Abstract

Physical layer encryption methods are emerging as effective, low-latency approaches to ensure data confidentiality in wireless networks. The use of chaotic signals for data masking is a potential solution to prevent a possible eavesdropper to distinguish between noise and sensitive data. In this work, we experimentally demonstrate the W-band wireless transmission of a 1 Gb/s chaotic signal over 2 m in a radio-over-fiber architecture. The chaos encoding scheme is based on the transition between different states of a Duffing oscillator system, digitally implemented. The bit error rate achieved in all cases was below the forward error correction limit for 7 % overhead. The presented results validate the proposed chaos-based physical layer encoding solution for gigabit data transmissions in hybrid millimeter-wave/photonic networks.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
40 Gb/s W-band (75–110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission

Atsushi Kanno, Keizo Inagaki, Isao Morohashi, Takahide Sakamoto, Toshiaki Kuri, Iwao Hosako, Tetsuya Kawanishi, Yuki Yoshida, and Ken-ichi Kitayama
Opt. Express 19(26) B56-B63 (2011)

Chaos-on-a-chip secures data transmission in optical fiber links

Apostolos Argyris, Evangellos Grivas, Michael Hamacher, Adonis Bogris, and Dimitris Syvridis
Opt. Express 18(5) 5188-5198 (2010)

References

  • View by:
  • |
  • |
  • |

  1. Y. Liu, H. H. Chen, and L. Wang, “Physical layer security for next generation wireless networks: theories, technologies and challenges,” IEEE Commun. Surv. Tutor. 19(1), 347–376 (2017).
    [Crossref]
  2. M. Di Renzo and M. Debbah, “Wireless physical-layer security: the challenges ahead,” in Proceedings of International Conference on Advanced Technologies for Communications, (IEEE, 2009), pp. 313–316.
  3. Y. S. Shiu, S. Y. Chang, H. C. Wu, S. Huang, and H. H. Chen, “Physical layer security in wireless networks: a tutorial,” IEEE Wirel. Commun. 18(2), 66–74 (2011).
    [Crossref]
  4. H. K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).
    [Crossref]
  5. A. Juels and T. Ristenpart, “Honey encryption: encryption beyond the brute-force barrier,” IEEE Secur. Priv. 12(4), 59–62 (2014).
    [Crossref]
  6. J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014).
    [Crossref]
  7. C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech. J. 28(4), 656–715 (1949).
    [Crossref]
  8. S. Leung-Yan-Cheong and M. Hellman, “The Gaussian wire-tap channel,” IEEE Trans. Inf. Theory 24(4), 451–456 (1978).
    [Crossref]
  9. F. Oggier and B. Hassibi, “The secrecy capacity of the MIMO wiretap channel,” IEEE Trans. Inf. Theory 57(8), 4961–4972, (2011).
    [Crossref]
  10. S. Shafiee, N. Liu, and S. Ulukus, “Towards the secrecy capacity of the gaussian MIMO wire-tap channel: the 2-2-1 channel,” IEEE Trans. Inf. Theory 55(9), 4033–4039, (2009).
    [Crossref]
  11. B. Han, J. Li, J. Su, M. Guo, and B. Zhao, “Secrecy capacity optimization via cooperative relaying and jamming for WANETs,” IEEE Trans. Parallel Distrib. Syst. 26(4), 1117–1128, (2015).
    [Crossref]
  12. C. Cai, Y. Cai, X. Zhou, W. Yang, and W. Yang, “When does relay transmission give a more secure connection in wireless ad hoc networks?” IEEE Trans. Inf. Forensics Secur. 9(4), 624–632, (2014).
    [Crossref]
  13. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
    [Crossref]
  14. S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,” IEEE Trans. Wirel. Commun. 7(6), 2180–2189, (2008).
    [Crossref]
  15. M. Eisencraft, R. Attux, and R. Suyama, Chaotic signals in digital communications (CRC Press, 2013), Chap. 1.
  16. G. Wang, D. Chen, J. Lin, and X. Chen, “The application of chaotic oscillators to weak signal detection,” IEEE Trans. Ind. Electron. 46(2), 440–444 (1999).
    [Crossref]
  17. H. Jianqun and Z. Ping, “A chaotic Duffing receiving system based on OOK digital modulation,” in Proceedings of International Conference on Wireless Communications, Networking and Mobile Computing, (IEEE, 2009), pp. 6–8.
  18. R. Puerta, A. Morales, S. Rommel, I. Kim, O. Vassilieva, T. Ikeuchi, and I. T. Monroy, “Physical Layer 1 Gb/s Secret Wireless Data Transmission at W-Band using a Photonic Duffing System,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper W1F.7.
  19. M. Zapateiro, Y. Vidal, and L. Acho, “A secure communication scheme based on chaotic Duffing oscillators and frequency estimation for the transmission of binary-coded massages,” Commun. Nonlinear Sci. Numer. Simul. 19(4), 991–1003 (2014).
    [Crossref]
  20. X. Li, J. Yu, K. Wang, Y. Xu, L. Chen, L. Zhao, and W. Zhou, “Bidirectional Delivery of 54-Gbps 8QAM W-Band Signal and 32-Gbps 16QAM K-Band Signal over 20-km SMF-28 and 2500-m Wireless Distance,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2017), paper Th5A.7.
  21. S. Rommel, S. Rodriguez, Ł. Chorchos, E. P. Grakhova, A. K. Sultanov, J. P. Turkiewicz, J. J. V. Olmos, and I. T. Monroy, “225m Outdoor W-Band Radio-over-Fiber Link Using an Optical SFP+ Module,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th2A.16.
  22. S. Rodríguez, A. Morales, S. Rommel, J. J. Vegas Olmos, and I. T. Monroy, “Real-time Measurements of an Optical Reconfigurable Radio Access Unit for 5G Wireless Access Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper W1C.3.
  23. Álvaro Morales, Idelfonso Tafur Monroy, Fredrik Nordwall, and Tommi Sørensen, “50 GHz optical true time delay beamforming in hybrid optical/mm-wave access networks with multi-core optical fiber distribution,” Chin. Opt. Lett. 16(4), 040603 (2018)
    [Crossref]

