    [Crossref] [PubMed]
  17. C. Zhang, C. H. Lia, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
    [Crossref]
  18. C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
    [Crossref] [PubMed]
  19. Y. P. Liu, Z. W. Lu, W. L. Hasi, H. Zhao, L. Bao, and F. Yang, “Self-assembled activated carbon nanoparticles for reliable time-discretized quantitative surface enhanced Raman spectroscopy,” Anal. Methods 9(47), 6622–6628 (2017).
    [Crossref]
  20. W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, and B. Ren, “Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards,” Angew. Chem. Int. Ed. Engl. 54(25), 7308–7312 (2015).
    [Crossref] [PubMed]
  21. J. F. Li, J. R. Anema, T. Wandlowski, and Z. Q. Tian, “Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications,” Chem. Soc. Rev. 44(23), 8399–8409 (2015).
    [Crossref] [PubMed]
  22. S. E. J. Bell and N. M. S. Sirimuthu, “Quantitative surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 37(5), 1012–1024 (2008).
    [Crossref] [PubMed]
  23. H. Wei, A. McCarthy, J. Song, W. Zhou, and P. J. Vikesland, “Quantitative SERS by hot spot normalization - surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance,” Faraday Discuss. 205, 491–504 (2017).
    [Crossref] [PubMed]
  24. X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
    [Crossref]
  25. C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
    [Crossref] [PubMed]
  26. P. Gao, N. Yao, C. T. Wang, Z. Y. Zhao, Y. F. Luo, Y. Q. Wang, G. H. Gao, K. P. Liu, C. W. Zhao, and X. G. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
    [Crossref]
  27. Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
    [Crossref] [PubMed]
  28. T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
    [Crossref]
  29. T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. L. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
    [Crossref]
  30. L. G. Cançado, A. Jorio, E. H. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11(8), 3190–3196 (2011).
    [Crossref] [PubMed]
  31. L. M. Malard, M. A. Mpimenta, and G. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5), 51–87 (2009).
  32. S. G. Zhang, X. W. Zhang, X. Liu, Z. G. Yin, H. L. Gao, and Y. J. Zhao, “Raman peak enhancement and shift of few-layer graphene induced by plasmonic coupling with silver nanoparticles,” Appl. Phys. Lett. 104(12), 121109 (2014).
    [Crossref]
  33. C. Y. Liu, K. C. Liang, W. Chen, C. H. Tu, C. P. Liu, and Y. Tzeng, “Plasmonic coupling of silver nanoparticles covered by hydrogen-terminated graphene for surface-enhanced Raman spectroscopy,” Opt. Express 19(18), 17092–17098 (2011).
    [Crossref] [PubMed]

2018 (2)

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, B. Man, and B. Y. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. Zhang, C. H. Lia, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

2017 (6)

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

Y. P. Liu, Z. W. Lu, W. L. Hasi, H. Zhao, L. Bao, and F. Yang, “Self-assembled activated carbon nanoparticles for reliable time-discretized quantitative surface enhanced Raman spectroscopy,” Anal. Methods 9(47), 6622–6628 (2017).
[Crossref]

J. Quan, J. Zhang, X. Qi, J. Li, N. Wang, and Y. Zhu, “A study on the correlation between the dewetting temperature of Ag film and SERS intensity,” Sci. Rep. 7(1), 14771 (2017).
[Crossref] [PubMed]

H. H. Tian, N. Zhang, L. M. Tong, and J. Zhang, “In situ quantitative graphene-based surface-enhanced Raman spectroscopy,” Small Methods 1(6), 1700126 (2017).
[Crossref]

X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref] [PubMed]

H. Wei, A. McCarthy, J. Song, W. Zhou, and P. J. Vikesland, “Quantitative SERS by hot spot normalization - surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance,” Faraday Discuss. 205, 491–504 (2017).
[Crossref] [PubMed]

2016 (2)

T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. L. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

J. Zhang, X. Zhang, S. Chen, T. Gong, and Y. Zhu, “Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles,” Carbon 100, 395–407 (2016).
[Crossref]

2015 (8)

A. B. Serrano-Montes, D. Jimenez de Aberasturi, J. Langer, J. J. Giner-Casares, L. Scarabelli, A. Herrero, and L. M. Liz-Marzán, “A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers,” Langmuir 31(33), 9205–9213 (2015).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Y. Ryu, G. Kang, C.-W. Lee, and K. Kim, “Porous metallic nanocone arrays for high-density SERS hot spots via solvent-assisted nanoimprint lithography of block copolymer,” RSC Advances 5(93), 76085–76091 (2015).
[Crossref]

W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, and B. Ren, “Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards,” Angew. Chem. Int. Ed. Engl. 54(25), 7308–7312 (2015).
[Crossref] [PubMed]

J. F. Li, J. R. Anema, T. Wandlowski, and Z. Q. Tian, “Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications,” Chem. Soc. Rev. 44(23), 8399–8409 (2015).
[Crossref] [PubMed]

P. Gao, N. Yao, C. T. Wang, Z. Y. Zhao, Y. F. Luo, Y. Q. Wang, G. H. Gao, K. P. Liu, C. W. Zhao, and X. G. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref] [PubMed]

T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

2014 (2)

