Abstract

We report, to our knowledge, for the first time on humidity-induced Brillouin frequency shifts in perfluorinated graded index polymer optical fibers. A linear relation between Brillouin frequency shift and humidity was observed. Furthermore, the humidity coefficient of the Brillouin frequency shift is demonstrated to be a function of temperature (−107 to −64 kHz/%r.h. or −426 to −49 kHz m3/g in the range of 20 to 60 °C). An analytical description proves temperature and humidity as two mutually independent effects on the Brillouin frequency shift.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Brillouin gain spectrum dependence on large strain in perfluorinated graded-index polymer optical fiber

Neisei Hayashi, Yosuke Mizuno, and Kentaro Nakamura
Opt. Express 20(19) 21101-21106 (2012)

Brillouin characterization of slimmed polymer optical fibers for strain sensing with extremely wide dynamic range

Yosuke Mizuno, Natsuki Matsutani, Neisei Hayashi, Heeyoung Lee, Masaki Tahara, Hideki Hosoda, and Kentaro Nakamura
Opt. Express 26(21) 28030-28037 (2018)

Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis

Yongkang Dong, Pengbai Xu, Hongying Zhang, Zhiwei Lu, Liang Chen, and Xiaoyi Bao
Opt. Express 22(22) 26510-26516 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agarwal, Nonlinear Fiber Optics (Academic PressSan Diego, CA, 2007).
  2. T. Schneider, Nonlinear Optics in Telecommunications (Springer Science & Business Media, 2013).
  3. S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18, 22599–22613 (2010).
    [Crossref] [PubMed]
  4. S. Preußler, N. Wenzel, R.-P. Braun, N. Owschimikow, C. Vogel, A. Deninger, A. Zadok, U. Woggon, and T. Schneider, “Generation of ultra-narrow, stable and tunable millimeter-and terahertz-waves with very low phase noise,” Opt. Express 21, 23950–23962 (2013).
    [Crossref]
  5. I. Carr and D. Hanna, “Performance of a Nd:YAG oscillator/ampflifier with phase-conjugation via stimulated Brillouin scattering,” Appl. Phys. B: Lasers Opt. 36, 83–92 (1985).
    [Crossref]
  6. I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
    [Crossref]
  7. A. Zadok, A. Eyal, and M. Tur, “Stimulated Brillouin scattering slow light in optical fibers,” Appl. Opt. 50, E38–E49 (2011).
    [Crossref]
  8. D. Garcus, T. Gogolla, K. Krebber, and F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Light. Technol. 15, 654–662 (1997).
    [Crossref]
  9. A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. & Laser Technol. 78, 81–103 (2016).
    [Crossref]
  10. Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16, 12148–12153 (2008).
    [Crossref] [PubMed]
  11. S. Liehr, M. Wendt, and K. Krebber, “Distributed strain measurement in perfluorinated polymer optical fibres using optical frequency domain reflectometry,” Meas. Sci. Technol. 21, 094023 (2010).
    [Crossref]
  12. Y. Mizuno and K. Nakamura, “Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing,” Opt. Lett. 35, 3985–3987 (2010).
    [Crossref] [PubMed]
  13. A. Minardo, R. Bernini, and L. Zeni, “Distributed temperature sensing in polymer optical fiber by BOFDA,” IEEE Photonics Technol. Lett. 26, 387–390 (2014).
    [Crossref]
  14. N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Light. Technol. 32, 3397–3401 (2014).
    [Crossref]
  15. H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry using polymer optical fibers with high propagation loss,” J. Light. Technol. 35, 2306–2310 (2017).
    [Crossref]
  16. S. Liehr, Fibre Optic Sensing Techniques Based on Incoherent Optical Frequency Domain Reflectometry (BAM-Dissertationsreihe, 2015).
  17. A. Kharaz and B. Jones, “A distributed optical-fibre sensing system for multi-point humidity measurement,” Sensors Actuators A: Phys. 47, 491–493 (1995).
    [Crossref]
  18. P. Kronenberg, P. K. Rastogi, P. Giaccari, and H. G. Limberger, “Relative humidity sensor with optical fiber Bragg gratings,” Opt. Lett. 27, 1385–1387 (2002).
    [Crossref]
  19. S. F. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors 12, 8847–8860 (2012).
    [Crossref] [PubMed]
  20. G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24, 1206–1213 (2016).
    [Crossref] [PubMed]
  21. W. Zhang, D. J. Webb, and G.-D. Peng, “Investigation into time response of polymer fiber Bragg grating based humidity sensors,” J. Light. Technol. 30, 1090–1096 (2012).
    [Crossref]
  22. W. Michie, N. Graham, F. Santos, E. Bergqvist, B. Carlstrom, C. Moran, B. Culshaw, I. McKenzie, and M. Konstantakis, “Distributed sensor for water and pH measurements using fiber optics and swellable polymeric systems,” Opt. Lett. 20, 103–105 (1995).
    [Crossref] [PubMed]
  23. P. J. Thomas and J. O. Hellevang, “A fully distributed fibre optic sensor for relative humidity measurements,” Sensors Actuators B: Chem. 247, 284–289 (2017).
    [Crossref]
  24. C. Galindez, F. J. Madruga, and J. M. Lopez-Higuera, “Influence of humidity on the measurement of Brillouin frequency shift,” IEEE Photonics Technol. Lett. 20, 1959–1961 (2008).
    [Crossref]
  25. C. Galindez, F. J. Madruga, and J. M. Lopez-Higuera, “Brillouin frequency shift of standard optical fibers set in water vapor medium,” Opt. Lett. 35, 28–30 (2010).
    [Crossref] [PubMed]
  26. S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14, 746 (2003).
    [Crossref]
  27. S. Liehr, M. Breithaupt, and K. Krebber, “Distributed humidity sensing in PMMA optical fibers at 500 nm and 650 nm wavelengths,” Sensors 17, 738 (2017).
    [Crossref]
  28. H. Bair, G. Johnson, and R. Merriweather, “Water sorption of polycarbonate and its effect on the polymers dielectric behavior,” J. Appl. Phys. 49, 4976–4984 (1978).
    [Crossref]
  29. M. Unemori, Y. Matsuya, S. Matsuya, A. Akashi, and A. Akamine, “Water absorption of poly (methyl methacrylate) containing 4-methacryloxyethyl trimellitic anhydride,” Biomaterials 24, 1381–1387 (2003).
    [Crossref] [PubMed]
  30. P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
    [Crossref]
  31. Y. J. Weitsman, Fluid Effects in Polymers and Polymeric Composites (Springer Science & Business Media, 2011).
  32. Y. Luo, B. Yan, Q. Zhang, G.-D. Peng, J. Wen, and J. Zhang, “Fabrication of polymer optical fibre (POF) gratings,” Sensors 17, 511 (2017).
    [Crossref]
  33. Y. Koike, Fundamentals of Plastic Optical Fibers (John Wiley & Sons, 2014).
  34. O. A. Alduchov and R. E. Eskridge, “Improved Magnus form approximation of saturation vapor pressure,” J. Appl. Meteorol. 35, 601–609 (1996).
    [Crossref]
  35. Y. Mizuno, P. Lenke, K. Krebber, and K. Nakamura, “Characterization of Brillouin gain spectra in polymer optical fibers fabricated by different manufacturers at 1.32 and 1.55 um,” IEEE Photonics Technol. Lett. 24, 1496–1498 (2012).
    [Crossref]
  36. Y. Mizuno and K. Nakamura, “Core alignment of butt coupling between single-mode and multimode optical fibers by monitoring Brillouin scattering signal,” J. Light. Technol. 29, 2616–2620 (2011).
    [Crossref]
  37. A. Minardo, R. Bernini, and L. Zeni, “Experimental and numerical study on stimulated Brillouin scattering in a graded-index multimode fiber,” Opt. Express 22, 17480–17489 (2014).
    [Crossref] [PubMed]
  38. Y. Dong, P. Xu, H. Zhang, Z. Lu, L. Chen, and X. Bao, “Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis,” Opt. Express 22, 26510–26516 (2014).
    [Crossref] [PubMed]
  39. Y. Mizuno, T. Ishigure, and K. Nakamura, “Brillouin gain spectrum characterization in perfluorinated graded-index polymer optical fiber with 62.5-um core diameter,” IEEE Photonics Technol. Lett. 23, 1863–1865 (2011).
    [Crossref]
  40. A. Schreier, T. Jeschke, K. Petermann, A. Wosniok, and K. Krebber, “Analytical model for mode based insertion loss in ball-lensed coupling of graded-index silica and polymer fibres,” in 26th International Conference on Plastic Optical Fibres, POF 2017 - Proceedings, (2017).
  41. K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express 15, 8844–8850 (2007).
    [Crossref] [PubMed]
  42. K. Minakawa, N. Hayashi, Y. Shinohara, M. Tahara, H. Hosoda, Y. Mizuno, and K. Nakamura, “Wide-range temperature dependences of Brillouin scattering properties in polymer optical fiber,” Jpn. J. Appl. Phys. 53, 042502 (2014).
    [Crossref]
  43. J. G. Speight, Lange’s Handbook of Chemistry, vol. 1 (McGraw-HillNew York, 2005).
  44. M. R. Moldover, J. M. Trusler, T. Edwards, J. B. Mehl, and R. S. Davis, “Measurement of the universal gas constant R using a spherical acoustic resonator,” Phys. Rev. Lett. 60, 249 (1988).
    [Crossref] [PubMed]