2018 (1)

2017 (1)

Y. Liu, H. H. Chen, and L. Wang, “Physical layer security for next generation wireless networks: theories, technologies and challenges,” IEEE Commun. Surv. Tutor. 19(1), 347–376 (2017).
[Crossref]

2015 (1)

B. Han, J. Li, J. Su, M. Guo, and B. Zhao, “Secrecy capacity optimization via cooperative relaying and jamming for WANETs,” IEEE Trans. Parallel Distrib. Syst. 26(4), 1117–1128, (2015).
[Crossref]

2014 (5)

C. Cai, Y. Cai, X. Zhou, W. Yang, and W. Yang, “When does relay transmission give a more secure connection in wireless ad hoc networks?” IEEE Trans. Inf. Forensics Secur. 9(4), 624–632, (2014).
[Crossref]

M. Zapateiro, Y. Vidal, and L. Acho, “A secure communication scheme based on chaotic Duffing oscillators and frequency estimation for the transmission of binary-coded massages,” Commun. Nonlinear Sci. Numer. Simul. 19(4), 991–1003 (2014).
[Crossref]

H. K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).
[Crossref]

A. Juels and T. Ristenpart, “Honey encryption: encryption beyond the brute-force barrier,” IEEE Secur. Priv. 12(4), 59–62 (2014).
[Crossref]

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014).
[Crossref]

2011 (2)

Y. S. Shiu, S. Y. Chang, H. C. Wu, S. Huang, and H. H. Chen, “Physical layer security in wireless networks: a tutorial,” IEEE Wirel. Commun. 18(2), 66–74 (2011).
[Crossref]

F. Oggier and B. Hassibi, “The secrecy capacity of the MIMO wiretap channel,” IEEE Trans. Inf. Theory 57(8), 4961–4972, (2011).
[Crossref]

2009 (1)

S. Shafiee, N. Liu, and S. Ulukus, “Towards the secrecy capacity of the gaussian MIMO wire-tap channel: the 2-2-1 channel,” IEEE Trans. Inf. Theory 55(9), 4033–4039, (2009).
[Crossref]

2008 (1)

S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,” IEEE Trans. Wirel. Commun. 7(6), 2180–2189, (2008).
[Crossref]

2002 (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

1999 (1)

G. Wang, D. Chen, J. Lin, and X. Chen, “The application of chaotic oscillators to weak signal detection,” IEEE Trans. Ind. Electron. 46(2), 440–444 (1999).
[Crossref]

1978 (1)

S. Leung-Yan-Cheong and M. Hellman, “The Gaussian wire-tap channel,” IEEE Trans. Inf. Theory 24(4), 451–456 (1978).
[Crossref]

1949 (1)

C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech. J. 28(4), 656–715 (1949).
[Crossref]

Acho, L.

M. Zapateiro, Y. Vidal, and L. Acho, “A secure communication scheme based on chaotic Duffing oscillators and frequency estimation for the transmission of binary-coded massages,” Commun. Nonlinear Sci. Numer. Simul. 19(4), 991–1003 (2014).
[Crossref]

Andrews, J. G.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014).
[Crossref]

Attux, R.

