Abstract

Coherence-restored pulse interferometry (CRPI) is a recently developed method for optical detection of ultrasound that achieves shot-noise-limited sensitivity and high dynamic range. In principle, the wideband source employed in CRPI may enable the interrogation of multiple detectors by using wavelength multiplexing. However, the noise-reduction scheme in CRPI has not been shown to be compatible with wideband operation. In this work, we introduce a new scheme for CRPI that relies on a free-space Fabry-Pérot filter for noise reduction and a pulse stretcher for reducing nonlinear effects. Using our scheme, we demonstrate that shot-noise-limited detection may be achieved for a spectral band of 80 nm and powers of up to 5 mW.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wideband optical sensing using pulse interferometry

Amir Rosenthal, Daniel Razansky, and Vasilis Ntziachristos
Opt. Express 20(17) 19016-19029 (2012)

Low noise chirped pulse mode-locked laser using an intra-cavity Fabry-Pérot etalon

Dimitrios Mandridis, Charles Williams, Ibrahim Ozdur, and Peter J. Delfyett
Opt. Express 19(10) 8994-8999 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9(4), 219–227 (2015).
    [Crossref]
  2. B. Dong, H. Li, Z. Zhang, K. Zhang, S. Chen, C. Sun, and H. F. Zhang, “Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection,” Optica 2(2), 169–176 (2015).
    [Crossref] [PubMed]
  3. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  4. G. Wissmeyer, D. Soliman, R. Shnaiderman, A. Rosenthal, and V. Ntziachristos, “All-optical optoacoustic microscope based on wideband pulse interferometry,” Opt. Lett. 41(9), 1953–1956 (2016).
    [Crossref] [PubMed]
  5. M. Liu, B. Maurer, B. Hermann, B. Zabihian, M. G. Sandrian, A. Unterhuber, B. Baumann, E. Z. Zhang, P. C. Beard, W. J. Weninger, and W. Drexler, “Dual modality optical coherence and whole-body photoacoustic tomography imaging of chick embryos in multiple development stages,” Biomed. Opt. Express 5(9), 3150–3159 (2014).
    [Crossref] [PubMed]
  6. E. Z. Zhang, B. Povazay, J. Laufer, A. Alex, B. Hofer, B. Pedley, C. Glittenberg, B. Treeby, B. Cox, P. Beard, and W. Drexler, “Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging,” Biomed. Opt. Express 2(8), 2202–2215 (2011).
    [Crossref] [PubMed]
  7. R. Haindl, S. Preisser, M. Andreana, W. Rohringer, C. Sturtzel, M. Distel, Z. Chen, E. Rank, B. Fischer, W. Drexler, and M. Liu, “Dual modality reflection mode optical coherence and photoacoustic microscopy using an akinetic sensor,” Opt. Lett. 42(21), 4319–4322 (2017).
    [Crossref] [PubMed]
  8. S. Preißer, B. Fischer, and N. Panzer, “Listening to Ultrasound with a Laser,” Optik Photonik 12(5), 22–25 (2017).
    [Crossref]
  9. D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys. 37(9), 4602–4607 (2010).
    [Crossref] [PubMed]
  10. S. Kellnberger, A. Hajiaboli, D. Razansky, and V. Ntziachristos, “Near-field thermoacoustic tomography of small animals,” Phys. Med. Biol. 56(11), 3433–3444 (2011).
    [Crossref] [PubMed]
  11. X. Feng, F. Gao, R. Kishor, and Y. Zheng, “Coexisting and mixing phenomena of thermoacoustic and magnetoacoustic waves in water,” Sci. Rep. 5(1), 11489 (2015).
    [Crossref] [PubMed]
  12. S. Kellnberger, A. Rosenthal, A. Myklatun, G. G. Westmeyer, G. Sergiadis, and V. Ntziachristos, “Magnetoacoustic Sensing of Magnetic Nanoparticles,” Phys. Rev. Lett. 116(10), 108103 (2016).
    [Crossref] [PubMed]
  13. J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 160–169 (2000).
    [Crossref] [PubMed]
  14. C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
    [Crossref] [PubMed]
  15. E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
    [Crossref] [PubMed]
  16. S. L. Chen, S. W. Huang, T. Ling, S. Ashkenazi, and L. J. Guo, “Polymer microring resonators for high-sensitivity and wideband photoacoustic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2482–2491 (2009).
