Abstract

A novel control concept for serial ring resonator arrays based on a time-division multiplex (TDM) approach is presented. It allows fast sampling rates in terms of biological kinetics. The novelty consists of using both thermal tuning of the effective refractive index and thermo-optical multiplexing for the silicon-on-insulator (SOI) ring resonator arrays, without the need for a tunable laser source. Using a fixed wavelength, fast read-out rates of 100 Hz are demonstrated for each ring.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
CBOSS: Bringing Traffic Engineering Inside Data Center Networks

N. Benzaoui, J. M. Estarán, E. Dutisseuil, H. Mardoyan, G. de Valicourt, A. Dupas, Q. Pham Van, D. Verchere, B. Ušćumlić, M. Szczerban Gonzalez, P. Dong, Y.-K. Chen, S. Bigo, and Y. Pointurier
J. Opt. Commun. Netw. 10(7) B117-B125 (2018)

Mid-infrared silicon photonic waveguides and devices [Invited]

Yi Zou, Swapnajit Chakravarty, Chi-Jui Chung, Xiaochuan Xu, and Ray T. Chen
Photon. Res. 6(4) 254-276 (2018)

Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides

Valentina Donzella, Ahmed Sherwali, Jonas Flueckiger, Samantha M. Grist, Sahba Talebi Fard, and Lukas Chrostowski
Opt. Express 23(4) 4791-4803 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Qavi, A. L. Washburn, J. Y. Byeon, and R. C. Bailey, “Label-free technologies for quantitative multiparameter biological analysis,” Anal. Bioanal. Chem. 394(1), 121–135 (2009).
    [Crossref] [PubMed]
  2. W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Actuators B Chem. 29(1-3), 37–50 (1995).
    [Crossref]
  3. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [Crossref] [PubMed]
  4. K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6(2), 209–220 (1989).
    [Crossref]
  5. B. J. Luff, J. S. Wilkinson, J. Piecher, U. Hollenbach, J. Ingenhoff, and N. Fabricius, “Integrated optical Mach-Zehnder biosensor,” J. Lightwave Technol. 16(4), 583–592 (1998).
    [Crossref]
  6. R. Heideman, R. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sens. Actuators B Chem. 10(3), 209–217 (1993).
    [Crossref]
  7. F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, and L. M. Lechuga, “Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuators B Chem. 92(1–2), 151–158 (2003).
    [Crossref]
  8. J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
    [Crossref]
  9. www.biacore.com
  10. C. Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24(3), 1395–1402 (2006).
    [Crossref]
  11. A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst (Lond.) 136(2), 227–236 (2011).
    [Crossref] [PubMed]
  12. M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84(2), 793–821 (2012).
    [Crossref] [PubMed]
  13. S. TalebiFard, S. Schmidt, W. Shi, W. Wu, N. A. F. Jaeger, E. Kwok, D. M. Ratner, and L. Chrostowski, “Optimized sensitivity of silicon-on-insulator (SOI) strip waveguide resonator sensor,” Biomed. Opt. Express 8(2), 500–511 (2017).
    [Crossref] [PubMed]
  14. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]
  15. J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032–1041 (2009).
    [Crossref]
  16. M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron. 46(8), 1158–1169 (2010).
    [Crossref]
  17. A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmidt, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
    [Crossref]
  18. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 1–27 (2011).
  19. J. H. Wade and R. C. Bailey, “Applications of optical microcavity resonators in analytical chemistry,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 9(1), 1–25 (2016).
    [Crossref] [PubMed]
  20. K. De Vos, J. G. Molera, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
    [Crossref]
  21. D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett. 35(16), 2771–2773 (2010).
    [Crossref] [PubMed]
  22. M. Iqbal, M. A. Gleeson, B. Spaugh, F. T. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
    [Crossref]
  23. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
    [Crossref] [PubMed]
  24. T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
    [Crossref] [PubMed]
  25. T. Claes, W. Bogaerts, and P. Bienstman, “Vernier-cascade label-free biosensor with integrated arrayed waveguide grating for wavelength interrogation with low-cost broadband source,” Opt. Lett. 36(17), 3320–3322 (2011).
    [Crossref] [PubMed]
  26. Customer Service, Keysight Technology, 130 Herrenberger Straße, Boeblingen, 71034, Germany (personal communication, 2018)
  27. M. Jäger, D. Volkmann, J. Bruns, and K. Petermann, “Multiplexed single wavelength biosensor for low cost applications,” Adv. Photonics, OSA Technical Digest (online), paper SeT1C.4 (2015).
  28. G. Cocorullo, F. Della Corte, I. Rendina, and P. M. Sarro, “Thermooptic effect exploitation in silicon microstructures,” Sens. Actuators A Phys. 71(1), 19–26 (1998).
    [Crossref]
  29. J. E. Saunders, C. Sanders, H. Chen, and H. P. Loock, “Refractive indices of common solvents and solutions at 1550 nm,” Appl. Opt. 55(4), 947–953 (2016).
    [Crossref] [PubMed]