M. Eisencraft, R. Attux, and R. Suyama, Chaotic signals in digital communications (CRC Press, 2013), Chap. 1.

Buzzi, S.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014).
[Crossref]

Cai, C.

C. Cai, Y. Cai, X. Zhou, W. Yang, and W. Yang, “When does relay transmission give a more secure connection in wireless ad hoc networks?” IEEE Trans. Inf. Forensics Secur. 9(4), 624–632, (2014).
[Crossref]

Cai, Y.

C. Cai, Y. Cai, X. Zhou, W. Yang, and W. Yang, “When does relay transmission give a more secure connection in wireless ad hoc networks?” IEEE Trans. Inf. Forensics Secur. 9(4), 624–632, (2014).
[Crossref]

Chang, S. Y.

Y. S. Shiu, S. Y. Chang, H. C. Wu, S. Huang, and H. H. Chen, “Physical layer security in wireless networks: a tutorial,” IEEE Wirel. Commun. 18(2), 66–74 (2011).
[Crossref]

Chen, D.

G. Wang, D. Chen, J. Lin, and X. Chen, “The application of chaotic oscillators to weak signal detection,” IEEE Trans. Ind. Electron. 46(2), 440–444 (1999).
[Crossref]

Chen, H. H.

Y. Liu, H. H. Chen, and L. Wang, “Physical layer security for next generation wireless networks: theories, technologies and challenges,” IEEE Commun. Surv. Tutor. 19(1), 347–376 (2017).
[Crossref]

Y. S. Shiu, S. Y. Chang, H. C. Wu, S. Huang, and H. H. Chen, “Physical layer security in wireless networks: a tutorial,” IEEE Wirel. Commun. 18(2), 66–74 (2011).
[Crossref]

Chen, L.

X. Li, J. Yu, K. Wang, Y. Xu, L. Chen, L. Zhao, and W. Zhou, “Bidirectional Delivery of 54-Gbps 8QAM W-Band Signal and 32-Gbps 16QAM K-Band Signal over 20-km SMF-28 and 2500-m Wireless Distance,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2017), paper Th5A.7.

Chen, X.

G. Wang, D. Chen, J. Lin, and X. Chen, “The application of chaotic oscillators to weak signal detection,” IEEE Trans. Ind. Electron. 46(2), 440–444 (1999).
[Crossref]

Choi, W.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014).
[Crossref]

Chorchos, L.

S. Rommel, S. Rodriguez, Ł. Chorchos, E. P. Grakhova, A. K. Sultanov, J. P. Turkiewicz, J. J. V. Olmos, and I. T. Monroy, “225m Outdoor W-Band Radio-over-Fiber Link Using an Optical SFP+ Module,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th2A.16.

Curty, M.

H. K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).
[Crossref]

Debbah, M.

M. Di Renzo and M. Debbah, “Wireless physical-layer security: the challenges ahead,” in Proceedings of International Conference on Advanced Technologies for Communications, (IEEE, 2009), pp. 313–316.

Di Renzo, M.

M. Di Renzo and M. Debbah, “Wireless physical-layer security: the challenges ahead,” in Proceedings of International Conference on Advanced Technologies for Communications, (IEEE, 2009), pp. 313–316.

Eisencraft, M.

M. Eisencraft, R. Attux, and R. Suyama, Chaotic signals in digital communications (CRC Press, 2013), Chap. 1.

Goel, S.

S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,” IEEE Trans. Wirel. Commun. 7(6), 2180–2189, (2008).
[Crossref]

Grakhova, E. P.

S. Rommel, S. Rodriguez, Ł. Chorchos, E. P. Grakhova, A. K. Sultanov, J. P. Turkiewicz, J. J. V. Olmos, and I. T. Monroy, “225m Outdoor W-Band Radio-over-Fiber Link Using an Optical SFP+ Module,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th2A.16.

Guo, M.

B. Han, J. Li, J. Su, M. Guo, and B. Zhao, “Secrecy capacity optimization via cooperative relaying and jamming for WANETs,” IEEE Trans. Parallel Distrib. Syst. 26(4), 1117–1128, (2015).
[Crossref]

Han, B.

B. Han, J. Li, J. Su, M. Guo, and B. Zhao, “Secrecy capacity optimization via cooperative relaying and jamming for WANETs,” IEEE Trans. Parallel Distrib. Syst. 26(4), 1117–1128, (2015).
[Crossref]

Hanly, S. V.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014).
[Crossref]

Hassibi, B.