    [Crossref] [PubMed]
  17. A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett. 36(10), 1833–1835 (2011).
    [Crossref] [PubMed]
  18. A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104(2), 021116 (2014).
    [Crossref]
  19. F. G. Peternella, B. Ouyang, R. Horsten, M. Haverdings, P. Kat, and J. Caro, “Interrogation of a ring-resonator ultrasound sensor using a fiber Mach-Zehnder interferometer,” Opt. Express 25(25), 31622–31639 (2017).
    [Crossref] [PubMed]
  20. S. Preisser, W. Rohringer, M. Liu, C. Kollmann, S. Zotter, B. Fischer, and W. Drexler, “All-optical highly sensitive akinetic sensor for ultrasound detection and photoacoustic imaging,” Biomed. Opt. Express 7(10), 4171–4186 (2016).
    [Crossref] [PubMed]
  21. B. Fischer, “Optical microphone hears ultrasound,” Nat. Photonics 10, 356 (2016).
  22. H. Grün, T. Berer, R. Nuster, G. Paltauf, and P. Burgholzer, “Fiber-based detectors for photoacoustic imaging,” J. Biomed. Opt. 7371, 73710T (2009).
  23. H. Grün, T. Berer, P. Burgholzer, R. Nuster, and G. Paltauf, “Three-dimensional photoacoustic imaging using fiber-based line detectors,” J. Biomed. Opt. 15(2), 021306 (2010).
    [Crossref] [PubMed]
  24. A. Rosenthal, S. Kellnberger, D. Bozhko, A. Chekkoury, M. Omar, D. Razansky, and V. Ntziachristos, “Sensitive interferometric detection of ultrasound for minimally invasive clinical imaging applications,” Laser Photonics Rev. 8(3), 450–457 (2014).
    [Crossref]
  25. M. A. Tadayon and S. Ashkenazi, “Optical micromachined ultrasound transducers (OMUT)--a new approach for high-frequency transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(9), 2021–2030 (2013).
    [Crossref] [PubMed]
  26. S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5(1), 14328 (2015).
    [Crossref] [PubMed]
  27. S. Avino, J. A. Barnes, G. Gagliardi, X. Gu, D. Gutstein, J. R. Mester, C. Nicholaou, and H.-P. Loock, “Musical instrument pickup based on a laser locked to an optical fiber resonator,” Opt. Express 19(25), 25057–25065 (2011).
    [Crossref] [PubMed]
  28. J. Bauer-Marschallinger, K. Felbermayer, K.-D. Bouchal, I. A. Veres, H. Grün, P. Burgholzer, and T. Berer, eds., Photoacoustic projection imaging using a 64-channel fiber optic detector array (SPIE, 2015).
  29. H. Gabai, I. Steinberg, and A. Eyal, “Multiplexing of fiber-optic ultrasound sensors via swept frequency interferometry,” Opt. Express 23(15), 18915–18924 (2015).
    [Crossref] [PubMed]
  30. N. Huynh, E. Zhang, M. Betcke, S. Arridge, P. Beard, and B. Cox, “Single-pixel optical camera for video rate ultrasonic imaging,” Optica 3(1), 26–29 (2016).
    [Crossref]
  31. Y. Hazan and A. Rosenthal, “Passive-demodulation pulse interferometry for ultrasound detection with a high dynamic range,” Opt. Lett. 43(5), 1039–1042 (2018).
    [Crossref] [PubMed]
  32. A. Rosenthal, D. Razansky, and V. Ntziachristos, “Wideband optical sensing using pulse interferometry,” Opt. Express 20(17), 19016–19029 (2012).
    [Crossref] [PubMed]
  33. G. P. Agrawal, Nonlinear fiber optics, fifth edition, 5th ed. (Academic Press, 2013).
  34. B. Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y. Emelianov, “Intravascular Photoacoustic Imaging,” IEEE J. Quantum Electron. 16(3), 588–599 (2010).
    [Crossref] [PubMed]
  35. M. Omar, J. Gateau, and V. Ntziachristos, “Raster-scan optoacoustic mesoscopy in the 25-125 MHz range,” Opt. Lett. 38(14), 2472–2474 (2013).
    [Crossref] [PubMed]
  36. A. Rosenthal, S. Kellnberger, G. Sergiadis, and V. Ntziachristos, “Wideband Fiber-Interferometer Stabilization With Variable Phase,” IEEE Photonics Technol. Lett. 24(17), 1499–1501 (2012).
    [Crossref]
  37. A. Yariv and P. Yeh, Photonics. Optical electronics in modern communications, 6th ed. (Oxford University, 2007).