S. G. Zhang, X. W. Zhang, X. Liu, Z. G. Yin, H. L. Gao, and Y. J. Zhao, “Raman peak enhancement and shift of few-layer graphene induced by plasmonic coupling with silver nanoparticles,” Appl. Phys. Lett. 104(12), 121109 (2014).
[Crossref]

C. C. Ho, K. Zhao, and T.-Y. Lee, “Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere Lithography,” Nanoscale 6(15), 8606–8611 (2014).
[Crossref] [PubMed]

2013 (4)

S. L. Kleinman, R. R. Frontiera, A.-I. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15(1), 21–36 (2013).
[Crossref] [PubMed]

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

B. Radha, S. H. Lim, M. S. M. Saifullah, and G. U. Kulkarni, “Metal hierarchical patterning by direct nanoimprint lithography,” Sci. Rep. 3(1), 1078 (2013).
[Crossref] [PubMed]

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref] [PubMed]

2012 (1)

E. C. Le Ru and P. G. Etchegoin, “Single-molecule surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem. 63(1), 65–87 (2012).
[Crossref] [PubMed]

2011 (3)

R. H. Que, M. W. Shao, S. J. Zhuo, C. Y. Wen, S. D. Wang, and S.-T. Lee, “Highly reproducible surface-enhanced Raman scattering on a capillarity-assisted gold nanoparticle assembly,” Adv. Funct. Mater. 21(17), 3337–3343 (2011).
[Crossref]

C. Y. Liu, K. C. Liang, W. Chen, C. H. Tu, C. P. Liu, and Y. Tzeng, “Plasmonic coupling of silver nanoparticles covered by hydrogen-terminated graphene for surface-enhanced Raman spectroscopy,” Opt. Express 19(18), 17092–17098 (2011).
[Crossref] [PubMed]

L. G. Cançado, A. Jorio, E. H. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11(8), 3190–3196 (2011).
[Crossref] [PubMed]

2009 (1)

L. M. Malard, M. A. Mpimenta, and G. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5), 51–87 (2009).

2008 (1)

S. E. J. Bell and N. M. S. Sirimuthu, “Quantitative surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 37(5), 1012–1024 (2008).
[Crossref] [PubMed]

2006 (1)

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the [E](4) enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423(1–3), 63–66 (2006).
[Crossref]

2004 (1)

X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

1997 (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Achete, C. A.

L. G. Cançado, A. Jorio, E. H. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11(8), 3190–3196 (2011).
[Crossref] [PubMed]

Anema, J. R.

J. F. Li, J. R. Anema, T. Wandlowski, and Z. Q. Tian, “Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications,” Chem. Soc. Rev. 44(23), 8399–8409 (2015).
[Crossref] [PubMed]

Bao, L.

Y. P. Liu, Z. W. Lu, W. L. Hasi, H. Zhao, L. Bao, and F. Yang, “Self-assembled activated carbon nanoparticles for reliable time-discretized quantitative surface enhanced Raman spectroscopy,” Anal. Methods 9(47), 6622–6628 (2017).
[Crossref]

Bell, S. E. J.

S. E. J. Bell and N. M. S. Sirimuthu, “Quantitative surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 37(5), 1012–1024 (2008).
[Crossref] [PubMed]

Cançado, L. G.

L. G. Cançado, A. Jorio, E. H. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11(8), 3190–3196 (2011).
[Crossref] [PubMed]

Capaz, R. B.

L. G. Cançado, A. Jorio, E. H. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11(8), 3190–3196 (2011).
[Crossref] [PubMed]

Chen, L.

X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref] [PubMed]

Chen, S.

J. Zhang, X. Zhang, S. Chen, T. Gong, and Y. Zhu, “Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles,” Carbon 100, 395–407 (2016).
[Crossref]

Chen, W.

Chui, Y. S.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Dieringer, J. A.

S. L. Kleinman, R. R. Frontiera, A.-I. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15(1), 21–36 (2013).
[Crossref] [PubMed]

Dresselhaus, G.

L. M. Malard, M. A. Mpimenta, and G. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5), 51–87 (2009).

Du, Y.

X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref] [PubMed]

Etchegoin, P. G.

E. C. Le Ru and P. G. Etchegoin, “Single-molecule surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem. 63(1), 65–87 (2012).
[Crossref] [PubMed]

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the [E](4) enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423(1–3), 63–66 (2006).
[Crossref]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Ferrari, A. C.

L. G. Cançado, A. Jorio, E. H. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11(8), 3190–3196 (2011).
[Crossref] [PubMed]

Ferreira, E. H.

L. G. Cançado, A. Jorio, E. H. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11(8), 3190–3196 (2011).
[Crossref] [PubMed]

Frontiera, R. R.

S. L. Kleinman, R. R. Frontiera, A.-I. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15(1), 21–36 (2013).
[Crossref] [PubMed]

Gao, G. H.

P. Gao, N. Yao, C. T. Wang, Z. Y. Zhao, Y. F. Luo, Y. Q. Wang, G. H. Gao, K. P. Liu, C. W. Zhao, and X. G. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Gao, H. L.

S. G. Zhang, X. W. Zhang, X. Liu, Z. G. Yin, H. L. Gao, and Y. J. Zhao, “Raman peak enhancement and shift of few-layer graphene induced by plasmonic coupling with silver nanoparticles,” Appl. Phys. Lett. 104(12), 121109 (2014).
[Crossref]

Gao, P.