2017 (1)

2016 (2)

J. H. Wade and R. C. Bailey, “Applications of optical microcavity resonators in analytical chemistry,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 9(1), 1–25 (2016).
[Crossref] [PubMed]

J. E. Saunders, C. Sanders, H. Chen, and H. P. Loock, “Refractive indices of common solvents and solutions at 1550 nm,” Appl. Opt. 55(4), 947–953 (2016).
[Crossref] [PubMed]

2012 (1)

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84(2), 793–821 (2012).
[Crossref] [PubMed]

2011 (3)

A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst (Lond.) 136(2), 227–236 (2011).
[Crossref] [PubMed]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 1–27 (2011).

T. Claes, W. Bogaerts, and P. Bienstman, “Vernier-cascade label-free biosensor with integrated arrayed waveguide grating for wavelength interrogation with low-cost broadband source,” Opt. Lett. 36(17), 3320–3322 (2011).
[Crossref] [PubMed]

2010 (4)

T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
[Crossref] [PubMed]

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett. 35(16), 2771–2773 (2010).
[Crossref] [PubMed]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. T. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron. 46(8), 1158–1169 (2010).
[Crossref]

2009 (3)

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032–1041 (2009).
[Crossref]

A. J. Qavi, A. L. Washburn, J. Y. Byeon, and R. C. Bailey, “Label-free technologies for quantitative multiparameter biological analysis,” Anal. Bioanal. Chem. 394(1), 121–135 (2009).
[Crossref] [PubMed]

K. De Vos, J. G. Molera, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

2008 (2)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (2)

C. Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24(3), 1395–1402 (2006).
[Crossref]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmidt, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

2003 (1)

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, and L. M. Lechuga, “Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuators B Chem. 92(1–2), 151–158 (2003).
[Crossref]

1999 (1)

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
[Crossref]

1998 (2)

B. J. Luff, J. S. Wilkinson, J. Piecher, U. Hollenbach, J. Ingenhoff, and N. Fabricius, “Integrated optical Mach-Zehnder biosensor,” J. Lightwave Technol. 16(4), 583–592 (1998).
[Crossref]

G. Cocorullo, F. Della Corte, I. Rendina, and P. M. Sarro, “Thermooptic effect exploitation in silicon microstructures,” Sens. Actuators A Phys. 71(1), 19–26 (1998).
[Crossref]

1995 (1)

W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Actuators B Chem. 29(1-3), 37–50 (1995).
[Crossref]

1993 (1)

R. Heideman, R. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sens. Actuators B Chem. 10(3), 209–217 (1993).
[Crossref]

1989 (1)

Adibi, A.

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron. 46(8), 1158–1169 (2010).
[Crossref]

Agarwal, A.

Baehr-Jones, T.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. T. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 1–27 (2011).

K. De Vos, J. G. Molera, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[Crossref] [PubMed]

Bailey, R. C.