2018 (1)

2017 (3)

2016 (5)

2015 (5)

H. Gabai, I. Steinberg, and A. Eyal, “Multiplexing of fiber-optic ultrasound sensors via swept frequency interferometry,” Opt. Express 23(15), 18915–18924 (2015).
[Crossref] [PubMed]

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5(1), 14328 (2015).
[Crossref] [PubMed]

A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9(4), 219–227 (2015).
[Crossref]

B. Dong, H. Li, Z. Zhang, K. Zhang, S. Chen, C. Sun, and H. F. Zhang, “Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection,” Optica 2(2), 169–176 (2015).
[Crossref] [PubMed]

X. Feng, F. Gao, R. Kishor, and Y. Zheng, “Coexisting and mixing phenomena of thermoacoustic and magnetoacoustic waves in water,” Sci. Rep. 5(1), 11489 (2015).
[Crossref] [PubMed]

2014 (3)

M. Liu, B. Maurer, B. Hermann, B. Zabihian, M. G. Sandrian, A. Unterhuber, B. Baumann, E. Z. Zhang, P. C. Beard, W. J. Weninger, and W. Drexler, “Dual modality optical coherence and whole-body photoacoustic tomography imaging of chick embryos in multiple development stages,” Biomed. Opt. Express 5(9), 3150–3159 (2014).
[Crossref] [PubMed]

A. Rosenthal, S. Kellnberger, D. Bozhko, A. Chekkoury, M. Omar, D. Razansky, and V. Ntziachristos, “Sensitive interferometric detection of ultrasound for minimally invasive clinical imaging applications,” Laser Photonics Rev. 8(3), 450–457 (2014).
[Crossref]

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104(2), 021116 (2014).
[Crossref]

2013 (2)

M. A. Tadayon and S. Ashkenazi, “Optical micromachined ultrasound transducers (OMUT)--a new approach for high-frequency transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(9), 2021–2030 (2013).
[Crossref] [PubMed]

M. Omar, J. Gateau, and V. Ntziachristos, “Raster-scan optoacoustic mesoscopy in the 25-125 MHz range,” Opt. Lett. 38(14), 2472–2474 (2013).
[Crossref] [PubMed]

2012 (3)

A. Rosenthal, S. Kellnberger, G. Sergiadis, and V. Ntziachristos, “Wideband Fiber-Interferometer Stabilization With Variable Phase,” IEEE Photonics Technol. Lett. 24(17), 1499–1501 (2012).
[Crossref]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Wideband optical sensing using pulse interferometry,” Opt. Express 20(17), 19016–19029 (2012).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (3)

H. Grün, T. Berer, P. Burgholzer, R. Nuster, and G. Paltauf, “Three-dimensional photoacoustic imaging using fiber-based line detectors,” J. Biomed. Opt. 15(2), 021306 (2010).
[Crossref] [PubMed]

B. Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y. Emelianov, “Intravascular Photoacoustic Imaging,” IEEE J. Quantum Electron. 16(3), 588–599 (2010).
[Crossref] [PubMed]

D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys. 37(9), 4602–4607 (2010).
[Crossref] [PubMed]

2009 (2)

H. Grün, T. Berer, R. Nuster, G. Paltauf, and P. Burgholzer, “Fiber-based detectors for photoacoustic imaging,” J. Biomed. Opt. 7371, 73710T (2009).

S. L. Chen, S. W. Huang, T. Ling, S. Ashkenazi, and L. J. Guo, “Polymer microring resonators for high-sensitivity and wideband photoacoustic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2482–2491 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
[Crossref] [PubMed]

2000 (1)

J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 160–169 (2000).
[Crossref] [PubMed]

Alex, A.

Andreana, M.

Arridge, S.

Ashkenazi, S.

M. A. Tadayon and S. Ashkenazi, “Optical micromachined ultrasound transducers (OMUT)--a new approach for high-frequency transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(9), 2021–2030 (2013).
[Crossref] [PubMed]

S. L. Chen, S. W. Huang, T. Ling, S. Ashkenazi, and L. J. Guo, “Polymer microring resonators for high-sensitivity and wideband photoacoustic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2482–2491 (2009).
[Crossref] [PubMed]

C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
[Crossref] [PubMed]

Avino, S.

Barnes, J. A.

Baumann, B.

Beard, P.

Beard, P. C.

Berer, T.

H. Grün, T. Berer, P. Burgholzer, R. Nuster, and G. Paltauf, “Three-dimensional photoacoustic imaging using fiber-based line detectors,” J. Biomed. Opt. 15(2), 021306 (2010).
[Crossref] [PubMed]

H. Grün, T. Berer, R. Nuster, G. Paltauf, and P. Burgholzer, “Fiber-based detectors for photoacoustic imaging,” J. Biomed. Opt. 7371, 73710T (2009).

Betcke, M.

Bozhko, D.

A. Rosenthal, S. Kellnberger, D. Bozhko, A. Chekkoury, M. Omar, D. Razansky, and V. Ntziachristos, “Sensitive interferometric detection of ultrasound for minimally invasive clinical imaging applications,” Laser Photonics Rev. 8(3), 450–457 (2014).
[Crossref]

Buma, T.

J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 160–169 (2000).
[Crossref] [PubMed]

Burgholzer, P.

H. Grün, T. Berer, P. Burgholzer, R. Nuster, and G. Paltauf, “Three-dimensional photoacoustic imaging using fiber-based line detectors,” J. Biomed. Opt. 15(2), 021306 (2010).
[Crossref] [PubMed]

H. Grün, T. Berer, R. Nuster, G. Paltauf, and P. Burgholzer, “Fiber-based detectors for photoacoustic imaging,” J. Biomed. Opt. 7371, 73710T (2009).

Caro, J.

Chao, C. Y.

C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
[Crossref] [PubMed]

Chekkoury, A.