2017 (4)

H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry using polymer optical fibers with high propagation loss,” J. Light. Technol. 35, 2306–2310 (2017).
[Crossref]

P. J. Thomas and J. O. Hellevang, “A fully distributed fibre optic sensor for relative humidity measurements,” Sensors Actuators B: Chem. 247, 284–289 (2017).
[Crossref]

S. Liehr, M. Breithaupt, and K. Krebber, “Distributed humidity sensing in PMMA optical fibers at 500 nm and 650 nm wavelengths,” Sensors 17, 738 (2017).
[Crossref]

Y. Luo, B. Yan, Q. Zhang, G.-D. Peng, J. Wen, and J. Zhang, “Fabrication of polymer optical fibre (POF) gratings,” Sensors 17, 511 (2017).
[Crossref]

2016 (3)

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24, 1206–1213 (2016).
[Crossref] [PubMed]

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. & Laser Technol. 78, 81–103 (2016).
[Crossref]

2014 (5)

A. Minardo, R. Bernini, and L. Zeni, “Distributed temperature sensing in polymer optical fiber by BOFDA,” IEEE Photonics Technol. Lett. 26, 387–390 (2014).
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Light. Technol. 32, 3397–3401 (2014).
[Crossref]

A. Minardo, R. Bernini, and L. Zeni, “Experimental and numerical study on stimulated Brillouin scattering in a graded-index multimode fiber,” Opt. Express 22, 17480–17489 (2014).
[Crossref] [PubMed]

Y. Dong, P. Xu, H. Zhang, Z. Lu, L. Chen, and X. Bao, “Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis,” Opt. Express 22, 26510–26516 (2014).
[Crossref] [PubMed]

K. Minakawa, N. Hayashi, Y. Shinohara, M. Tahara, H. Hosoda, Y. Mizuno, and K. Nakamura, “Wide-range temperature dependences of Brillouin scattering properties in polymer optical fiber,” Jpn. J. Appl. Phys. 53, 042502 (2014).
[Crossref]

2013 (1)

2012 (3)

S. F. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors 12, 8847–8860 (2012).
[Crossref] [PubMed]

W. Zhang, D. J. Webb, and G.-D. Peng, “Investigation into time response of polymer fiber Bragg grating based humidity sensors,” J. Light. Technol. 30, 1090–1096 (2012).
[Crossref]