P. Gao, N. Yao, C. T. Wang, Z. Y. Zhao, Y. F. Luo, Y. Q. Wang, G. H. Gao, K. P. Liu, C. W. Zhao, and X. G. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref] [PubMed]

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref] [PubMed]

Gao, X. G.

C. Zhang, C. H. Lia, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

Giner-Casares, J. J.

A. B. Serrano-Montes, D. Jimenez de Aberasturi, J. Langer, J. J. Giner-Casares, L. Scarabelli, A. Herrero, and L. M. Liz-Marzán, “A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers,” Langmuir 31(33), 9205–9213 (2015).
[Crossref] [PubMed]

Gong, T.

J. Zhang, X. Zhang, S. Chen, T. Gong, and Y. Zhu, “Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles,” Carbon 100, 395–407 (2016).
[Crossref]

Gong, T. C.

T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. L. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

Hasi, W. L.

Y. P. Liu, Z. W. Lu, W. L. Hasi, H. Zhao, L. Bao, and F. Yang, “Self-assembled activated carbon nanoparticles for reliable time-discretized quantitative surface enhanced Raman spectroscopy,” Anal. Methods 9(47), 6622–6628 (2017).
[Crossref]

He, L. F.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

He, Y.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, B. Man, and B. Y. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

Henry, A.-I.

S. L. Kleinman, R. R. Frontiera, A.-I. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15(1), 21–36 (2013).
[Crossref] [PubMed]

Herrero, A.

A. B. Serrano-Montes, D. Jimenez de Aberasturi, J. Langer, J. J. Giner-Casares, L. Scarabelli, A. Herrero, and L. M. Liz-Marzán, “A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers,” Langmuir 31(33), 9205–9213 (2015).
[Crossref] [PubMed]

Ho, C. C.

C. C. Ho, K. Zhao, and T.-Y. Lee, “Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere Lithography,” Nanoscale 6(15), 8606–8611 (2014).
[Crossref] [PubMed]

Huang, J.

W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, and B. Ren, “Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards,” Angew. Chem. Int. Ed. Engl. 54(25), 7308–7312 (2015).
[Crossref] [PubMed]

Huang, J. A.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Huo, Y.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, B. Man, and B. Y. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

Huo, Y. Y.

Ishihara, T.

X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Jiang, C.

W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, and B. Ren, “Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards,” Angew. Chem. Int. Ed. Engl. 54(25), 7308–7312 (2015).
[Crossref] [PubMed]

Jiang, S.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, B. Man, and B. Y. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

Jiang, S. Z.

C. Zhang, C. H. Lia, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Jimenez de Aberasturi, D.

A. B. Serrano-Montes, D. Jimenez de Aberasturi, J. Langer, J. J. Giner-Casares, L. Scarabelli, A. Herrero, and L. M. Liz-Marzán, “A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers,” Langmuir 31(33), 9205–9213 (2015).
[Crossref] [PubMed]

Jorio, A.

L. G. Cançado, A. Jorio, E. H. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11(8), 3190–3196 (2011).
[Crossref] [PubMed]

Kang, G.

Y. Ryu, G. Kang, C.-W. Lee, and K. Kim, “Porous metallic nanocone arrays for high-density SERS hot spots via solvent-assisted nanoimprint lithography of block copolymer,” RSC Advances 5(93), 76085–76091 (2015).
[Crossref]

Kim, K.

Y. Ryu, G. Kang, C.-W. Lee, and K. Kim, “Porous metallic nanocone arrays for high-density SERS hot spots via solvent-assisted nanoimprint lithography of block copolymer,” RSC Advances 5(93), 76085–76091 (2015).
[Crossref]

Kleinman, S. L.

S. L. Kleinman, R. R. Frontiera, A.-I. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15(1), 21–36 (2013).
[Crossref] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kulkarni, G. U.

B. Radha, S. H. Lim, M. S. M. Saifullah, and G. U. Kulkarni, “Metal hierarchical patterning by direct nanoimprint lithography,” Sci. Rep. 3(1), 1078 (2013).
[Crossref] [PubMed]

Kulmala, T. S.

L. G. Cançado, A. Jorio, E. H. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11(8), 3190–3196 (2011).
[Crossref] [PubMed]

Langer, J.

A. B. Serrano-Montes, D. Jimenez de Aberasturi, J. Langer, J. J. Giner-Casares, L. Scarabelli, A. Herrero, and L. M. Liz-Marzán, “A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers,” Langmuir 31(33), 9205–9213 (2015).
[Crossref] [PubMed]

Le Ru, E. C.

E. C. Le Ru and P. G. Etchegoin, “Single-molecule surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem. 63(1), 65–87 (2012).
[Crossref] [PubMed]

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the [E](4) enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423(1–3), 63–66 (2006).
[Crossref]

Lee, C.-W.

Y. Ryu, G. Kang, C.-W. Lee, and K. Kim, “Porous metallic nanocone arrays for high-density SERS hot spots via solvent-assisted nanoimprint lithography of block copolymer,” RSC Advances 5(93), 76085–76091 (2015).
[Crossref]

Lee, S. T.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Lee, S.-T.