A. Rosenthal, S. Kellnberger, D. Bozhko, A. Chekkoury, M. Omar, D. Razansky, and V. Ntziachristos, “Sensitive interferometric detection of ultrasound for minimally invasive clinical imaging applications,” Laser Photonics Rev. 8(3), 450–457 (2014).
[Crossref]

Chen, S.

Chen, S. L.

S. L. Chen, S. W. Huang, T. Ling, S. Ashkenazi, and L. J. Guo, “Polymer microring resonators for high-sensitivity and wideband photoacoustic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2482–2491 (2009).
[Crossref] [PubMed]

Chen, Z.

Cox, B.

de Jong, N.

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5(1), 14328 (2015).
[Crossref] [PubMed]

Distel, M.

Dong, B.

Drexler, W.

Emelianov, S. Y.

B. Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y. Emelianov, “Intravascular Photoacoustic Imaging,” IEEE J. Quantum Electron. 16(3), 588–599 (2010).
[Crossref] [PubMed]

Estrada, H.

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104(2), 021116 (2014).
[Crossref]

Eyal, A.

Feng, X.

X. Feng, F. Gao, R. Kishor, and Y. Zheng, “Coexisting and mixing phenomena of thermoacoustic and magnetoacoustic waves in water,” Sci. Rep. 5(1), 11489 (2015).
[Crossref] [PubMed]

Fischer, B.

Gabai, H.

Gagliardi, G.

Gao, F.

X. Feng, F. Gao, R. Kishor, and Y. Zheng, “Coexisting and mixing phenomena of thermoacoustic and magnetoacoustic waves in water,” Sci. Rep. 5(1), 11489 (2015).
[Crossref] [PubMed]

Gateau, J.

Glittenberg, C.

Grün, H.

H. Grün, T. Berer, P. Burgholzer, R. Nuster, and G. Paltauf, “Three-dimensional photoacoustic imaging using fiber-based line detectors,” J. Biomed. Opt. 15(2), 021306 (2010).
[Crossref] [PubMed]

H. Grün, T. Berer, R. Nuster, G. Paltauf, and P. Burgholzer, “Fiber-based detectors for photoacoustic imaging,” J. Biomed. Opt. 7371, 73710T (2009).

Gu, X.

Guo, L. J.

S. L. Chen, S. W. Huang, T. Ling, S. Ashkenazi, and L. J. Guo, “Polymer microring resonators for high-sensitivity and wideband photoacoustic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2482–2491 (2009).
[Crossref] [PubMed]

C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
[Crossref] [PubMed]

Gutstein, D.

Haindl, R.

Hajiaboli, A.

S. Kellnberger, A. Hajiaboli, D. Razansky, and V. Ntziachristos, “Near-field thermoacoustic tomography of small animals,” Phys. Med. Biol. 56(11), 3433–3444 (2011).
[Crossref] [PubMed]

Hamilton, J. D.

J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 160–169 (2000).
[Crossref] [PubMed]

Haverdings, M.

Hazan, Y.

Hermann, B.

Hofer, B.

Horsten, R.

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Huang, S. W.

S. L. Chen, S. W. Huang, T. Ling, S. Ashkenazi, and L. J. Guo, “Polymer microring resonators for high-sensitivity and wideband photoacoustic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2482–2491 (2009).
[Crossref] [PubMed]

C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
[Crossref] [PubMed]

Huynh, N.

Karpiouk, A. B.

B. Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y. Emelianov, “Intravascular Photoacoustic Imaging,” IEEE J. Quantum Electron. 16(3), 588–599 (2010).
[Crossref] [PubMed]

Kat, P.

Kellnberger, S.

S. Kellnberger, A. Rosenthal, A. Myklatun, G. G. Westmeyer, G. Sergiadis, and V. Ntziachristos, “Magnetoacoustic Sensing of Magnetic Nanoparticles,” Phys. Rev. Lett. 116(10), 108103 (2016).
[Crossref] [PubMed]

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104(2), 021116 (2014).
[Crossref]

A. Rosenthal, S. Kellnberger, D. Bozhko, A. Chekkoury, M. Omar, D. Razansky, and V. Ntziachristos, “Sensitive interferometric detection of ultrasound for minimally invasive clinical imaging applications,” Laser Photonics Rev. 8(3), 450–457 (2014).
[Crossref]

A. Rosenthal, S. Kellnberger, G. Sergiadis, and V. Ntziachristos, “Wideband Fiber-Interferometer Stabilization With Variable Phase,” IEEE Photonics Technol. Lett. 24(17), 1499–1501 (2012).
[Crossref]

S. Kellnberger, A. Hajiaboli, D. Razansky, and V. Ntziachristos, “Near-field thermoacoustic tomography of small animals,” Phys. Med. Biol. 56(11), 3433–3444 (2011).
[Crossref] [PubMed]

D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys. 37(9), 4602–4607 (2010).
[Crossref] [PubMed]

Kishor, R.