Y. Mizuno, P. Lenke, K. Krebber, and K. Nakamura, “Characterization of Brillouin gain spectra in polymer optical fibers fabricated by different manufacturers at 1.32 and 1.55 um,” IEEE Photonics Technol. Lett. 24, 1496–1498 (2012).
[Crossref]

2011 (3)

Y. Mizuno and K. Nakamura, “Core alignment of butt coupling between single-mode and multimode optical fibers by monitoring Brillouin scattering signal,” J. Light. Technol. 29, 2616–2620 (2011).
[Crossref]

Y. Mizuno, T. Ishigure, and K. Nakamura, “Brillouin gain spectrum characterization in perfluorinated graded-index polymer optical fiber with 62.5-um core diameter,” IEEE Photonics Technol. Lett. 23, 1863–1865 (2011).
[Crossref]

A. Zadok, A. Eyal, and M. Tur, “Stimulated Brillouin scattering slow light in optical fibers,” Appl. Opt. 50, E38–E49 (2011).
[Crossref]

2010 (4)

2009 (1)

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

2008 (2)

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16, 12148–12153 (2008).
[Crossref] [PubMed]

C. Galindez, F. J. Madruga, and J. M. Lopez-Higuera, “Influence of humidity on the measurement of Brillouin frequency shift,” IEEE Photonics Technol. Lett. 20, 1959–1961 (2008).
[Crossref]

2007 (1)

2003 (2)

M. Unemori, Y. Matsuya, S. Matsuya, A. Akashi, and A. Akamine, “Water absorption of poly (methyl methacrylate) containing 4-methacryloxyethyl trimellitic anhydride,” Biomaterials 24, 1381–1387 (2003).
[Crossref] [PubMed]

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14, 746 (2003).
[Crossref]

2002 (1)

1997 (1)

D. Garcus, T. Gogolla, K. Krebber, and F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Light. Technol. 15, 654–662 (1997).
[Crossref]

1996 (1)

O. A. Alduchov and R. E. Eskridge, “Improved Magnus form approximation of saturation vapor pressure,” J. Appl. Meteorol. 35, 601–609 (1996).
[Crossref]

1995 (2)

1988 (1)

M. R. Moldover, J. M. Trusler, T. Edwards, J. B. Mehl, and R. S. Davis, “Measurement of the universal gas constant R using a spherical acoustic resonator,” Phys. Rev. Lett. 60, 249 (1988).
[Crossref] [PubMed]

1985 (1)

I. Carr and D. Hanna, “Performance of a Nd:YAG oscillator/ampflifier with phase-conjugation via stimulated Brillouin scattering,” Appl. Phys. B: Lasers Opt. 36, 83–92 (1985).
[Crossref]

1978 (1)

H. Bair, G. Johnson, and R. Merriweather, “Water sorption of polycarbonate and its effect on the polymers dielectric behavior,” J. Appl. Phys. 49, 4976–4984 (1978).
[Crossref]

Agarwal, G. P.

G. P. Agarwal, Nonlinear Fiber Optics (Academic PressSan Diego, CA, 2007).

Akamine, A.

M. Unemori, Y. Matsuya, S. Matsuya, A. Akashi, and A. Akamine, “Water absorption of poly (methyl methacrylate) containing 4-methacryloxyethyl trimellitic anhydride,” Biomaterials 24, 1381–1387 (2003).
[Crossref] [PubMed]

Akashi, A.

M. Unemori, Y. Matsuya, S. Matsuya, A. Akashi, and A. Akamine, “Water absorption of poly (methyl methacrylate) containing 4-methacryloxyethyl trimellitic anhydride,” Biomaterials 24, 1381–1387 (2003).
[Crossref] [PubMed]

Alduchov, O. A.

O. A. Alduchov and R. E. Eskridge, “Improved Magnus form approximation of saturation vapor pressure,” J. Appl. Meteorol. 35, 601–609 (1996).
[Crossref]

Amano, T.

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14, 746 (2003).
[Crossref]

André, P. S.

S. F. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors 12, 8847–8860 (2012).
[Crossref] [PubMed]

Antunes, P.

S. F. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors 12, 8847–8860 (2012).
[Crossref] [PubMed]

Argyros, A.

Bair, H.

H. Bair, G. Johnson, and R. Merriweather, “Water sorption of polycarbonate and its effect on the polymers dielectric behavior,” J. Appl. Phys. 49, 4976–4984 (1978).
[Crossref]

Bang, O.

Bao, X.

Berger, P.

Bergman, A.

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. & Laser Technol. 78, 81–103 (2016).
[Crossref]

Bergqvist, E.

Bernini, R.

A. Minardo, R. Bernini, and L. Zeni, “Distributed temperature sensing in polymer optical fiber by BOFDA,” IEEE Photonics Technol. Lett. 26, 387–390 (2014).
[Crossref]

A. Minardo, R. Bernini, and L. Zeni, “Experimental and numerical study on stimulated Brillouin scattering in a graded-index multimode fiber,” Opt. Express 22, 17480–17489 (2014).
[Crossref] [PubMed]

Bourderionnet, J.

Braun, R.-P.

Breithaupt, M.

S. Liehr, M. Breithaupt, and K. Krebber, “Distributed humidity sensing in PMMA optical fibers at 500 nm and 650 nm wavelengths,” Sensors 17, 738 (2017).
[Crossref]

Capmany, J.

Carlos, L. D.

S. F. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors 12, 8847–8860 (2012).
[Crossref] [PubMed]

Carlstrom, B.

Carr, I.

I. Carr and D. Hanna, “Performance of a Nd:YAG oscillator/ampflifier with phase-conjugation via stimulated Brillouin scattering,” Appl. Phys. B: Lasers Opt. 36, 83–92 (1985).
[Crossref]

Carroll, K. E.

Cetinkaya, O.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Chen, L.

Chin, S.

Correia, S. F.