R. H. Que, M. W. Shao, S. J. Zhuo, C. Y. Wen, S. D. Wang, and S.-T. Lee, “Highly reproducible surface-enhanced Raman scattering on a capillarity-assisted gold nanoparticle assembly,” Adv. Funct. Mater. 21(17), 3337–3343 (2011).
[Crossref]

Lee, T.-Y.

C. C. Ho, K. Zhao, and T.-Y. Lee, “Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere Lithography,” Nanoscale 6(15), 8606–8611 (2014).
[Crossref] [PubMed]

Li, C.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, B. Man, and B. Y. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, and B. Ren, “Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards,” Angew. Chem. Int. Ed. Engl. 54(25), 7308–7312 (2015).
[Crossref] [PubMed]

Li, J.

J. Quan, J. Zhang, X. Qi, J. Li, N. Wang, and Y. Zhu, “A study on the correlation between the dewetting temperature of Ag film and SERS intensity,” Sci. Rep. 7(1), 14771 (2017).
[Crossref] [PubMed]

Li, J. F.

J. F. Li, J. R. Anema, T. Wandlowski, and Z. Q. Tian, “Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications,” Chem. Soc. Rev. 44(23), 8399–8409 (2015).
[Crossref] [PubMed]

Li, Z.

Lia, C. H.

C. Zhang, C. H. Lia, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

Liang, K. C.

Lim, S. H.

B. Radha, S. H. Lim, M. S. M. Saifullah, and G. U. Kulkarni, “Metal hierarchical patterning by direct nanoimprint lithography,” Sci. Rep. 3(1), 1078 (2013).
[Crossref] [PubMed]

Lin, H.

W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, and B. Ren, “Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards,” Angew. Chem. Int. Ed. Engl. 54(25), 7308–7312 (2015).
[Crossref] [PubMed]

Lin, X.

W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, and B. Ren, “Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards,” Angew. Chem. Int. Ed. Engl. 54(25), 7308–7312 (2015).
[Crossref] [PubMed]

Liu, A.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, B. Man, and B. Y. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

Liu, A. H.

C. Zhang, C. H. Lia, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Liu, C. P.

Liu, C. Y.

Liu, G.

W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, and B. Ren, “Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards,” Angew. Chem. Int. Ed. Engl. 54(25), 7308–7312 (2015).
[Crossref] [PubMed]

Liu, K.

Liu, K. P.

P. Gao, N. Yao, C. T. Wang, Z. Y. Zhao, Y. F. Luo, Y. Q. Wang, G. H. Gao, K. P. Liu, C. W. Zhao, and X. G. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Liu, L.

Liu, X.

S. G. Zhang, X. W. Zhang, X. Liu, Z. G. Yin, H. L. Gao, and Y. J. Zhao, “Raman peak enhancement and shift of few-layer graphene induced by plasmonic coupling with silver nanoparticles,” Appl. Phys. Lett. 104(12), 121109 (2014).
[Crossref]

Liu, X. Y.

Liu, Y. J.

C. Zhang, C. H. Lia, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

Liu, Y. P.

Y. P. Liu, Z. W. Lu, W. L. Hasi, H. Zhao, L. Bao, and F. Yang, “Self-assembled activated carbon nanoparticles for reliable time-discretized quantitative surface enhanced Raman spectroscopy,” Anal. Methods 9(47), 6622–6628 (2017).
[Crossref]

Liz-Marzán, L. M.

A. B. Serrano-Montes, D. Jimenez de Aberasturi, J. Langer, J. J. Giner-Casares, L. Scarabelli, A. Herrero, and L. M. Liz-Marzán, “A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers,” Langmuir 31(33), 9205–9213 (2015).
[Crossref] [PubMed]

Lombardo, A.

L. G. Cançado, A. Jorio, E. H. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11(8), 3190–3196 (2011).
[Crossref] [PubMed]

Lu, Z. W.

Y. P. Liu, Z. W. Lu, W. L. Hasi, H. Zhao, L. Bao, and F. Yang, “Self-assembled activated carbon nanoparticles for reliable time-discretized quantitative surface enhanced Raman spectroscopy,” Anal. Methods 9(47), 6622–6628 (2017).
[Crossref]

Luo, X.

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref] [PubMed]

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref] [PubMed]

Luo, X. G.

P. Gao, N. Yao, C. T. Wang, Z. Y. Zhao, Y. F. Luo, Y. Q. Wang, G. H. Gao, K. P. Liu, C. W. Zhao, and X. G. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

Luo, Y.

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref] [PubMed]

Luo, Y. F.

P. Gao, N. Yao, C. T. Wang, Z. Y. Zhao, Y. F. Luo, Y. Q. Wang, G. H. Gao, K. P. Liu, C. W. Zhao, and X. G. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Malard, L. M.

L. M. Malard, M. A. Mpimenta, and G. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5), 51–87 (2009).

Man, B.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, B. Man, and B. Y. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

Man, B. Y.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, B. Man, and B. Y. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. Zhang, C. H. Lia, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

McCarthy, A.

H. Wei, A. McCarthy, J. Song, W. Zhou, and P. J. Vikesland, “Quantitative SERS by hot spot normalization - surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance,” Faraday Discuss. 205, 491–504 (2017).
[Crossref] [PubMed]

Moutinho, M. V. O.