J. H. Wade and R. C. Bailey, “Applications of optical microcavity resonators in analytical chemistry,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 9(1), 1–25 (2016).
[Crossref] [PubMed]

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84(2), 793–821 (2012).
[Crossref] [PubMed]

A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst (Lond.) 136(2), 227–236 (2011).
[Crossref] [PubMed]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. T. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

A. J. Qavi, A. L. Washburn, J. Y. Byeon, and R. C. Bailey, “Label-free technologies for quantitative multiparameter biological analysis,” Anal. Bioanal. Chem. 394(1), 121–135 (2009).
[Crossref] [PubMed]

Bartolozzi, I.

Bienstman, P.

Bogaerts, W.

Byeon, J. Y.

A. J. Qavi, A. L. Washburn, J. Y. Byeon, and R. C. Bailey, “Label-free technologies for quantitative multiparameter biological analysis,” Anal. Bioanal. Chem. 394(1), 121–135 (2009).
[Crossref] [PubMed]

Calle, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, and L. M. Lechuga, “Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuators B Chem. 92(1–2), 151–158 (2003).
[Crossref]

Chao, C. Y.

Cheben, P.

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett. 35(16), 2771–2773 (2010).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmidt, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Chen, H.

Chrostowski, L.

Claes, T.

T. Claes, W. Bogaerts, and P. Bienstman, “Vernier-cascade label-free biosensor with integrated arrayed waveguide grating for wavelength interrogation with low-cost broadband source,” Opt. Lett. 36(17), 3320–3322 (2011).
[Crossref] [PubMed]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 1–27 (2011).

T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
[Crossref] [PubMed]

K. De Vos, J. G. Molera, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

Cocorullo, G.

G. Cocorullo, F. Della Corte, I. Rendina, and P. M. Sarro, “Thermooptic effect exploitation in silicon microstructures,” Sens. Actuators A Phys. 71(1), 19–26 (1998).
[Crossref]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 1–27 (2011).

De Koninck, Y.

K. De Vos, J. G. Molera, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 1–27 (2011).

K. De Vos, J. G. Molera, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[Crossref] [PubMed]

Delâge, A.

Delge, A.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmidt, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Della Corte, F.

G. Cocorullo, F. Della Corte, I. Rendina, and P. M. Sarro, “Thermooptic effect exploitation in silicon microstructures,” Sens. Actuators A Phys. 71(1), 19–26 (1998).
[Crossref]

Densmore, A.

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett. 35(16), 2771–2773 (2010).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmidt, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Domínguez, C.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, and L. M. Lechuga, “Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuators B Chem. 92(1–2), 151–158 (2003).
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 1–27 (2011).

Fabricius, N.

Fan, X.

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Gauglitz, G.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
[Crossref]

Gleeson, M. A.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. T. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Greve, J.

R. Heideman, R. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sens. Actuators B Chem. 10(3), 209–217 (1993).
[Crossref]

Gunn, L. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. T. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Gunn, W. G.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. T. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Guo, L. J.

Heideman, R.

R. Heideman, R. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sens. Actuators B Chem. 10(3), 209–217 (1993).
[Crossref]

Hochberg, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. T. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Hollenbach, U.

Homola, J.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
[Crossref]

Hu, J.

Ingenhoff, J.

Iqbal, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. T. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Jaeger, N. A. F.

Janz, S.

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett. 35(16), 2771–2773 (2010).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmidt, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Kimerling, L. C.

Kooyman, R.

R. Heideman, R. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sens. Actuators B Chem. 10(3), 209–217 (1993).
[Crossref]

Kwok, E.

Lamontagne, B.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmidt, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Lapointe, J.

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett. 35(16), 2771–2773 (2010).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmidt, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Lechuga, L. M.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, and L. M. Lechuga, “Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuators B Chem. 92(1–2), 151–158 (2003).
[Crossref]

Li, Q.

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron. 46(8), 1158–1169 (2010).
[Crossref]

Li, Y.

Liu, Q. Y.

Llobera, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, and L. M. Lechuga, “Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuators B Chem. 92(1–2), 151–158 (2003).
[Crossref]

Loock, H. P.

Lopinski, G.

Luchansky, M. S.