S. F. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors 12, 8847–8860 (2012).
[Crossref] [PubMed]

Culshaw, B.

Davis, R. S.

M. R. Moldover, J. M. Trusler, T. Edwards, J. B. Mehl, and R. S. Davis, “Measurement of the universal gas constant R using a spherical acoustic resonator,” Phys. Rev. Lett. 60, 249 (1988).
[Crossref] [PubMed]

Deninger, A.

Dolfi, D.

Dong, Y.

Edwards, T.

M. R. Moldover, J. M. Trusler, T. Edwards, J. B. Mehl, and R. S. Davis, “Measurement of the universal gas constant R using a spherical acoustic resonator,” Phys. Rev. Lett. 60, 249 (1988).
[Crossref] [PubMed]

Eskridge, R. E.

O. A. Alduchov and R. E. Eskridge, “Improved Magnus form approximation of saturation vapor pressure,” J. Appl. Meteorol. 35, 601–609 (1996).
[Crossref]

Eyal, A.

Ferreira, R. A.

S. F. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors 12, 8847–8860 (2012).
[Crossref] [PubMed]

Galindez, C.

C. Galindez, F. J. Madruga, and J. M. Lopez-Higuera, “Brillouin frequency shift of standard optical fibers set in water vapor medium,” Opt. Lett. 35, 28–30 (2010).
[Crossref] [PubMed]

C. Galindez, F. J. Madruga, and J. M. Lopez-Higuera, “Influence of humidity on the measurement of Brillouin frequency shift,” IEEE Photonics Technol. Lett. 20, 1959–1961 (2008).
[Crossref]

Garcus, D.

D. Garcus, T. Gogolla, K. Krebber, and F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Light. Technol. 15, 654–662 (1997).
[Crossref]

Giaccari, P.

Gogolla, T.

D. Garcus, T. Gogolla, K. Krebber, and F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Light. Technol. 15, 654–662 (1997).
[Crossref]

Graham, N.

Grudinin, I. S.

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

Hanna, D.

I. Carr and D. Hanna, “Performance of a Nd:YAG oscillator/ampflifier with phase-conjugation via stimulated Brillouin scattering,” Appl. Phys. B: Lasers Opt. 36, 83–92 (1985).
[Crossref]

Hayashi, N.

H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry using polymer optical fibers with high propagation loss,” J. Light. Technol. 35, 2306–2310 (2017).
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Light. Technol. 32, 3397–3401 (2014).
[Crossref]

K. Minakawa, N. Hayashi, Y. Shinohara, M. Tahara, H. Hosoda, Y. Mizuno, and K. Nakamura, “Wide-range temperature dependences of Brillouin scattering properties in polymer optical fiber,” Jpn. J. Appl. Phys. 53, 042502 (2014).
[Crossref]

He, Z.

Hellevang, J. O.

P. J. Thomas and J. O. Hellevang, “A fully distributed fibre optic sensor for relative humidity measurements,” Sensors Actuators B: Chem. 247, 284–289 (2017).
[Crossref]

Hosoda, H.

K. Minakawa, N. Hayashi, Y. Shinohara, M. Tahara, H. Hosoda, Y. Mizuno, and K. Nakamura, “Wide-range temperature dependences of Brillouin scattering properties in polymer optical fiber,” Jpn. J. Appl. Phys. 53, 042502 (2014).
[Crossref]

Hotate, K.

Ishigure, T.

Y. Mizuno, T. Ishigure, and K. Nakamura, “Brillouin gain spectrum characterization in perfluorinated graded-index polymer optical fiber with 62.5-um core diameter,” IEEE Photonics Technol. Lett. 23, 1863–1865 (2011).
[Crossref]

Jeschke, T.

A. Schreier, T. Jeschke, K. Petermann, A. Wosniok, and K. Krebber, “Analytical model for mode based insertion loss in ball-lensed coupling of graded-index silica and polymer fibres,” in 26th International Conference on Plastic Optical Fibres, POF 2017 - Proceedings, (2017).

Johnson, G.

H. Bair, G. Johnson, and R. Merriweather, “Water sorption of polycarbonate and its effect on the polymers dielectric behavior,” J. Appl. Phys. 49, 4976–4984 (1978).
[Crossref]

Jones, B.

A. Kharaz and B. Jones, “A distributed optical-fibre sensing system for multi-point humidity measurement,” Sensors Actuators A: Phys. 47, 491–493 (1995).
[Crossref]

Kalli, K.

Kharaz, A.

A. Kharaz and B. Jones, “A distributed optical-fibre sensing system for multi-point humidity measurement,” Sensors Actuators A: Phys. 47, 491–493 (1995).
[Crossref]

Koike, Y.

Y. Koike, Fundamentals of Plastic Optical Fibers (John Wiley & Sons, 2014).

Konstantakis, M.

Krebber, K.

S. Liehr, M. Breithaupt, and K. Krebber, “Distributed humidity sensing in PMMA optical fibers at 500 nm and 650 nm wavelengths,” Sensors 17, 738 (2017).
[Crossref]

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Y. Mizuno, P. Lenke, K. Krebber, and K. Nakamura, “Characterization of Brillouin gain spectra in polymer optical fibers fabricated by different manufacturers at 1.32 and 1.55 um,” IEEE Photonics Technol. Lett. 24, 1496–1498 (2012).
[Crossref]

S. Liehr, M. Wendt, and K. Krebber, “Distributed strain measurement in perfluorinated polymer optical fibres using optical frequency domain reflectometry,” Meas. Sci. Technol. 21, 094023 (2010).
[Crossref]

D. Garcus, T. Gogolla, K. Krebber, and F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Light. Technol. 15, 654–662 (1997).
[Crossref]

A. Schreier, T. Jeschke, K. Petermann, A. Wosniok, and K. Krebber, “Analytical model for mode based insertion loss in ball-lensed coupling of graded-index silica and polymer fibres,” in 26th International Conference on Plastic Optical Fibres, POF 2017 - Proceedings, (2017).