L. G. Cançado, A. Jorio, E. H. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11(8), 3190–3196 (2011).
[Crossref] [PubMed]

Mpimenta, M. A.

L. M. Malard, M. A. Mpimenta, and G. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5), 51–87 (2009).

Ning, T.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, B. Man, and B. Y. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Pu, M.

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref] [PubMed]

Qi, X.

J. Quan, J. Zhang, X. Qi, J. Li, N. Wang, and Y. Zhu, “A study on the correlation between the dewetting temperature of Ag film and SERS intensity,” Sci. Rep. 7(1), 14771 (2017).
[Crossref] [PubMed]

Quan, J.

J. Quan, J. Zhang, X. Qi, J. Li, N. Wang, and Y. Zhu, “A study on the correlation between the dewetting temperature of Ag film and SERS intensity,” Sci. Rep. 7(1), 14771 (2017).
[Crossref] [PubMed]

Quan, J. M.

T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

Que, R. H.

R. H. Que, M. W. Shao, S. J. Zhuo, C. Y. Wen, S. D. Wang, and S.-T. Lee, “Highly reproducible surface-enhanced Raman scattering on a capillarity-assisted gold nanoparticle assembly,” Adv. Funct. Mater. 21(17), 3337–3343 (2011).
[Crossref]

Radha, B.

B. Radha, S. H. Lim, M. S. M. Saifullah, and G. U. Kulkarni, “Metal hierarchical patterning by direct nanoimprint lithography,” Sci. Rep. 3(1), 1078 (2013).
[Crossref] [PubMed]

Ren, B.

W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, and B. Ren, “Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards,” Angew. Chem. Int. Ed. Engl. 54(25), 7308–7312 (2015).
[Crossref] [PubMed]

Ren, W. J.

T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

Ryu, Y.

Y. Ryu, G. Kang, C.-W. Lee, and K. Kim, “Porous metallic nanocone arrays for high-density SERS hot spots via solvent-assisted nanoimprint lithography of block copolymer,” RSC Advances 5(93), 76085–76091 (2015).
[Crossref]

Saifullah, M. S. M.

B. Radha, S. H. Lim, M. S. M. Saifullah, and G. U. Kulkarni, “Metal hierarchical patterning by direct nanoimprint lithography,” Sci. Rep. 3(1), 1078 (2013).
[Crossref] [PubMed]

Scarabelli, L.

A. B. Serrano-Montes, D. Jimenez de Aberasturi, J. Langer, J. J. Giner-Casares, L. Scarabelli, A. Herrero, and L. M. Liz-Marzán, “A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers,” Langmuir 31(33), 9205–9213 (2015).
[Crossref] [PubMed]

Serrano-Montes, A. B.

A. B. Serrano-Montes, D. Jimenez de Aberasturi, J. Langer, J. J. Giner-Casares, L. Scarabelli, A. Herrero, and L. M. Liz-Marzán, “A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers,” Langmuir 31(33), 9205–9213 (2015).
[Crossref] [PubMed]

Shao, M. W.

R. H. Que, M. W. Shao, S. J. Zhuo, C. Y. Wen, S. D. Wang, and S.-T. Lee, “Highly reproducible surface-enhanced Raman scattering on a capillarity-assisted gold nanoparticle assembly,” Adv. Funct. Mater. 21(17), 3337–3343 (2011).
[Crossref]

Shen, W.

W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, and B. Ren, “Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards,” Angew. Chem. Int. Ed. Engl. 54(25), 7308–7312 (2015).
[Crossref] [PubMed]

Sirimuthu, N. M. S.

S. E. J. Bell and N. M. S. Sirimuthu, “Quantitative surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 37(5), 1012–1024 (2008).
[Crossref] [PubMed]

Song, J.

H. Wei, A. McCarthy, J. Song, W. Zhou, and P. J. Vikesland, “Quantitative SERS by hot spot normalization - surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance,” Faraday Discuss. 205, 491–504 (2017).
[Crossref] [PubMed]

Stavale, F.

L. G. Cançado, A. Jorio, E. H. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11(8), 3190–3196 (2011).
[Crossref] [PubMed]

Sun, Z. C.

Tian, H. H.

H. H. Tian, N. Zhang, L. M. Tong, and J. Zhang, “In situ quantitative graphene-based surface-enhanced Raman spectroscopy,” Small Methods 1(6), 1700126 (2017).
[Crossref]

Tian, Z. Q.

J. F. Li, J. R. Anema, T. Wandlowski, and Z. Q. Tian, “Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications,” Chem. Soc. Rev. 44(23), 8399–8409 (2015).
[Crossref] [PubMed]

Tong, L. M.

H. H. Tian, N. Zhang, L. M. Tong, and J. Zhang, “In situ quantitative graphene-based surface-enhanced Raman spectroscopy,” Small Methods 1(6), 1700126 (2017).
[Crossref]

Tu, C. H.

Tzeng, Y.

Van Duyne, R. P.

S. L. Kleinman, R. R. Frontiera, A.-I. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15(1), 21–36 (2013).
[Crossref] [PubMed]

Vikesland, P. J.