X. Feng, F. Gao, R. Kishor, and Y. Zheng, “Coexisting and mixing phenomena of thermoacoustic and magnetoacoustic waves in water,” Sci. Rep. 5(1), 11489 (2015).
[Crossref] [PubMed]

Kollmann, C.

Laufer, J.

Leinders, S. M.

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5(1), 14328 (2015).
[Crossref] [PubMed]

Li, H.

Ling, T.

S. L. Chen, S. W. Huang, T. Ling, S. Ashkenazi, and L. J. Guo, “Polymer microring resonators for high-sensitivity and wideband photoacoustic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2482–2491 (2009).
[Crossref] [PubMed]

Liu, M.

Loock, H.-P.

Maurer, B.

Mester, J. R.

Myklatun, A.

S. Kellnberger, A. Rosenthal, A. Myklatun, G. G. Westmeyer, G. Sergiadis, and V. Ntziachristos, “Magnetoacoustic Sensing of Magnetic Nanoparticles,” Phys. Rev. Lett. 116(10), 108103 (2016).
[Crossref] [PubMed]

Nicholaou, C.

Ntziachristos, V.

S. Kellnberger, A. Rosenthal, A. Myklatun, G. G. Westmeyer, G. Sergiadis, and V. Ntziachristos, “Magnetoacoustic Sensing of Magnetic Nanoparticles,” Phys. Rev. Lett. 116(10), 108103 (2016).
[Crossref] [PubMed]

G. Wissmeyer, D. Soliman, R. Shnaiderman, A. Rosenthal, and V. Ntziachristos, “All-optical optoacoustic microscope based on wideband pulse interferometry,” Opt. Lett. 41(9), 1953–1956 (2016).
[Crossref] [PubMed]

A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9(4), 219–227 (2015).
[Crossref]

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104(2), 021116 (2014).
[Crossref]

A. Rosenthal, S. Kellnberger, D. Bozhko, A. Chekkoury, M. Omar, D. Razansky, and V. Ntziachristos, “Sensitive interferometric detection of ultrasound for minimally invasive clinical imaging applications,” Laser Photonics Rev. 8(3), 450–457 (2014).
[Crossref]

M. Omar, J. Gateau, and V. Ntziachristos, “Raster-scan optoacoustic mesoscopy in the 25-125 MHz range,” Opt. Lett. 38(14), 2472–2474 (2013).
[Crossref] [PubMed]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Wideband optical sensing using pulse interferometry,” Opt. Express 20(17), 19016–19029 (2012).
[Crossref] [PubMed]

A. Rosenthal, S. Kellnberger, G. Sergiadis, and V. Ntziachristos, “Wideband Fiber-Interferometer Stabilization With Variable Phase,” IEEE Photonics Technol. Lett. 24(17), 1499–1501 (2012).
[Crossref]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett. 36(10), 1833–1835 (2011).
[Crossref] [PubMed]

S. Kellnberger, A. Hajiaboli, D. Razansky, and V. Ntziachristos, “Near-field thermoacoustic tomography of small animals,” Phys. Med. Biol. 56(11), 3433–3444 (2011).
[Crossref] [PubMed]

D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys. 37(9), 4602–4607 (2010).
[Crossref] [PubMed]

Nuster, R.

H. Grün, T. Berer, P. Burgholzer, R. Nuster, and G. Paltauf, “Three-dimensional photoacoustic imaging using fiber-based line detectors,” J. Biomed. Opt. 15(2), 021306 (2010).
[Crossref] [PubMed]

H. Grün, T. Berer, R. Nuster, G. Paltauf, and P. Burgholzer, “Fiber-based detectors for photoacoustic imaging,” J. Biomed. Opt. 7371, 73710T (2009).

O’Brien, P.

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5(1), 14328 (2015).
[Crossref] [PubMed]

O’Donnell, M.

C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
[Crossref] [PubMed]

J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 160–169 (2000).
[Crossref] [PubMed]

Omar, M.

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104(2), 021116 (2014).
[Crossref]

A. Rosenthal, S. Kellnberger, D. Bozhko, A. Chekkoury, M. Omar, D. Razansky, and V. Ntziachristos, “Sensitive interferometric detection of ultrasound for minimally invasive clinical imaging applications,” Laser Photonics Rev. 8(3), 450–457 (2014).
[Crossref]

M. Omar, J. Gateau, and V. Ntziachristos, “Raster-scan optoacoustic mesoscopy in the 25-125 MHz range,” Opt. Lett. 38(14), 2472–2474 (2013).
[Crossref] [PubMed]

Ouyang, B.

Paltauf, G.

H. Grün, T. Berer, P. Burgholzer, R. Nuster, and G. Paltauf, “Three-dimensional photoacoustic imaging using fiber-based line detectors,” J. Biomed. Opt. 15(2), 021306 (2010).
[Crossref] [PubMed]

H. Grün, T. Berer, R. Nuster, G. Paltauf, and P. Burgholzer, “Fiber-based detectors for photoacoustic imaging,” J. Biomed. Opt. 7371, 73710T (2009).