Kronenberg, P.

Large, M. C.

Lee, H.

H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry using polymer optical fibers with high propagation loss,” J. Light. Technol. 35, 2306–2310 (2017).
[Crossref]

Lenke, P.

Y. Mizuno, P. Lenke, K. Krebber, and K. Nakamura, “Characterization of Brillouin gain spectra in polymer optical fibers fabricated by different manufacturers at 1.32 and 1.55 um,” IEEE Photonics Technol. Lett. 24, 1496–1498 (2012).
[Crossref]

Liehr, S.

S. Liehr, M. Breithaupt, and K. Krebber, “Distributed humidity sensing in PMMA optical fibers at 500 nm and 650 nm wavelengths,” Sensors 17, 738 (2017).
[Crossref]

S. Liehr, M. Wendt, and K. Krebber, “Distributed strain measurement in perfluorinated polymer optical fibres using optical frequency domain reflectometry,” Meas. Sci. Technol. 21, 094023 (2010).
[Crossref]

S. Liehr, Fibre Optic Sensing Techniques Based on Incoherent Optical Frequency Domain Reflectometry (BAM-Dissertationsreihe, 2015).

Lima, P. P.

S. F. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors 12, 8847–8860 (2012).
[Crossref] [PubMed]

Limberger, H. G.

Lopez-Higuera, J. M.

C. Galindez, F. J. Madruga, and J. M. Lopez-Higuera, “Brillouin frequency shift of standard optical fibers set in water vapor medium,” Opt. Lett. 35, 28–30 (2010).
[Crossref] [PubMed]

C. Galindez, F. J. Madruga, and J. M. Lopez-Higuera, “Influence of humidity on the measurement of Brillouin frequency shift,” IEEE Photonics Technol. Lett. 20, 1959–1961 (2008).
[Crossref]

Lu, Z.

Luo, Y.

Y. Luo, B. Yan, Q. Zhang, G.-D. Peng, J. Wen, and J. Zhang, “Fabrication of polymer optical fibre (POF) gratings,” Sensors 17, 511 (2017).
[Crossref]

Madruga, F. J.

C. Galindez, F. J. Madruga, and J. M. Lopez-Higuera, “Brillouin frequency shift of standard optical fibers set in water vapor medium,” Opt. Lett. 35, 28–30 (2010).
[Crossref] [PubMed]

C. Galindez, F. J. Madruga, and J. M. Lopez-Higuera, “Influence of humidity on the measurement of Brillouin frequency shift,” IEEE Photonics Technol. Lett. 20, 1959–1961 (2008).
[Crossref]

Maleki, L.

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

Markos, C.

Matsko, A. B.

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

Matsuya, S.

M. Unemori, Y. Matsuya, S. Matsuya, A. Akashi, and A. Akamine, “Water absorption of poly (methyl methacrylate) containing 4-methacryloxyethyl trimellitic anhydride,” Biomaterials 24, 1381–1387 (2003).
[Crossref] [PubMed]

Matsuya, Y.

M. Unemori, Y. Matsuya, S. Matsuya, A. Akashi, and A. Akamine, “Water absorption of poly (methyl methacrylate) containing 4-methacryloxyethyl trimellitic anhydride,” Biomaterials 24, 1381–1387 (2003).
[Crossref] [PubMed]

McKenzie, I.

Mehl, J. B.

M. R. Moldover, J. M. Trusler, T. Edwards, J. B. Mehl, and R. S. Davis, “Measurement of the universal gas constant R using a spherical acoustic resonator,” Phys. Rev. Lett. 60, 249 (1988).
[Crossref] [PubMed]

Mergo, P.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Merriweather, R.

H. Bair, G. Johnson, and R. Merriweather, “Water sorption of polycarbonate and its effect on the polymers dielectric behavior,” J. Appl. Phys. 49, 4976–4984 (1978).
[Crossref]

Michie, W.

Minakawa, K.

K. Minakawa, N. Hayashi, Y. Shinohara, M. Tahara, H. Hosoda, Y. Mizuno, and K. Nakamura, “Wide-range temperature dependences of Brillouin scattering properties in polymer optical fiber,” Jpn. J. Appl. Phys. 53, 042502 (2014).
[Crossref]

Minardo, A.

A. Minardo, R. Bernini, and L. Zeni, “Distributed temperature sensing in polymer optical fiber by BOFDA,” IEEE Photonics Technol. Lett. 26, 387–390 (2014).
[Crossref]

A. Minardo, R. Bernini, and L. Zeni, “Experimental and numerical study on stimulated Brillouin scattering in a graded-index multimode fiber,” Opt. Express 22, 17480–17489 (2014).
[Crossref] [PubMed]

Mizuno, Y.

H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry using polymer optical fibers with high propagation loss,” J. Light. Technol. 35, 2306–2310 (2017).
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Light. Technol. 32, 3397–3401 (2014).
[Crossref]

K. Minakawa, N. Hayashi, Y. Shinohara, M. Tahara, H. Hosoda, Y. Mizuno, and K. Nakamura, “Wide-range temperature dependences of Brillouin scattering properties in polymer optical fiber,” Jpn. J. Appl. Phys. 53, 042502 (2014).
[Crossref]

Y. Mizuno, P. Lenke, K. Krebber, and K. Nakamura, “Characterization of Brillouin gain spectra in polymer optical fibers fabricated by different manufacturers at 1.32 and 1.55 um,” IEEE Photonics Technol. Lett. 24, 1496–1498 (2012).
[Crossref]

Y. Mizuno, T. Ishigure, and K. Nakamura, “Brillouin gain spectrum characterization in perfluorinated graded-index polymer optical fiber with 62.5-um core diameter,” IEEE Photonics Technol. Lett. 23, 1863–1865 (2011).
[Crossref]

Y. Mizuno and K. Nakamura, “Core alignment of butt coupling between single-mode and multimode optical fibers by monitoring Brillouin scattering signal,” J. Light. Technol. 29, 2616–2620 (2011).
[Crossref]

Y. Mizuno and K. Nakamura, “Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing,” Opt. Lett. 35, 3985–3987 (2010).
[Crossref] [PubMed]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16, 12148–12153 (2008).
[Crossref] [PubMed]

Moldover, M. R.