H. Wei, A. McCarthy, J. Song, W. Zhou, and P. J. Vikesland, “Quantitative SERS by hot spot normalization - surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance,” Faraday Discuss. 205, 491–504 (2017).
[Crossref] [PubMed]

Wandlowski, T.

J. F. Li, J. R. Anema, T. Wandlowski, and Z. Q. Tian, “Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications,” Chem. Soc. Rev. 44(23), 8399–8409 (2015).
[Crossref] [PubMed]

Wang, C.

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref] [PubMed]

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref] [PubMed]

Wang, C. T.

P. Gao, N. Yao, C. T. Wang, Z. Y. Zhao, Y. F. Luo, Y. Q. Wang, G. H. Gao, K. P. Liu, C. W. Zhao, and X. G. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Wang, D.

X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref] [PubMed]

Wang, M.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, B. Man, and B. Y. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

Wang, N.

J. Quan, J. Zhang, X. Qi, J. Li, N. Wang, and Y. Zhu, “A study on the correlation between the dewetting temperature of Ag film and SERS intensity,” Sci. Rep. 7(1), 14771 (2017).
[Crossref] [PubMed]

Wang, S.

W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, and B. Ren, “Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards,” Angew. Chem. Int. Ed. Engl. 54(25), 7308–7312 (2015).
[Crossref] [PubMed]

Wang, S. D.

R. H. Que, M. W. Shao, S. J. Zhuo, C. Y. Wen, S. D. Wang, and S.-T. Lee, “Highly reproducible surface-enhanced Raman scattering on a capillarity-assisted gold nanoparticle assembly,” Adv. Funct. Mater. 21(17), 3337–3343 (2011).
[Crossref]

Wang, X. Y.

T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. L. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

Wang, Y.

X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref] [PubMed]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref] [PubMed]

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Wang, Y. Q.

P. Gao, N. Yao, C. T. Wang, Z. Y. Zhao, Y. F. Luo, Y. Q. Wang, G. H. Gao, K. P. Liu, C. W. Zhao, and X. G. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Wei, H.

H. Wei, A. McCarthy, J. Song, W. Zhou, and P. J. Vikesland, “Quantitative SERS by hot spot normalization - surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance,” Faraday Discuss. 205, 491–504 (2017).
[Crossref] [PubMed]

Wen, C. Y.

R. H. Que, M. W. Shao, S. J. Zhuo, C. Y. Wen, S. D. Wang, and S.-T. Lee, “Highly reproducible surface-enhanced Raman scattering on a capillarity-assisted gold nanoparticle assembly,” Adv. Funct. Mater. 21(17), 3337–3343 (2011).
[Crossref]

Wen, J.

X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref] [PubMed]

Wong, T. L.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Xie, W. B.

T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

Xu, S.

Xu, S. C.

C. Zhang, C. H. Lia, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Xu, Y. Y.

Yan, X.

W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, and B. Ren, “Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards,” Angew. Chem. Int. Ed. Engl. 54(25), 7308–7312 (2015).
[Crossref] [PubMed]

Yang, C.

C. Zhang, C. H. Lia, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

Yang, F.

Y. P. Liu, Z. W. Lu, W. L. Hasi, H. Zhao, L. Bao, and F. Yang, “Self-assembled activated carbon nanoparticles for reliable time-discretized quantitative surface enhanced Raman spectroscopy,” Anal. Methods 9(47), 6622–6628 (2017).
[Crossref]

Yang, J.

X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref] [PubMed]

Yao, N.

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref] [PubMed]

P. Gao, N. Yao, C. T. Wang, Z. Y. Zhao, Y. F. Luo, Y. Q. Wang, G. H. Gao, K. P. Liu, C. W. Zhao, and X. G. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref] [PubMed]

Yin, Z. G.

S. G. Zhang, X. W. Zhang, X. Liu, Z. G. Yin, H. L. Gao, and Y. J. Zhao, “Raman peak enhancement and shift of few-layer graphene induced by plasmonic coupling with silver nanoparticles,” Appl. Phys. Lett. 104(12), 121109 (2014).
[Crossref]

Yu, J.

C. Zhang, C. H. Lia, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

Zhang, C.

C. Zhang, C. H. Lia, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, B. Man, and B. Y. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Zhang, J.

J. Quan, J. Zhang, X. Qi, J. Li, N. Wang, and Y. Zhu, “A study on the correlation between the dewetting temperature of Ag film and SERS intensity,” Sci. Rep. 7(1), 14771 (2017).
[Crossref] [PubMed]

H. H. Tian, N. Zhang, L. M. Tong, and J. Zhang, “In situ quantitative graphene-based surface-enhanced Raman spectroscopy,” Small Methods 1(6), 1700126 (2017).
[Crossref]

J. Zhang, X. Zhang, S. Chen, T. Gong, and Y. Zhu, “Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles,” Carbon 100, 395–407 (2016).
[Crossref]

T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. L. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. L. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

Zhang, M.

X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref] [PubMed]

Zhang, N.

H. H. Tian, N. Zhang, L. M. Tong, and J. Zhang, “In situ quantitative graphene-based surface-enhanced Raman spectroscopy,” Small Methods 1(6), 1700126 (2017).
[Crossref]

Zhang, S. G.