F. Oggier and B. Hassibi, “The secrecy capacity of the MIMO wiretap channel,” IEEE Trans. Inf. Theory 57(8), 4961–4972, (2011).
[Crossref]

Hellman, M.

S. Leung-Yan-Cheong and M. Hellman, “The Gaussian wire-tap channel,” IEEE Trans. Inf. Theory 24(4), 451–456 (1978).
[Crossref]

Huang, S.

Y. S. Shiu, S. Y. Chang, H. C. Wu, S. Huang, and H. H. Chen, “Physical layer security in wireless networks: a tutorial,” IEEE Wirel. Commun. 18(2), 66–74 (2011).
[Crossref]

Ikeuchi, T.

R. Puerta, A. Morales, S. Rommel, I. Kim, O. Vassilieva, T. Ikeuchi, and I. T. Monroy, “Physical Layer 1 Gb/s Secret Wireless Data Transmission at W-Band using a Photonic Duffing System,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper W1F.7.

Jianqun, H.

H. Jianqun and Z. Ping, “A chaotic Duffing receiving system based on OOK digital modulation,” in Proceedings of International Conference on Wireless Communications, Networking and Mobile Computing, (IEEE, 2009), pp. 6–8.

Juels, A.

A. Juels and T. Ristenpart, “Honey encryption: encryption beyond the brute-force barrier,” IEEE Secur. Priv. 12(4), 59–62 (2014).
[Crossref]

Kim, I.

R. Puerta, A. Morales, S. Rommel, I. Kim, O. Vassilieva, T. Ikeuchi, and I. T. Monroy, “Physical Layer 1 Gb/s Secret Wireless Data Transmission at W-Band using a Photonic Duffing System,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper W1F.7.

Leung-Yan-Cheong, S.

S. Leung-Yan-Cheong and M. Hellman, “The Gaussian wire-tap channel,” IEEE Trans. Inf. Theory 24(4), 451–456 (1978).
[Crossref]

Li, J.

B. Han, J. Li, J. Su, M. Guo, and B. Zhao, “Secrecy capacity optimization via cooperative relaying and jamming for WANETs,” IEEE Trans. Parallel Distrib. Syst. 26(4), 1117–1128, (2015).
[Crossref]

Li, X.

X. Li, J. Yu, K. Wang, Y. Xu, L. Chen, L. Zhao, and W. Zhou, “Bidirectional Delivery of 54-Gbps 8QAM W-Band Signal and 32-Gbps 16QAM K-Band Signal over 20-km SMF-28 and 2500-m Wireless Distance,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2017), paper Th5A.7.

Lin, J.

G. Wang, D. Chen, J. Lin, and X. Chen, “The application of chaotic oscillators to weak signal detection,” IEEE Trans. Ind. Electron. 46(2), 440–444 (1999).
[Crossref]

Liu, N.

S. Shafiee, N. Liu, and S. Ulukus, “Towards the secrecy capacity of the gaussian MIMO wire-tap channel: the 2-2-1 channel,” IEEE Trans. Inf. Theory 55(9), 4033–4039, (2009).
[Crossref]

Liu, Y.

Y. Liu, H. H. Chen, and L. Wang, “Physical layer security for next generation wireless networks: theories, technologies and challenges,” IEEE Commun. Surv. Tutor. 19(1), 347–376 (2017).
[Crossref]

Lo, H. K.

H. K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).
[Crossref]

Lozano, A.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014).
[Crossref]

Monroy, I. T.

R. Puerta, A. Morales, S. Rommel, I. Kim, O. Vassilieva, T. Ikeuchi, and I. T. Monroy, “Physical Layer 1 Gb/s Secret Wireless Data Transmission at W-Band using a Photonic Duffing System,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper W1F.7.

S. Rommel, S. Rodriguez, Ł. Chorchos, E. P. Grakhova, A. K. Sultanov, J. P. Turkiewicz, J. J. V. Olmos, and I. T. Monroy, “225m Outdoor W-Band Radio-over-Fiber Link Using an Optical SFP+ Module,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th2A.16.

S. Rodríguez, A. Morales, S. Rommel, J. J. Vegas Olmos, and I. T. Monroy, “Real-time Measurements of an Optical Reconfigurable Radio Access Unit for 5G Wireless Access Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper W1C.3.

Monroy, Idelfonso Tafur

Morales, A.

S. Rodríguez, A. Morales, S. Rommel, J. J. Vegas Olmos, and I. T. Monroy, “Real-time Measurements of an Optical Reconfigurable Radio Access Unit for 5G Wireless Access Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper W1C.3.

R. Puerta, A. Morales, S. Rommel, I. Kim, O. Vassilieva, T. Ikeuchi, and I. T. Monroy, “Physical Layer 1 Gb/s Secret Wireless Data Transmission at W-Band using a Photonic Duffing System,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper W1F.7.