M. R. Moldover, J. M. Trusler, T. Edwards, J. B. Mehl, and R. S. Davis, “Measurement of the universal gas constant R using a spherical acoustic resonator,” Phys. Rev. Lett. 60, 249 (1988).
[Crossref] [PubMed]

Moran, C.

Morisawa, M.

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14, 746 (2003).
[Crossref]

Motil, A.

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. & Laser Technol. 78, 81–103 (2016).
[Crossref]

Muto, S.

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14, 746 (2003).
[Crossref]

Nakamura, K.

H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry using polymer optical fibers with high propagation loss,” J. Light. Technol. 35, 2306–2310 (2017).
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Light. Technol. 32, 3397–3401 (2014).
[Crossref]

K. Minakawa, N. Hayashi, Y. Shinohara, M. Tahara, H. Hosoda, Y. Mizuno, and K. Nakamura, “Wide-range temperature dependences of Brillouin scattering properties in polymer optical fiber,” Jpn. J. Appl. Phys. 53, 042502 (2014).
[Crossref]

Y. Mizuno, P. Lenke, K. Krebber, and K. Nakamura, “Characterization of Brillouin gain spectra in polymer optical fibers fabricated by different manufacturers at 1.32 and 1.55 um,” IEEE Photonics Technol. Lett. 24, 1496–1498 (2012).
[Crossref]

Y. Mizuno and K. Nakamura, “Core alignment of butt coupling between single-mode and multimode optical fibers by monitoring Brillouin scattering signal,” J. Light. Technol. 29, 2616–2620 (2011).
[Crossref]

Y. Mizuno, T. Ishigure, and K. Nakamura, “Brillouin gain spectrum characterization in perfluorinated graded-index polymer optical fiber with 62.5-um core diameter,” IEEE Photonics Technol. Lett. 23, 1863–1865 (2011).
[Crossref]

Y. Mizuno and K. Nakamura, “Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing,” Opt. Lett. 35, 3985–3987 (2010).
[Crossref] [PubMed]

Nielsen, K.

Owschimikow, N.

Pecoraro, E.

S. F. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors 12, 8847–8860 (2012).
[Crossref] [PubMed]

Peng, G.-D.

Y. Luo, B. Yan, Q. Zhang, G.-D. Peng, J. Wen, and J. Zhang, “Fabrication of polymer optical fibre (POF) gratings,” Sensors 17, 511 (2017).
[Crossref]

W. Zhang, D. J. Webb, and G.-D. Peng, “Investigation into time response of polymer fiber Bragg grating based humidity sensors,” J. Light. Technol. 30, 1090–1096 (2012).
[Crossref]

Petermann, K.

A. Schreier, T. Jeschke, K. Petermann, A. Wosniok, and K. Krebber, “Analytical model for mode based insertion loss in ball-lensed coupling of graded-index silica and polymer fibres,” in 26th International Conference on Plastic Optical Fibres, POF 2017 - Proceedings, (2017).

Preußler, S.

Rastogi, P. K.

Sales, S.

Sancho, J.

Santos, F.

Schliep, F.

D. Garcus, T. Gogolla, K. Krebber, and F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Light. Technol. 15, 654–662 (1997).
[Crossref]

Schneider, T.

Schreier, A.

A. Schreier, T. Jeschke, K. Petermann, A. Wosniok, and K. Krebber, “Analytical model for mode based insertion loss in ball-lensed coupling of graded-index silica and polymer fibres,” in 26th International Conference on Plastic Optical Fibres, POF 2017 - Proceedings, (2017).

Schukar, M.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Shinohara, Y.

K. Minakawa, N. Hayashi, Y. Shinohara, M. Tahara, H. Hosoda, Y. Mizuno, and K. Nakamura, “Wide-range temperature dependences of Brillouin scattering properties in polymer optical fiber,” Jpn. J. Appl. Phys. 53, 042502 (2014).
[Crossref]

Speight, J. G.

J. G. Speight, Lange’s Handbook of Chemistry, vol. 1 (McGraw-HillNew York, 2005).

Stajanca, P.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Stefani, A.

Suzuki, O.

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14, 746 (2003).
[Crossref]

Tahara, M.

K. Minakawa, N. Hayashi, Y. Shinohara, M. Tahara, H. Hosoda, Y. Mizuno, and K. Nakamura, “Wide-range temperature dependences of Brillouin scattering properties in polymer optical fiber,” Jpn. J. Appl. Phys. 53, 042502 (2014).
[Crossref]

Thévenaz, L.

Thomas, P. J.

P. J. Thomas and J. O. Hellevang, “A fully distributed fibre optic sensor for relative humidity measurements,” Sensors Actuators B: Chem. 247, 284–289 (2017).
[Crossref]

Trusler, J. M.

M. R. Moldover, J. M. Trusler, T. Edwards, J. B. Mehl, and R. S. Davis, “Measurement of the universal gas constant R using a spherical acoustic resonator,” Phys. Rev. Lett. 60, 249 (1988).
[Crossref] [PubMed]

Tur, M.

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. & Laser Technol. 78, 81–103 (2016).
[Crossref]

A. Zadok, A. Eyal, and M. Tur, “Stimulated Brillouin scattering slow light in optical fibers,” Appl. Opt. 50, E38–E49 (2011).
[Crossref]

Unemori, M.

M. Unemori, Y. Matsuya, S. Matsuya, A. Akashi, and A. Akamine, “Water absorption of poly (methyl methacrylate) containing 4-methacryloxyethyl trimellitic anhydride,” Biomaterials 24, 1381–1387 (2003).
[Crossref] [PubMed]

Varum, H.