S. G. Zhang, X. W. Zhang, X. Liu, Z. G. Yin, H. L. Gao, and Y. J. Zhao, “Raman peak enhancement and shift of few-layer graphene induced by plasmonic coupling with silver nanoparticles,” Appl. Phys. Lett. 104(12), 121109 (2014).
[Crossref]

Zhang, W.

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref] [PubMed]

Zhang, W. J.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Zhang, X.

J. Zhang, X. Zhang, S. Chen, T. Gong, and Y. Zhu, “Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles,” Carbon 100, 395–407 (2016).
[Crossref]

Zhang, X. J.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Zhang, X. L.

T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. L. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

Zhang, X. W.

S. G. Zhang, X. W. Zhang, X. Liu, Z. G. Yin, H. L. Gao, and Y. J. Zhao, “Raman peak enhancement and shift of few-layer graphene induced by plasmonic coupling with silver nanoparticles,” Appl. Phys. Lett. 104(12), 121109 (2014).
[Crossref]

Zhang, Y.

X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref] [PubMed]

Zhao, C.

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref] [PubMed]

Zhao, C. W.

P. Gao, N. Yao, C. T. Wang, Z. Y. Zhao, Y. F. Luo, Y. Q. Wang, G. H. Gao, K. P. Liu, C. W. Zhao, and X. G. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Zhao, H.

Y. P. Liu, Z. W. Lu, W. L. Hasi, H. Zhao, L. Bao, and F. Yang, “Self-assembled activated carbon nanoparticles for reliable time-discretized quantitative surface enhanced Raman spectroscopy,” Anal. Methods 9(47), 6622–6628 (2017).
[Crossref]

Zhao, K.

C. C. Ho, K. Zhao, and T.-Y. Lee, “Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere Lithography,” Nanoscale 6(15), 8606–8611 (2014).
[Crossref] [PubMed]

Zhao, X.

X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref] [PubMed]

Zhao, Y. J.

S. G. Zhang, X. W. Zhang, X. Liu, Z. G. Yin, H. L. Gao, and Y. J. Zhao, “Raman peak enhancement and shift of few-layer graphene induced by plasmonic coupling with silver nanoparticles,” Appl. Phys. Lett. 104(12), 121109 (2014).
[Crossref]

Zhao, Y. Q.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Zhao, Z.

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref] [PubMed]

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref] [PubMed]

Zhao, Z. Y.

P. Gao, N. Yao, C. T. Wang, Z. Y. Zhao, Y. F. Luo, Y. Q. Wang, G. H. Gao, K. P. Liu, C. W. Zhao, and X. G. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Zhong, Q.

W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, and B. Ren, “Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards,” Angew. Chem. Int. Ed. Engl. 54(25), 7308–7312 (2015).
[Crossref] [PubMed]

Zhou, W.

H. Wei, A. McCarthy, J. Song, W. Zhou, and P. J. Vikesland, “Quantitative SERS by hot spot normalization - surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance,” Faraday Discuss. 205, 491–504 (2017).
[Crossref] [PubMed]

Zhu, Y.

J. Quan, J. Zhang, X. Qi, J. Li, N. Wang, and Y. Zhu, “A study on the correlation between the dewetting temperature of Ag film and SERS intensity,” Sci. Rep. 7(1), 14771 (2017).
[Crossref] [PubMed]

J. Zhang, X. Zhang, S. Chen, T. Gong, and Y. Zhu, “Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles,” Carbon 100, 395–407 (2016).
[Crossref]

T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. L. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

Zhuo, S. J.

R. H. Que, M. W. Shao, S. J. Zhuo, C. Y. Wen, S. D. Wang, and S.-T. Lee, “Highly reproducible surface-enhanced Raman scattering on a capillarity-assisted gold nanoparticle assembly,” Adv. Funct. Mater. 21(17), 3337–3343 (2011).
[Crossref]

ACS Appl. Mater. Interfaces (1)

X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

R. H. Que, M. W. Shao, S. J. Zhuo, C. Y. Wen, S. D. Wang, and S.-T. Lee, “Highly reproducible surface-enhanced Raman scattering on a capillarity-assisted gold nanoparticle assembly,” Adv. Funct. Mater. 21(17), 3337–3343 (2011).
[Crossref]

Anal. Methods (1)

Y. P. Liu, Z. W. Lu, W. L. Hasi, H. Zhao, L. Bao, and F. Yang, “Self-assembled activated carbon nanoparticles for reliable time-discretized quantitative surface enhanced Raman spectroscopy,” Anal. Methods 9(47), 6622–6628 (2017).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, and B. Ren, “Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards,” Angew. Chem. Int. Ed. Engl. 54(25), 7308–7312 (2015).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

E. C. Le Ru and P. G. Etchegoin, “Single-molecule surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem. 63(1), 65–87 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

P. Gao, N. Yao, C. T. Wang, Z. Y. Zhao, Y. F. Luo, Y. Q. Wang, G. H. Gao, K. P. Liu, C. W. Zhao, and X. G. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

S. G. Zhang, X. W. Zhang, X. Liu, Z. G. Yin, H. L. Gao, and Y. J. Zhao, “Raman peak enhancement and shift of few-layer graphene induced by plasmonic coupling with silver nanoparticles,” Appl. Phys. Lett. 104(12), 121109 (2014).
[Crossref]