Morales, Álvaro

Negi, R.

S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,” IEEE Trans. Wirel. Commun. 7(6), 2180–2189, (2008).
[Crossref]

Nordwall, Fredrik

Oggier, F.

F. Oggier and B. Hassibi, “The secrecy capacity of the MIMO wiretap channel,” IEEE Trans. Inf. Theory 57(8), 4961–4972, (2011).
[Crossref]

Olmos, J. J. V.

S. Rommel, S. Rodriguez, Ł. Chorchos, E. P. Grakhova, A. K. Sultanov, J. P. Turkiewicz, J. J. V. Olmos, and I. T. Monroy, “225m Outdoor W-Band Radio-over-Fiber Link Using an Optical SFP+ Module,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th2A.16.

Ping, Z.

H. Jianqun and Z. Ping, “A chaotic Duffing receiving system based on OOK digital modulation,” in Proceedings of International Conference on Wireless Communications, Networking and Mobile Computing, (IEEE, 2009), pp. 6–8.

Puerta, R.

R. Puerta, A. Morales, S. Rommel, I. Kim, O. Vassilieva, T. Ikeuchi, and I. T. Monroy, “Physical Layer 1 Gb/s Secret Wireless Data Transmission at W-Band using a Photonic Duffing System,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper W1F.7.

Ristenpart, T.

A. Juels and T. Ristenpart, “Honey encryption: encryption beyond the brute-force barrier,” IEEE Secur. Priv. 12(4), 59–62 (2014).
[Crossref]

Rodriguez, S.

S. Rommel, S. Rodriguez, Ł. Chorchos, E. P. Grakhova, A. K. Sultanov, J. P. Turkiewicz, J. J. V. Olmos, and I. T. Monroy, “225m Outdoor W-Band Radio-over-Fiber Link Using an Optical SFP+ Module,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th2A.16.

Rodríguez, S.

S. Rodríguez, A. Morales, S. Rommel, J. J. Vegas Olmos, and I. T. Monroy, “Real-time Measurements of an Optical Reconfigurable Radio Access Unit for 5G Wireless Access Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper W1C.3.

Rommel, S.

S. Rommel, S. Rodriguez, Ł. Chorchos, E. P. Grakhova, A. K. Sultanov, J. P. Turkiewicz, J. J. V. Olmos, and I. T. Monroy, “225m Outdoor W-Band Radio-over-Fiber Link Using an Optical SFP+ Module,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th2A.16.

S. Rodríguez, A. Morales, S. Rommel, J. J. Vegas Olmos, and I. T. Monroy, “Real-time Measurements of an Optical Reconfigurable Radio Access Unit for 5G Wireless Access Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper W1C.3.

R. Puerta, A. Morales, S. Rommel, I. Kim, O. Vassilieva, T. Ikeuchi, and I. T. Monroy, “Physical Layer 1 Gb/s Secret Wireless Data Transmission at W-Band using a Photonic Duffing System,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper W1F.7.

Shafiee, S.

S. Shafiee, N. Liu, and S. Ulukus, “Towards the secrecy capacity of the gaussian MIMO wire-tap channel: the 2-2-1 channel,” IEEE Trans. Inf. Theory 55(9), 4033–4039, (2009).
[Crossref]

Shannon, C. E.

C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech. J. 28(4), 656–715 (1949).
[Crossref]

Shiu, Y. S.

Y. S. Shiu, S. Y. Chang, H. C. Wu, S. Huang, and H. H. Chen, “Physical layer security in wireless networks: a tutorial,” IEEE Wirel. Commun. 18(2), 66–74 (2011).
[Crossref]

Siegel, P. H.

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

Soong, A. C. K.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014).
[Crossref]

Sørensen, Tommi

Su, J.

B. Han, J. Li, J. Su, M. Guo, and B. Zhao, “Secrecy capacity optimization via cooperative relaying and jamming for WANETs,” IEEE Trans. Parallel Distrib. Syst. 26(4), 1117–1128, (2015).
[Crossref]

Sultanov, A. K.

S. Rommel, S. Rodriguez, Ł. Chorchos, E. P. Grakhova, A. K. Sultanov, J. P. Turkiewicz, J. J. V. Olmos, and I. T. Monroy, “225m Outdoor W-Band Radio-over-Fiber Link Using an Optical SFP+ Module,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th2A.16.

Suyama, R.

M. Eisencraft, R. Attux, and R. Suyama, Chaotic signals in digital communications (CRC Press, 2013), Chap. 1.

Tamaki, K.