S. F. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors 12, 8847–8860 (2012).
[Crossref] [PubMed]

Vogel, C.

Webb, D. J.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

W. Zhang, D. J. Webb, and G.-D. Peng, “Investigation into time response of polymer fiber Bragg grating based humidity sensors,” J. Light. Technol. 30, 1090–1096 (2012).
[Crossref]

K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express 15, 8844–8850 (2007).
[Crossref] [PubMed]

Weitsman, Y. J.

Y. J. Weitsman, Fluid Effects in Polymers and Polymeric Composites (Springer Science & Business Media, 2011).

Wen, J.

Y. Luo, B. Yan, Q. Zhang, G.-D. Peng, J. Wen, and J. Zhang, “Fabrication of polymer optical fibre (POF) gratings,” Sensors 17, 511 (2017).
[Crossref]

Wendt, M.

S. Liehr, M. Wendt, and K. Krebber, “Distributed strain measurement in perfluorinated polymer optical fibres using optical frequency domain reflectometry,” Meas. Sci. Technol. 21, 094023 (2010).
[Crossref]

Wenzel, N.

Woggon, U.

Wosniok, A.

A. Schreier, T. Jeschke, K. Petermann, A. Wosniok, and K. Krebber, “Analytical model for mode based insertion loss in ball-lensed coupling of graded-index silica and polymer fibres,” in 26th International Conference on Plastic Optical Fibres, POF 2017 - Proceedings, (2017).

Woyessa, G.

Xu, P.

Yan, B.

Y. Luo, B. Yan, Q. Zhang, G.-D. Peng, J. Wen, and J. Zhang, “Fabrication of polymer optical fibre (POF) gratings,” Sensors 17, 511 (2017).
[Crossref]

Zadok, A.

Zeni, L.

A. Minardo, R. Bernini, and L. Zeni, “Distributed temperature sensing in polymer optical fiber by BOFDA,” IEEE Photonics Technol. Lett. 26, 387–390 (2014).
[Crossref]

A. Minardo, R. Bernini, and L. Zeni, “Experimental and numerical study on stimulated Brillouin scattering in a graded-index multimode fiber,” Opt. Express 22, 17480–17489 (2014).
[Crossref] [PubMed]

Zhang, C.

Zhang, H.

Zhang, J.

Y. Luo, B. Yan, Q. Zhang, G.-D. Peng, J. Wen, and J. Zhang, “Fabrication of polymer optical fibre (POF) gratings,” Sensors 17, 511 (2017).
[Crossref]

Zhang, Q.

Y. Luo, B. Yan, Q. Zhang, G.-D. Peng, J. Wen, and J. Zhang, “Fabrication of polymer optical fibre (POF) gratings,” Sensors 17, 511 (2017).
[Crossref]

Zhang, W.

W. Zhang, D. J. Webb, and G.-D. Peng, “Investigation into time response of polymer fiber Bragg grating based humidity sensors,” J. Light. Technol. 30, 1090–1096 (2012).
[Crossref]

Zou, W.

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (1)

I. Carr and D. Hanna, “Performance of a Nd:YAG oscillator/ampflifier with phase-conjugation via stimulated Brillouin scattering,” Appl. Phys. B: Lasers Opt. 36, 83–92 (1985).
[Crossref]

Biomaterials (1)

M. Unemori, Y. Matsuya, S. Matsuya, A. Akashi, and A. Akamine, “Water absorption of poly (methyl methacrylate) containing 4-methacryloxyethyl trimellitic anhydride,” Biomaterials 24, 1381–1387 (2003).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (4)

Y. Mizuno, P. Lenke, K. Krebber, and K. Nakamura, “Characterization of Brillouin gain spectra in polymer optical fibers fabricated by different manufacturers at 1.32 and 1.55 um,” IEEE Photonics Technol. Lett. 24, 1496–1498 (2012).
[Crossref]

C. Galindez, F. J. Madruga, and J. M. Lopez-Higuera, “Influence of humidity on the measurement of Brillouin frequency shift,” IEEE Photonics Technol. Lett. 20, 1959–1961 (2008).
[Crossref]

Y. Mizuno, T. Ishigure, and K. Nakamura, “Brillouin gain spectrum characterization in perfluorinated graded-index polymer optical fiber with 62.5-um core diameter,” IEEE Photonics Technol. Lett. 23, 1863–1865 (2011).
[Crossref]

A. Minardo, R. Bernini, and L. Zeni, “Distributed temperature sensing in polymer optical fiber by BOFDA,” IEEE Photonics Technol. Lett. 26, 387–390 (2014).
[Crossref]

J. Appl. Meteorol. (1)

O. A. Alduchov and R. E. Eskridge, “Improved Magnus form approximation of saturation vapor pressure,” J. Appl. Meteorol. 35, 601–609 (1996).
[Crossref]

J. Appl. Phys. (1)

H. Bair, G. Johnson, and R. Merriweather, “Water sorption of polycarbonate and its effect on the polymers dielectric behavior,” J. Appl. Phys. 49, 4976–4984 (1978).
[Crossref]

J. Light. Technol. (5)

D. Garcus, T. Gogolla, K. Krebber, and F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Light. Technol. 15, 654–662 (1997).
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Light. Technol. 32, 3397–3401 (2014).
[Crossref]

H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry using polymer optical fibers with high propagation loss,” J. Light. Technol. 35, 2306–2310 (2017).
[Crossref]

Y. Mizuno and K. Nakamura, “Core alignment of butt coupling between single-mode and multimode optical fibers by monitoring Brillouin scattering signal,” J. Light. Technol. 29, 2616–2620 (2011).
[Crossref]

W. Zhang, D. J. Webb, and G.-D. Peng, “Investigation into time response of polymer fiber Bragg grating based humidity sensors,” J. Light. Technol. 30, 1090–1096 (2012).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Minakawa, N. Hayashi, Y. Shinohara, M. Tahara, H. Hosoda, Y. Mizuno, and K. Nakamura, “Wide-range temperature dependences of Brillouin scattering properties in polymer optical fiber,” Jpn. J. Appl. Phys. 53, 042502 (2014).
[Crossref]