Carbon (3)

T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. L. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

J. Zhang, X. Zhang, S. Chen, T. Gong, and Y. Zhu, “Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles,” Carbon 100, 395–407 (2016).
[Crossref]

Chem. Phys. Lett. (1)

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the [E](4) enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423(1–3), 63–66 (2006).
[Crossref]

Chem. Soc. Rev. (2)

J. F. Li, J. R. Anema, T. Wandlowski, and Z. Q. Tian, “Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications,” Chem. Soc. Rev. 44(23), 8399–8409 (2015).
[Crossref] [PubMed]

S. E. J. Bell and N. M. S. Sirimuthu, “Quantitative surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 37(5), 1012–1024 (2008).
[Crossref] [PubMed]

Faraday Discuss. (1)

H. Wei, A. McCarthy, J. Song, W. Zhou, and P. J. Vikesland, “Quantitative SERS by hot spot normalization - surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance,” Faraday Discuss. 205, 491–504 (2017).
[Crossref] [PubMed]

Langmuir (1)

A. B. Serrano-Montes, D. Jimenez de Aberasturi, J. Langer, J. J. Giner-Casares, L. Scarabelli, A. Herrero, and L. M. Liz-Marzán, “A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers,” Langmuir 31(33), 9205–9213 (2015).
[Crossref] [PubMed]

Nano Lett. (2)

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

L. G. Cançado, A. Jorio, E. H. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11(8), 3190–3196 (2011).
[Crossref] [PubMed]

Nanoscale (2)

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, B. Man, and B. Y. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. C. Ho, K. Zhao, and T.-Y. Lee, “Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere Lithography,” Nanoscale 6(15), 8606–8611 (2014).
[Crossref] [PubMed]

Opt. Express (4)

Phys. Chem. Chem. Phys. (1)

S. L. Kleinman, R. R. Frontiera, A.-I. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15(1), 21–36 (2013).
[Crossref] [PubMed]

Phys. Rep. (1)

L. M. Malard, M. A. Mpimenta, and G. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5), 51–87 (2009).

Phys. Rev. Lett. (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

RSC Advances (1)

Y. Ryu, G. Kang, C.-W. Lee, and K. Kim, “Porous metallic nanocone arrays for high-density SERS hot spots via solvent-assisted nanoimprint lithography of block copolymer,” RSC Advances 5(93), 76085–76091 (2015).
[Crossref]

Sci. Rep. (3)

B. Radha, S. H. Lim, M. S. M. Saifullah, and G. U. Kulkarni, “Metal hierarchical patterning by direct nanoimprint lithography,” Sci. Rep. 3(1), 1078 (2013).
[Crossref] [PubMed]

J. Quan, J. Zhang, X. Qi, J. Li, N. Wang, and Y. Zhu, “A study on the correlation between the dewetting temperature of Ag film and SERS intensity,” Sci. Rep. 7(1), 14771 (2017).
[Crossref] [PubMed]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

C. Zhang, C. H. Lia, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

Small Methods (1)

H. H. Tian, N. Zhang, L. M. Tong, and J. Zhang, “In situ quantitative graphene-based surface-enhanced Raman spectroscopy,” Small Methods 1(6), 1700126 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) The schematic image of GE/AgNHs, area A is Ag film, area B is Ag nanoholes, area C is the transferred graphene. The amplified area B is also shown, the period of Ag nanoholes is 300 nm, the height of holes is 70 nm. (b) The SEM image of area B, and (c) the enlarged SEM image of area B. (d) The Raman signals of graphene on SiO2 (black line) and Ag nanoholes (red line), the corresponding optical images are inserted. (e) Electrical field distribution at the top surface of GE/AgNHs, with FDTD.
Fig. 2
Fig. 2 (a) Scheme of quantitative analysis using GE/AgNHs structures; (b) a representative Raman signal of R6G on GE/AgNHs sample, one Raman peak of R6G is labelled with red pentagram, while that of graphene labelled with blue star. The parameter k is used to show the normalized Raman intensity. (c) Several Raman signals of different concentration in the range of 10−15 M to 10−10 M. Raman intensity of graphene on SiO2 is inset with a black line. (d) The Raman intensity and normalized intensity (2D peak as internal standard) change with R6G concentration; the linear fit of k is shown in red dot line, with R2 of 97%.
Fig. 3
Fig. 3 (a) The averaged Raman intensity of R6G with concentration of 10−12 M; (b) Raman mapping data of R6G; (c) probability density function of the normalized intensity (data at 613 cm−1 used), showing a good lognormal distribution with a lognormal median at k = 1.43. The corresponding RSD of (d1) Raman intensity at 613 cm−1 and (d2) the calculated parameter k. The corresponding RSD of (e1) Raman intensity at 773 cm−1 and (e2) the calculated parameter k.
Fig. 4
Fig. 4 (a) The averaged Raman intensity of R6G with different concentration in the range of 10−15 M to 10−10 M. (b) Some representative Raman mapping spectra of R6G with concentration of 10−11 M. The Raman intensity and normalized intensity k change with R6G concentration at (c) 613 cm−1 and (d) 773 cm−1. Red dots are the averaged k with a linear fit, while black squares are the averaged Raman intensity. The corresponding error bar is also shown.

Metrics