H. K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).
[Crossref]

Turkiewicz, J. P.

S. Rommel, S. Rodriguez, Ł. Chorchos, E. P. Grakhova, A. K. Sultanov, J. P. Turkiewicz, J. J. V. Olmos, and I. T. Monroy, “225m Outdoor W-Band Radio-over-Fiber Link Using an Optical SFP+ Module,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th2A.16.

Ulukus, S.

S. Shafiee, N. Liu, and S. Ulukus, “Towards the secrecy capacity of the gaussian MIMO wire-tap channel: the 2-2-1 channel,” IEEE Trans. Inf. Theory 55(9), 4033–4039, (2009).
[Crossref]

Vassilieva, O.

R. Puerta, A. Morales, S. Rommel, I. Kim, O. Vassilieva, T. Ikeuchi, and I. T. Monroy, “Physical Layer 1 Gb/s Secret Wireless Data Transmission at W-Band using a Photonic Duffing System,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper W1F.7.

Vegas Olmos, J. J.

S. Rodríguez, A. Morales, S. Rommel, J. J. Vegas Olmos, and I. T. Monroy, “Real-time Measurements of an Optical Reconfigurable Radio Access Unit for 5G Wireless Access Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper W1C.3.

Vidal, Y.

M. Zapateiro, Y. Vidal, and L. Acho, “A secure communication scheme based on chaotic Duffing oscillators and frequency estimation for the transmission of binary-coded massages,” Commun. Nonlinear Sci. Numer. Simul. 19(4), 991–1003 (2014).
[Crossref]

Wang, G.

G. Wang, D. Chen, J. Lin, and X. Chen, “The application of chaotic oscillators to weak signal detection,” IEEE Trans. Ind. Electron. 46(2), 440–444 (1999).
[Crossref]

Wang, K.

X. Li, J. Yu, K. Wang, Y. Xu, L. Chen, L. Zhao, and W. Zhou, “Bidirectional Delivery of 54-Gbps 8QAM W-Band Signal and 32-Gbps 16QAM K-Band Signal over 20-km SMF-28 and 2500-m Wireless Distance,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2017), paper Th5A.7.

Wang, L.

Y. Liu, H. H. Chen, and L. Wang, “Physical layer security for next generation wireless networks: theories, technologies and challenges,” IEEE Commun. Surv. Tutor. 19(1), 347–376 (2017).
[Crossref]

Wu, H. C.

Y. S. Shiu, S. Y. Chang, H. C. Wu, S. Huang, and H. H. Chen, “Physical layer security in wireless networks: a tutorial,” IEEE Wirel. Commun. 18(2), 66–74 (2011).
[Crossref]

Xu, Y.

X. Li, J. Yu, K. Wang, Y. Xu, L. Chen, L. Zhao, and W. Zhou, “Bidirectional Delivery of 54-Gbps 8QAM W-Band Signal and 32-Gbps 16QAM K-Band Signal over 20-km SMF-28 and 2500-m Wireless Distance,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2017), paper Th5A.7.

Yang, W.

C. Cai, Y. Cai, X. Zhou, W. Yang, and W. Yang, “When does relay transmission give a more secure connection in wireless ad hoc networks?” IEEE Trans. Inf. Forensics Secur. 9(4), 624–632, (2014).
[Crossref]

C. Cai, Y. Cai, X. Zhou, W. Yang, and W. Yang, “When does relay transmission give a more secure connection in wireless ad hoc networks?” IEEE Trans. Inf. Forensics Secur. 9(4), 624–632, (2014).
[Crossref]

Yu, J.

X. Li, J. Yu, K. Wang, Y. Xu, L. Chen, L. Zhao, and W. Zhou, “Bidirectional Delivery of 54-Gbps 8QAM W-Band Signal and 32-Gbps 16QAM K-Band Signal over 20-km SMF-28 and 2500-m Wireless Distance,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2017), paper Th5A.7.

Zapateiro, M.

M. Zapateiro, Y. Vidal, and L. Acho, “A secure communication scheme based on chaotic Duffing oscillators and frequency estimation for the transmission of binary-coded massages,” Commun. Nonlinear Sci. Numer. Simul. 19(4), 991–1003 (2014).
[Crossref]

Zhang, J. C.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014).
[Crossref]

Zhao, B.

B. Han, J. Li, J. Su, M. Guo, and B. Zhao, “Secrecy capacity optimization via cooperative relaying and jamming for WANETs,” IEEE Trans. Parallel Distrib. Syst. 26(4), 1117–1128, (2015).
[Crossref]

Zhao, L.