Panzer, N.

S. Preißer, B. Fischer, and N. Panzer, “Listening to Ultrasound with a Laser,” Optik Photonik 12(5), 22–25 (2017).
[Crossref]

Pedley, B.

Peternella, F. G.

Povazay, B.

Pozo, J.

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5(1), 14328 (2015).
[Crossref] [PubMed]

Preißer, S.

S. Preißer, B. Fischer, and N. Panzer, “Listening to Ultrasound with a Laser,” Optik Photonik 12(5), 22–25 (2017).
[Crossref]

Preisser, S.

Rank, E.

Razansky, D.

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104(2), 021116 (2014).
[Crossref]

A. Rosenthal, S. Kellnberger, D. Bozhko, A. Chekkoury, M. Omar, D. Razansky, and V. Ntziachristos, “Sensitive interferometric detection of ultrasound for minimally invasive clinical imaging applications,” Laser Photonics Rev. 8(3), 450–457 (2014).
[Crossref]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Wideband optical sensing using pulse interferometry,” Opt. Express 20(17), 19016–19029 (2012).
[Crossref] [PubMed]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett. 36(10), 1833–1835 (2011).
[Crossref] [PubMed]

S. Kellnberger, A. Hajiaboli, D. Razansky, and V. Ntziachristos, “Near-field thermoacoustic tomography of small animals,” Phys. Med. Biol. 56(11), 3433–3444 (2011).
[Crossref] [PubMed]

D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys. 37(9), 4602–4607 (2010).
[Crossref] [PubMed]

Rohringer, W.

Rosenthal, A.

Y. Hazan and A. Rosenthal, “Passive-demodulation pulse interferometry for ultrasound detection with a high dynamic range,” Opt. Lett. 43(5), 1039–1042 (2018).
[Crossref] [PubMed]

G. Wissmeyer, D. Soliman, R. Shnaiderman, A. Rosenthal, and V. Ntziachristos, “All-optical optoacoustic microscope based on wideband pulse interferometry,” Opt. Lett. 41(9), 1953–1956 (2016).
[Crossref] [PubMed]

S. Kellnberger, A. Rosenthal, A. Myklatun, G. G. Westmeyer, G. Sergiadis, and V. Ntziachristos, “Magnetoacoustic Sensing of Magnetic Nanoparticles,” Phys. Rev. Lett. 116(10), 108103 (2016).
[Crossref] [PubMed]

A. Rosenthal, S. Kellnberger, D. Bozhko, A. Chekkoury, M. Omar, D. Razansky, and V. Ntziachristos, “Sensitive interferometric detection of ultrasound for minimally invasive clinical imaging applications,” Laser Photonics Rev. 8(3), 450–457 (2014).
[Crossref]

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104(2), 021116 (2014).
[Crossref]

A. Rosenthal, S. Kellnberger, G. Sergiadis, and V. Ntziachristos, “Wideband Fiber-Interferometer Stabilization With Variable Phase,” IEEE Photonics Technol. Lett. 24(17), 1499–1501 (2012).
[Crossref]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Wideband optical sensing using pulse interferometry,” Opt. Express 20(17), 19016–19029 (2012).
[Crossref] [PubMed]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett. 36(10), 1833–1835 (2011).
[Crossref] [PubMed]

Sandrian, M. G.

Sergiadis, G.

S. Kellnberger, A. Rosenthal, A. Myklatun, G. G. Westmeyer, G. Sergiadis, and V. Ntziachristos, “Magnetoacoustic Sensing of Magnetic Nanoparticles,” Phys. Rev. Lett. 116(10), 108103 (2016).
[Crossref] [PubMed]

A. Rosenthal, S. Kellnberger, G. Sergiadis, and V. Ntziachristos, “Wideband Fiber-Interferometer Stabilization With Variable Phase,” IEEE Photonics Technol. Lett. 24(17), 1499–1501 (2012).
[Crossref]

Shnaiderman, R.

Smalling, R. W.

B. Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y. Emelianov, “Intravascular Photoacoustic Imaging,” IEEE J. Quantum Electron. 16(3), 588–599 (2010).
[Crossref] [PubMed]

Snyder, B.

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5(1), 14328 (2015).
[Crossref] [PubMed]

Sokolov, K. V.

B. Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y. Emelianov, “Intravascular Photoacoustic Imaging,” IEEE J. Quantum Electron. 16(3), 588–599 (2010).
[Crossref] [PubMed]

Soliman, D.

Spisar, M.

J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 160–169 (2000).
[Crossref] [PubMed]

Steinberg, I.

Sturtzel, C.

Su, J. L.

B. Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y. Emelianov, “Intravascular Photoacoustic Imaging,” IEEE J. Quantum Electron. 16(3), 588–599 (2010).
[Crossref] [PubMed]

Sun, C.

Tadayon, M. A.