Meas. Sci. Technol. (2)

S. Liehr, M. Wendt, and K. Krebber, “Distributed strain measurement in perfluorinated polymer optical fibres using optical frequency domain reflectometry,” Meas. Sci. Technol. 21, 094023 (2010).
[Crossref]

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14, 746 (2003).
[Crossref]

Opt. & Laser Technol. (1)

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. & Laser Technol. 78, 81–103 (2016).
[Crossref]

Opt. Express (7)

S. Preußler, N. Wenzel, R.-P. Braun, N. Owschimikow, C. Vogel, A. Deninger, A. Zadok, U. Woggon, and T. Schneider, “Generation of ultra-narrow, stable and tunable millimeter-and terahertz-waves with very low phase noise,” Opt. Express 21, 23950–23962 (2013).
[Crossref]

A. Minardo, R. Bernini, and L. Zeni, “Experimental and numerical study on stimulated Brillouin scattering in a graded-index multimode fiber,” Opt. Express 22, 17480–17489 (2014).
[Crossref] [PubMed]

Y. Dong, P. Xu, H. Zhang, Z. Lu, L. Chen, and X. Bao, “Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis,” Opt. Express 22, 26510–26516 (2014).
[Crossref] [PubMed]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24, 1206–1213 (2016).
[Crossref] [PubMed]

K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express 15, 8844–8850 (2007).
[Crossref] [PubMed]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16, 12148–12153 (2008).
[Crossref] [PubMed]

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18, 22599–22613 (2010).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Opt. Lett. (4)

Phys. Rev. Lett. (2)

M. R. Moldover, J. M. Trusler, T. Edwards, J. B. Mehl, and R. S. Davis, “Measurement of the universal gas constant R using a spherical acoustic resonator,” Phys. Rev. Lett. 60, 249 (1988).
[Crossref] [PubMed]

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

Sensors (3)

S. F. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors 12, 8847–8860 (2012).
[Crossref] [PubMed]

S. Liehr, M. Breithaupt, and K. Krebber, “Distributed humidity sensing in PMMA optical fibers at 500 nm and 650 nm wavelengths,” Sensors 17, 738 (2017).
[Crossref]

Y. Luo, B. Yan, Q. Zhang, G.-D. Peng, J. Wen, and J. Zhang, “Fabrication of polymer optical fibre (POF) gratings,” Sensors 17, 511 (2017).
[Crossref]

Sensors Actuators A: Phys. (1)

A. Kharaz and B. Jones, “A distributed optical-fibre sensing system for multi-point humidity measurement,” Sensors Actuators A: Phys. 47, 491–493 (1995).
[Crossref]

Sensors Actuators B: Chem. (1)

P. J. Thomas and J. O. Hellevang, “A fully distributed fibre optic sensor for relative humidity measurements,” Sensors Actuators B: Chem. 247, 284–289 (2017).
[Crossref]

Other (7)

Y. Koike, Fundamentals of Plastic Optical Fibers (John Wiley & Sons, 2014).

Y. J. Weitsman, Fluid Effects in Polymers and Polymeric Composites (Springer Science & Business Media, 2011).

J. G. Speight, Lange’s Handbook of Chemistry, vol. 1 (McGraw-HillNew York, 2005).

A. Schreier, T. Jeschke, K. Petermann, A. Wosniok, and K. Krebber, “Analytical model for mode based insertion loss in ball-lensed coupling of graded-index silica and polymer fibres,” in 26th International Conference on Plastic Optical Fibres, POF 2017 - Proceedings, (2017).

G. P. Agarwal, Nonlinear Fiber Optics (Academic PressSan Diego, CA, 2007).

T. Schneider, Nonlinear Optics in Telecommunications (Springer Science & Business Media, 2013).

S. Liehr, Fibre Optic Sensing Techniques Based on Incoherent Optical Frequency Domain Reflectometry (BAM-Dissertationsreihe, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup for investigating the influence of humidity on BFS. Nd:YAG: solid state laser at 1319 nm, VOA: variable optical attenuator, C: circulator, PFGI-POF: 200 m fiber under test, 10dB: 10 dB fixed attenuator, PC: polarization controller, PD: photo diode, ESA: electrical spectrum analyser, DAQ: data acquisition.
Fig. 2
Fig. 2 a) BGS at 60 %r.h. for selected temperatures. b) Brillouin frequency shift as a function of temperature at specified relative humidity values. The corresponding linear regression functions are shown as well as an inset providing a closer view of the data set around 50 °C.
Fig. 3
Fig. 3 a) Brillouin frequency shift as a function of relative humidity at selected temperatures and their corresponding linear regression function. The maximum observed uncertainty of the calculated slope values was ± 2.91 kHz/%r.h. b) Computed relative humidity coefficient of BFS Ch,rel(T) as a function of temperature.
Fig. 4
Fig. 4 Brillouin frequency shift plotted against relative humidity at 35 °C. The humidity was increased and decreased in order to observe a BFS hysteresis. Note that the frequency shift is given as a difference to the theoretical BFS at T = 35°C and h = 0 %r.h..
Fig. 5
Fig. 5 a) Brillouin frequency shift as a function of absolute humidity at selected temperatures. b) Absolute humidity and temperature-induced Brillouin frequency shifts at all measured temperatures.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

e w ( T ) = 6.1094 exp { 17.625 T 243.04 + T }
BFS ( T , h ) = C h ( T ) h + C T T + BFS 0
C T = ( 4.02 ± 0.01 ) MHz / K
BFS 0 = ( 3404.8 ± 0.5 ) MHz
C h ( T ) = C h , abs ( T ) = 8.96 kHz m 3 / ( g ° C ) T 560.1 kHz m 3 / g

Metrics