X. Li, J. Yu, K. Wang, Y. Xu, L. Chen, L. Zhao, and W. Zhou, “Bidirectional Delivery of 54-Gbps 8QAM W-Band Signal and 32-Gbps 16QAM K-Band Signal over 20-km SMF-28 and 2500-m Wireless Distance,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2017), paper Th5A.7.

Zhou, W.

X. Li, J. Yu, K. Wang, Y. Xu, L. Chen, L. Zhao, and W. Zhou, “Bidirectional Delivery of 54-Gbps 8QAM W-Band Signal and 32-Gbps 16QAM K-Band Signal over 20-km SMF-28 and 2500-m Wireless Distance,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2017), paper Th5A.7.

Zhou, X.

C. Cai, Y. Cai, X. Zhou, W. Yang, and W. Yang, “When does relay transmission give a more secure connection in wireless ad hoc networks?” IEEE Trans. Inf. Forensics Secur. 9(4), 624–632, (2014).
[Crossref]

Bell Syst. Tech. J. (1)

C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech. J. 28(4), 656–715 (1949).
[Crossref]

Chin. Opt. Lett. (1)

Commun. Nonlinear Sci. Numer. Simul. (1)

M. Zapateiro, Y. Vidal, and L. Acho, “A secure communication scheme based on chaotic Duffing oscillators and frequency estimation for the transmission of binary-coded massages,” Commun. Nonlinear Sci. Numer. Simul. 19(4), 991–1003 (2014).
[Crossref]

IEEE Commun. Surv. Tutor. (1)

Y. Liu, H. H. Chen, and L. Wang, “Physical layer security for next generation wireless networks: theories, technologies and challenges,” IEEE Commun. Surv. Tutor. 19(1), 347–376 (2017).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014).
[Crossref]

IEEE Secur. Priv. (1)

A. Juels and T. Ristenpart, “Honey encryption: encryption beyond the brute-force barrier,” IEEE Secur. Priv. 12(4), 59–62 (2014).
[Crossref]

IEEE Trans. Ind. Electron. (1)

G. Wang, D. Chen, J. Lin, and X. Chen, “The application of chaotic oscillators to weak signal detection,” IEEE Trans. Ind. Electron. 46(2), 440–444 (1999).
[Crossref]

IEEE Trans. Inf. Forensics Secur. (1)

C. Cai, Y. Cai, X. Zhou, W. Yang, and W. Yang, “When does relay transmission give a more secure connection in wireless ad hoc networks?” IEEE Trans. Inf. Forensics Secur. 9(4), 624–632, (2014).
[Crossref]

IEEE Trans. Inf. Theory (3)

S. Leung-Yan-Cheong and M. Hellman, “The Gaussian wire-tap channel,” IEEE Trans. Inf. Theory 24(4), 451–456 (1978).
[Crossref]

F. Oggier and B. Hassibi, “The secrecy capacity of the MIMO wiretap channel,” IEEE Trans. Inf. Theory 57(8), 4961–4972, (2011).
[Crossref]

S. Shafiee, N. Liu, and S. Ulukus, “Towards the secrecy capacity of the gaussian MIMO wire-tap channel: the 2-2-1 channel,” IEEE Trans. Inf. Theory 55(9), 4033–4039, (2009).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

IEEE Trans. Parallel Distrib. Syst. (1)

B. Han, J. Li, J. Su, M. Guo, and B. Zhao, “Secrecy capacity optimization via cooperative relaying and jamming for WANETs,” IEEE Trans. Parallel Distrib. Syst. 26(4), 1117–1128, (2015).
[Crossref]

IEEE Trans. Wirel. Commun. (1)

S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,” IEEE Trans. Wirel. Commun. 7(6), 2180–2189, (2008).
[Crossref]

IEEE Wirel. Commun. (1)

Y. S. Shiu, S. Y. Chang, H. C. Wu, S. Huang, and H. H. Chen, “Physical layer security in wireless networks: a tutorial,” IEEE Wirel. Commun. 18(2), 66–74 (2011).
[Crossref]

Nat. Photonics (1)

H. K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).
[Crossref]

Other (7)

M. Di Renzo and M. Debbah, “Wireless physical-layer security: the challenges ahead,” in Proceedings of International Conference on Advanced Technologies for Communications, (IEEE, 2009), pp. 313–316.

M. Eisencraft, R. Attux, and R. Suyama, Chaotic signals in digital communications (CRC Press, 2013), Chap. 1.

H. Jianqun and Z. Ping, “A chaotic Duffing receiving system based on OOK digital modulation,” in Proceedings of International Conference on Wireless Communications, Networking and Mobile Computing, (IEEE, 2009), pp. 6–8.