M. A. Tadayon and S. Ashkenazi, “Optical micromachined ultrasound transducers (OMUT)--a new approach for high-frequency transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(9), 2021–2030 (2013).
[Crossref] [PubMed]

Taruttis, A.

A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9(4), 219–227 (2015).
[Crossref]

Treeby, B.

Unterhuber, A.

Urbach, H. P.

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5(1), 14328 (2015).
[Crossref] [PubMed]

van Neer, P. L. M. J.

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5(1), 14328 (2015).
[Crossref] [PubMed]

Verweij, M. D.

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5(1), 14328 (2015).
[Crossref] [PubMed]

Wang, B.

B. Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y. Emelianov, “Intravascular Photoacoustic Imaging,” IEEE J. Quantum Electron. 16(3), 588–599 (2010).
[Crossref] [PubMed]

Wang, L. V.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Weninger, W. J.

Westerveld, W. J.

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5(1), 14328 (2015).
[Crossref] [PubMed]

Westmeyer, G. G.

S. Kellnberger, A. Rosenthal, A. Myklatun, G. G. Westmeyer, G. Sergiadis, and V. Ntziachristos, “Magnetoacoustic Sensing of Magnetic Nanoparticles,” Phys. Rev. Lett. 116(10), 108103 (2016).
[Crossref] [PubMed]

Wissmeyer, G.

Zabihian, B.

Zhang, E.

Zhang, E. Z.

Zhang, H. F.

Zhang, K.

Zhang, Z.

Zheng, Y.

X. Feng, F. Gao, R. Kishor, and Y. Zheng, “Coexisting and mixing phenomena of thermoacoustic and magnetoacoustic waves in water,” Sci. Rep. 5(1), 11489 (2015).
[Crossref] [PubMed]

Zotter, S.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104(2), 021116 (2014).
[Crossref]

Biomed. Opt. Express (3)

IEEE J. Quantum Electron. (1)

B. Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y. Emelianov, “Intravascular Photoacoustic Imaging,” IEEE J. Quantum Electron. 16(3), 588–599 (2010).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (1)

A. Rosenthal, S. Kellnberger, G. Sergiadis, and V. Ntziachristos, “Wideband Fiber-Interferometer Stabilization With Variable Phase,” IEEE Photonics Technol. Lett. 24(17), 1499–1501 (2012).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (4)

M. A. Tadayon and S. Ashkenazi, “Optical micromachined ultrasound transducers (OMUT)--a new approach for high-frequency transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(9), 2021–2030 (2013).
[Crossref] [PubMed]

S. L. Chen, S. W. Huang, T. Ling, S. Ashkenazi, and L. J. Guo, “Polymer microring resonators for high-sensitivity and wideband photoacoustic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2482–2491 (2009).
[Crossref] [PubMed]

J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 160–169 (2000).
[Crossref] [PubMed]

C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

H. Grün, T. Berer, R. Nuster, G. Paltauf, and P. Burgholzer, “Fiber-based detectors for photoacoustic imaging,” J. Biomed. Opt. 7371, 73710T (2009).

H. Grün, T. Berer, P. Burgholzer, R. Nuster, and G. Paltauf, “Three-dimensional photoacoustic imaging using fiber-based line detectors,” J. Biomed. Opt. 15(2), 021306 (2010).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

A. Rosenthal, S. Kellnberger, D. Bozhko, A. Chekkoury, M. Omar, D. Razansky, and V. Ntziachristos, “Sensitive interferometric detection of ultrasound for minimally invasive clinical imaging applications,” Laser Photonics Rev. 8(3), 450–457 (2014).
[Crossref]

Med. Phys. (1)

D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys. 37(9), 4602–4607 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9(4), 219–227 (2015).
[Crossref]

B. Fischer, “Optical microphone hears ultrasound,” Nat. Photonics 10, 356 (2016).

Opt. Express (4)

Opt. Lett. (5)

Optica (2)

Optik Photonik (1)

S. Preißer, B. Fischer, and N. Panzer, “Listening to Ultrasound with a Laser,” Optik Photonik 12(5), 22–25 (2017).
[Crossref]

Phys. Med. Biol. (1)

S. Kellnberger, A. Hajiaboli, D. Razansky, and V. Ntziachristos, “Near-field thermoacoustic tomography of small animals,” Phys. Med. Biol. 56(11), 3433–3444 (2011).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

S. Kellnberger, A. Rosenthal, A. Myklatun, G. G. Westmeyer, G. Sergiadis, and V. Ntziachristos, “Magnetoacoustic Sensing of Magnetic Nanoparticles,” Phys. Rev. Lett. 116(10), 108103 (2016).
[Crossref] [PubMed]

Sci. Rep. (2)

X. Feng, F. Gao, R. Kishor, and Y. Zheng, “Coexisting and mixing phenomena of thermoacoustic and magnetoacoustic waves in water,” Sci. Rep. 5(1), 11489 (2015).
[Crossref] [PubMed]

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5(1), 14328 (2015).
[Crossref] [PubMed]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Other (3)

J. Bauer-Marschallinger, K. Felbermayer, K.-D. Bouchal, I. A. Veres, H. Grün, P. Burgholzer, and T. Berer, eds., Photoacoustic projection imaging using a 64-channel fiber optic detector array (SPIE, 2015).