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84(2), 793–821 (2012).
[Crossref] [PubMed]

Luff, B. J.

Lukosz, W.

W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Actuators B Chem. 29(1-3), 37–50 (1995).
[Crossref]

K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6(2), 209–220 (1989).
[Crossref]

Ma, R.

Molera, J. G.

K. De Vos, J. G. Molera, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

Piecher, J.

Popelka, S.

K. De Vos, J. G. Molera, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

Post, E.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmidt, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Prieto, F.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, and L. M. Lechuga, “Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuators B Chem. 92(1–2), 151–158 (2003).
[Crossref]

Qavi, A. J.

A. J. Qavi, A. L. Washburn, J. Y. Byeon, and R. C. Bailey, “Label-free technologies for quantitative multiparameter biological analysis,” Anal. Bioanal. Chem. 394(1), 121–135 (2009).
[Crossref] [PubMed]

Ratner, D. M.

Rendina, I.

G. Cocorullo, F. Della Corte, I. Rendina, and P. M. Sarro, “Thermooptic effect exploitation in silicon microstructures,” Sens. Actuators A Phys. 71(1), 19–26 (1998).
[Crossref]

Sanders, C.

Sarro, P. M.

G. Cocorullo, F. Della Corte, I. Rendina, and P. M. Sarro, “Thermooptic effect exploitation in silicon microstructures,” Sens. Actuators A Phys. 71(1), 19–26 (1998).
[Crossref]

Saunders, J. E.

Schacht, E.

K. De Vos, J. G. Molera, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[Crossref] [PubMed]

Schmid, J. H.

Schmidt, J. H.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmidt, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Schmidt, S.

Selvaraja, S. K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 1–27 (2011).

Sepúlveda, B.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, and L. M. Lechuga, “Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuators B Chem. 92(1–2), 151–158 (2003).
[Crossref]

Shi, W.

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Soltani, M.

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron. 46(8), 1158–1169 (2010).
[Crossref]

Spaugh, B.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. T. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Sun, X.

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

TalebiFard, S.

Tiefenthaler, K.

Tybor, F. T.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. T. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Vachon, M.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 1–27 (2011).

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 1–27 (2011).

Wade, J. H.

J. H. Wade and R. C. Bailey, “Applications of optical microcavity resonators in analytical chemistry,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 9(1), 1–25 (2016).
[Crossref] [PubMed]

Waldron, P.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmidt, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Washburn, A. L.

A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst (Lond.) 136(2), 227–236 (2011).
[Crossref] [PubMed]

A. J. Qavi, A. L. Washburn, J. Y. Byeon, and R. C. Bailey, “Label-free technologies for quantitative multiparameter biological analysis,” Anal. Bioanal. Chem. 394(1), 121–135 (2009).
[Crossref] [PubMed]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

Wilkinson, J. S.

Wu, W.

Xu, D.-X.

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett. 35(16), 2771–2773 (2010).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmidt, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Yee, S.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
[Crossref]

Yegnanarayanan, S.

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron. 46(8), 1158–1169 (2010).
[Crossref]

Zhang, D.

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

A. J. Qavi, A. L. Washburn, J. Y. Byeon, and R. C. Bailey, “Label-free technologies for quantitative multiparameter biological analysis,” Anal. Bioanal. Chem. 394(1), 121–135 (2009).
[Crossref] [PubMed]

Anal. Chem. (1)

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84(2), 793–821 (2012).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Analyst (Lond.) (1)

A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst (Lond.) 136(2), 227–236 (2011).
[Crossref] [PubMed]

Annu. Rev. Anal. Chem. (Palo Alto, Calif.) (1)

J. H. Wade and R. C. Bailey, “Applications of optical microcavity resonators in analytical chemistry,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 9(1), 1–25 (2016).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

IEEE J. Quantum Electron. (1)

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron. 46(8), 1158–1169 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Iqbal, M. A. Gleeson, B. Spaugh, F. T. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

IEEE Photonics J. (1)

K. De Vos, J. G. Molera, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmidt, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (2)

Laser Photonics Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 1–27 (2011).