R. Puerta, A. Morales, S. Rommel, I. Kim, O. Vassilieva, T. Ikeuchi, and I. T. Monroy, “Physical Layer 1 Gb/s Secret Wireless Data Transmission at W-Band using a Photonic Duffing System,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper W1F.7.

X. Li, J. Yu, K. Wang, Y. Xu, L. Chen, L. Zhao, and W. Zhou, “Bidirectional Delivery of 54-Gbps 8QAM W-Band Signal and 32-Gbps 16QAM K-Band Signal over 20-km SMF-28 and 2500-m Wireless Distance,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2017), paper Th5A.7.

S. Rommel, S. Rodriguez, Ł. Chorchos, E. P. Grakhova, A. K. Sultanov, J. P. Turkiewicz, J. J. V. Olmos, and I. T. Monroy, “225m Outdoor W-Band Radio-over-Fiber Link Using an Optical SFP+ Module,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th2A.16.

S. Rodríguez, A. Morales, S. Rommel, J. J. Vegas Olmos, and I. T. Monroy, “Real-time Measurements of an Optical Reconfigurable Radio Access Unit for 5G Wireless Access Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper W1C.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Physical layer signal masking algorithm using chaotic signals over a radio-over-fiber architecture.
Fig. 2
Fig. 2 Phase plane diagrams of the three states of a Duffing Oscillator System: (a) homoclinic orbit (γ = 0.2), (b) chaos (γ = 0.6) and (c) large periodic state (γ = 1.1). The ODE (δ = 0.5) was solved using the trapezoidal rule and h = 0.01.
Fig. 3
Fig. 3 Phase plane diagrams of the four DOS used in the experimental demonstration for data encoding. The ODE is solved using the trapezoidal rule and h = 1/65 · 10−9s.
Fig. 4
Fig. 4 Experimental setup with a single DOS, based on intensity modulation and envelope detection. ECL: external cavity laser, PC: polarization controller, VSG: vector signal generator, RF: radiofrequency, MZM: mach-zehnder modulator, AAWG: arrayed waveguide grating, AWG: arbitrary waveform generator, EA: electrical amplifier, VOA: variable optical attenuator, EDFA: erbium-doped fiber amplifier, SMF: single mode fiber, PD: photodiode, MPA: medium power amplifier, LNA: low noise amplifier, ED: envelope detector. DSO: digital storage oscilloscope.
Fig. 5
Fig. 5 Experimental setup with two DOSs, based on optical I/Q modulation and IF down-conversion. ECL: external cavity laser, PC: polarization controller, VSG: vector signal generator, RF: radiofrequency, MZM: mach-zehnder modulator, AAWG: arrayed waveguide grating, AWG: arbitrary waveform generator, I: in phase, Q: Quadrature, Mod.: modulator, VOA: variable optical attenuator, EDFA: erbium-doped fiber amplifier, SMF: single mode fiber, PD: photodiode, MPA: medium power amplifier, LNA: low noise amplifier, LO: local oscillator, IF: intermediate frequency, EA: electrical amplifier DSO: digital storage oscilloscope.
Fig. 6
Fig. 6 Captured signal when DOS4 is transmitted in the intensity modulation/envelope detection experimental setup: (a) time, (b) spectrum and (c) phase plane diagram.
Fig. 7
Fig. 7 Histograms of the average signal intensity per symbol in the intensity modulation/envelope detection experimental setup.
Fig. 8
Fig. 8 Captured signals in time and frequency and phase plane diagrams for the two configurations in the optical I/Q modulation with IF down-conversion experimental setup.
Fig. 9
Fig. 9 Histograms of the average signal intensity per symbol in the optical I/Q modulation with IF down-conversion experimental setup.

Tables (2)

Tables Icon

Table 1 Parameters of the four DOSs used in the experimental demonstration for data encoding. The ODE is solved using the trapezoidal rule and h = 1/65 · 10−9s.

Tables Icon

Table 2 Measured BER for the two configurations in the optical I/Q modulation with IF down-conversion experimental setup.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

x ¨ ( t ) + δ x ˙ ( t ) x ( t ) + x 3 ( t ) = γ cos ( t ) ,
x ( t ) = x ( ω d τ ) = y ( τ ) x ˙ ( t ) = 1 ω d x ˙ ( ω d τ ) = 1 ω d y ˙ ( τ ) x ¨ ( t ) = 1 ω d 2 x ¨ ( ω d τ ) = 1 ω d 2 y ¨ ( τ )
y ¨ ( τ ) ω d 2 + δ y ˙ ( τ ) ω d y ( τ ) + y 3 ( τ ) = γ cos ( ω d τ )

Metrics