G. P. Agrawal, Nonlinear fiber optics, fifth edition, 5th ed. (Academic Press, 2013).

A. Yariv and P. Yeh, Photonics. Optical electronics in modern communications, 6th ed. (Oxford University, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 A schematic of CRPI. EDFA is erbium-doped fiber amplifier; PZ is piezoelectric fiber stretcher; CRF is coherence-restoring filter; and π-FBG is π-phase-shifted fiber Bragg grating. The pulse train from the laser is filtered to a bandwidth of 0.4 nm, amplified, and further filtered by the CRF. Shifts of resonance of the π-FBG are measured by optical demodulator, implemented by a Mach-Zehnder interferometer locked to quadrature.
Fig. 2
Fig. 2 The CRF used in Fig. 1, which consists of input and output fiber collimators, lens-based collimation systems (L1-L4), the Fabry-Pérot cavity with a piezo actuator, and alignment mirrors. The piezo actuator controls the cavity length and the collimation systems are used match between the spatial modes of the fibers collimators and those of the cavity.
Fig. 3
Fig. 3 (a) The transmission spectrum of the CRF, as a function of frequency detuning measured with an optical spectrum analyzer with a resolution of 5 MHz. (b,c) The power transmission of the CRF in time when the piezo-actuator was scanned with a saw-tooth voltage signal. The measurement was performed with the source shown in Fig. 1, which had a typical linewidth 150 kHz for each of its spectral modes. The figures show that the CRF achieves a maximum transmission of 0.5 and a finesse of 335.
Fig. 4
Fig. 4 The spectrum of the pulse laser in Fig. 1 (red curve) compared to the spectrum at the output of the CRF when the pulse laser is connected directly to its input (blue curve). The repetition rate of the laser was finely tuned to match the FSR of the CRF. The light-blue area represent the 3dB level above the CRF output. The figure clearly shows that the CRF approximately maintains a −3dB trasmission across the entire 80 nm bandwidth of the laser.
Fig. 5
Fig. 5 The spectrum at the output of the π-FBG in the system in Fig. 1 with (red curve) and without (blue curve) the CRF for a power level of 250 mW at the input of the π-FBG. The figure shows that the CRF achieves noise rejection of at least 30 dB, down to the noise-floor level of the measurement.
Fig. 6
Fig. 6 Measured noise spectrum density (NSD) dependence on frequency for different system configuration: the interferometric system of Fig. 1 with and without CRF, and dark photodiode current.
Fig. 7
Fig. 7 (a) The resonance frequency shifts measured with the CRPI system due to ultrasound bursts with a central frequency of 15 MHz. The figure shows that the same signals were obtained with (blue curve) and without the CRF (red curve), but that the CRF measurement obtained a higher SNR. (b) The minimum detectable frequency shift ∆f in the 15-30 MHz band with (blue circles) and without (red circles) the CRF as a function of the power at the output of the π-FBG. When the CRF was not used ∆f was constant, indicating that classical optical noise is the main noise source in that scheme. In contrast, when the CRF was used, ∆f decreased linearly for powers below approximately 0.65 mW and in proportion to the square root of the power for powers above approximately 0.65 mW. The dashed line shows the extrapolation of ∆f for the hypothetical case of photodiode-noise-dominant measurement for all power levels.
Fig. 8
Fig. 8 The optical spectrum at the input of the π-FBG in Fig. 1 with (blue curve) and without (red curve) the pulse stretcher for a power level at the output of the EDFA of (a) 30 mW and (b) 500 mW. Significant spectral broadening due to SPM is observed for the higher power setting when the pulse stretcher was not used. In contrast, when the pulse stretcher was used, no broadening is observed.
Fig. 9
Fig. 9 The optical spectrum at the output of the 200 m single-mode fiber connected to the second optical filter in the CRPI setup (Fig. 1) obtained for following power levels at the output of the EDFA: (a) 22 mW, (b) 88 mW, (c) 350 mW. When the pulse stretcher was not used (red curve), significant broadening was observed for all power levels, whereas no broadening was obtained with the pulse stretcher (blue curve).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

FSR=c/2nd,
1( 1d/r )1.
[ A B C D ]=[ 1 2d r 2d 2 d 2 r 2 r 1 2d r ].
w in = λB πn [ 1 ( D+A 2 ) 2 ] 1/4 ,
w out = w in 1+ ( dλ πn w in 2 ) 2
T max = (1 R 1 )(1 R 2 ) (1 R 1 R 2 ) 2 ,
F=π 4 R 1 R 2 1 R 1 R 2 .
T min = (1 R 1 )(1 R 2 ) (1 R 1 R 2 ) 2 +4 R 1 R 2 .

Metrics