Opt. Express (3)

Opt. Lett. (2)

Sens. Actuators A Phys. (1)

G. Cocorullo, F. Della Corte, I. Rendina, and P. M. Sarro, “Thermooptic effect exploitation in silicon microstructures,” Sens. Actuators A Phys. 71(1), 19–26 (1998).
[Crossref]

Sens. Actuators B Chem. (4)

W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Actuators B Chem. 29(1-3), 37–50 (1995).
[Crossref]

R. Heideman, R. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sens. Actuators B Chem. 10(3), 209–217 (1993).
[Crossref]

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, and L. M. Lechuga, “Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuators B Chem. 92(1–2), 151–158 (2003).
[Crossref]

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
[Crossref]

Other (3)

www.biacore.com

Customer Service, Keysight Technology, 130 Herrenberger Straße, Boeblingen, 71034, Germany (personal communication, 2018)

M. Jäger, D. Volkmann, J. Bruns, and K. Petermann, “Multiplexed single wavelength biosensor for low cost applications,” Adv. Photonics, OSA Technical Digest (online), paper SeT1C.4 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Coupling model of a single ring resonator in all-pass configuration.
Fig. 2
Fig. 2 Principle of a fixed wavelength modulation approach on a single ring: the resonances in the transmission spectrum of the ring resonator are shown for several higher orders m. An AC voltage V(t) is applied to the electrode of the ring resonator, where the resulting power P(t) modulates the effective refractive index until two resonances are detected. Changes in refractive index due to molecular binding Δ n mol can be estimated by tracking the resonance shift during the experiment.
Fig. 3
Fig. 3 Schematic ring resonator system with TDM-like control. An AC signal for tuning is applied to the TDM system, which divides it into equally spaced time slots. Each slot is connected to one sensor and evokes its effective index change in a fix switching scheme.
Fig. 4
Fig. 4 Measured data stream containing two resonances for each ring in a fix scheme and the modulation signal of ring 1. Slight variations in extinction, FSR and Q-factors between the rings are caused by technological deviations of the structures, while variations in Δ n res are due to slight variations in heater efficiency. This effect is cancelled out because Δ n mol changes accordingly.
Fig. 5
Fig. 5 Schematic (a) and SEM image (b) of a triangular ring resonator: Filler structures, metal layer for heaters and buffer oxide on top of the waveguide structures, which show through the backend stack. The sensing region (circular opening) and the folded heating wire (right) are visible. The remainder of the ring resonator is hidden under the back-end. (c) SEM image of the heating regions cross-section, showing the aluminum electrodes placed above the waveguide. (d) SEM image of the nanowire waveguide cross-section in the sensing region, cladded with air.
Fig. 6
Fig. 6 Top view of a sensor chip: One chip possesses several sensors with different geometries and waveguide types. Here, sensor array marked with no. 8 is the device under test. Optical coupling occurs through fibers using grating structures on the far left and right of the chip. Five ring resonators are coupled to a common bus waveguide, only four rings are open to the environment (circular opening). The fifths sensor acts as a reference. In the middle of the picture the electrical contact pads are connected using a probe head.
Fig. 7
Fig. 7 Left: spatial and read out configuration as used during the diffusion experiments, right: picture of a device under test taken through the eyepiece of an optical microscope. The DI-water drop for initialization can easily be seen.
Fig. 8
Fig. 8 Left: Refractive index change for one sensor array under test. The leveling at zero was achieved by an initial drop of deionized water with a volume of 5 µl, which was then mixed with a drop of saline solution of 5g/100ml concentration and 5µl volume. Right: zoom, reference clearing and offset for a better view onto the sensor response delay.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T= I pass I in = | τ | 2 + α 2 2| τ |αcosΔϕ 1+ | τ | 2 α 2 2| τ |αcosΔϕ
Δϕ= 2π n eff L λ =m2π,
λ res = n eff L m .
n res = m λ 0 L .
Δ t mol Δ t res = Δ n mol Δ n res

Metrics