Abstract

Smart windows and many other applications require synchronous or alternating facile electric switching of transmitted light intensity in visible and near infrared spectral ranges, but most electrochromic devices suffer from slow, nonuniform switching, high power consumption and limited options for designing spectral characteristics. Here we develop a guest-host mesostructured composite with rod-like dye molecules and plasmonic nanorods spontaneously aligned either parallel or orthogonally to the director of the liquid crystal host. This composite material enables fast, low-voltage electric switching of electromagnetic radiation in visible and infrared ranges, which can be customized depending on the needs of applications, like climate-dependent optimal solar gain control in smart windows.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A reflective polarizer-free electro-optical switch using dye-doped polymer-stabilized blue phase liquid crystals

Yi-Hsin Lin, Hung-Shan Chen, Tsung-Han Chiang, Chun-Hung Wu, and Hsu-Kuan Hsu
Opt. Express 19(3) 2556-2561 (2011)

Light shutter using dichroic-dye-doped long-pitch cholesteric liquid crystals

Byeong-Hun Yu, Jae-Won Huh, Ki-Han Kim, and Tae-Hoon Yoon
Opt. Express 21(24) 29332-29337 (2013)

Self-assembly of predesigned optical materials in nematic codispersions of plasmonic nanorods

Ghadah H. Sheetah, Qingkun Liu, and Ivan I. Smalyukh
Opt. Lett. 41(21) 4899-4902 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. Bahadur, Handbook of Liquid Crystals (Wiley-VCH, Weinheim, 1998), 2A.
  2. G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals. A new electro-optic effect,” Appl. Phys. Lett. 13(3), 91–92 (1968).
    [Crossref]
  3. T. Uchida, H. Seki, C. Shishido, and M. Wada, “Bright dichroic guest–host LCDs without a polarizer,” Proc. Soc. Inf. Disp. 22(1), 41–46 (1981).
  4. B. Taheri, T. Kosa, V. Bodnar, L. Sukhomlinova, L. Su, C. Martincic, J. Chonko, and E.-Y. Park, “Guest-host liquid crystal devices for adaptive window application,” Proc. SPIE 7618. Emerging Liquid Crystal Technologies V, 76180W (2010).
  5. P. M. Chaikin and T. C. Lubensky, Principles of condensed matter physics (Cambridge Univ. Press, 2000).
  6. Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles,” Nano Lett. 14(7), 4071–4077 (2014).
    [Crossref] [PubMed]
  7. Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10(4), 1347–1353 (2010).
    [Crossref] [PubMed]
  8. L. Jiang, H. Mundoor, Q. Liu, and I. I. Smalyukh, “Electric switching of fluorescence decay in gold-silica-dye nematic nanocolloids mediated by surface plasmons,” ACS Nano 10(7), 7064–7072 (2016).
    [Crossref] [PubMed]
  9. Y. Zhang, Q. Liu, H. Mundoor, Y. Yuan, and I. I. Smalyukh, “Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and E-polarizers,” ACS Nano 9(3), 3097–3108 (2015).
    [Crossref] [PubMed]
  10. G. H. Sheetah, Q. Liu, and I. I. Smalyukh, “Self-assembly of predesigned optical materials in nematic codispersions of plasmonic nanorods,” Opt. Lett. 41(21), 4899–4902 (2016).
    [Crossref] [PubMed]
  11. X. Ye, C. Zheng, J. Chen, Y. Gao, and C. B. Murray, “Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods,” Nano Lett. 13(2), 765–771 (2013).
    [Crossref] [PubMed]
  12. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
    [Crossref]
  13. D. F. Gardner, J. S. Evans, and I. I. Smalyukh, “Towards reconfigurable optical metamaterials: Colloidal nanoparticle self-assembly and self-alignment in liquid crystals,” Mol. Cryst. Liq. Cryst. 545(1), 1227–1245 (2011).
    [Crossref]
  14. L. M. Blinov and V. G. Chigrinov, Electrooptic effects in liquid crystal materials (Springer-Verlag, 1996).
  15. I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E 72(6), 061707 (2005).
    [Crossref] [PubMed]
  16. K. A. Crandall, M. R. Fisch, R. G. Petschek, and C. Rosenblatt, “Vanishing Freedericksz transition threshold voltage in a chiral nematic liquid crystal,” Appl. Phys. Lett. 64(13), 1741–1743 (1994).
    [Crossref]
  17. R. Baetens, B. P. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Sol. Energy Mater. Sol. Cells 94(2), 87–105 (2010).
    [Crossref]
  18. E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. (Camb.) 50(73), 10555–10572 (2014).
    [Crossref] [PubMed]
  19. I. Sage, “Thermochromic liquid crystals,” Liq. Cryst. 38(11–12), 1551–1561 (2011).
    [Crossref]
  20. J. Heo, J.-W. Huh, and T.-H. Yoon, “Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes,” AIP Adv. 5(4), 047118 (2015).
    [Crossref]
  21. H. Ren and S.-T. Wu, “Anisotropic liquid crystal gels for switchable polarizers and displays,” Appl. Phys. Lett. 81(8), 1432–1434 (2002).
    [Crossref]
  22. Y.-C. Hsiao, K.-C. Huang, and W. Lee, “Photo-switchable chiral liquid crystal with optical tristability enabled by a photoresponsive azo-chiral dopant,” Opt. Express 25(3), 2687–2693 (2017).
    [Crossref] [PubMed]

2017 (1)

2016 (2)

L. Jiang, H. Mundoor, Q. Liu, and I. I. Smalyukh, “Electric switching of fluorescence decay in gold-silica-dye nematic nanocolloids mediated by surface plasmons,” ACS Nano 10(7), 7064–7072 (2016).
[Crossref] [PubMed]

G. H. Sheetah, Q. Liu, and I. I. Smalyukh, “Self-assembly of predesigned optical materials in nematic codispersions of plasmonic nanorods,” Opt. Lett. 41(21), 4899–4902 (2016).
[Crossref] [PubMed]

2015 (2)

Y. Zhang, Q. Liu, H. Mundoor, Y. Yuan, and I. I. Smalyukh, “Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and E-polarizers,” ACS Nano 9(3), 3097–3108 (2015).
[Crossref] [PubMed]

J. Heo, J.-W. Huh, and T.-H. Yoon, “Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes,” AIP Adv. 5(4), 047118 (2015).
[Crossref]

2014 (2)

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. (Camb.) 50(73), 10555–10572 (2014).
[Crossref] [PubMed]

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles,” Nano Lett. 14(7), 4071–4077 (2014).
[Crossref] [PubMed]

2013 (1)

X. Ye, C. Zheng, J. Chen, Y. Gao, and C. B. Murray, “Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods,” Nano Lett. 13(2), 765–771 (2013).
[Crossref] [PubMed]

2011 (2)

I. Sage, “Thermochromic liquid crystals,” Liq. Cryst. 38(11–12), 1551–1561 (2011).
[Crossref]

D. F. Gardner, J. S. Evans, and I. I. Smalyukh, “Towards reconfigurable optical metamaterials: Colloidal nanoparticle self-assembly and self-alignment in liquid crystals,” Mol. Cryst. Liq. Cryst. 545(1), 1227–1245 (2011).
[Crossref]

2010 (3)

B. Taheri, T. Kosa, V. Bodnar, L. Sukhomlinova, L. Su, C. Martincic, J. Chonko, and E.-Y. Park, “Guest-host liquid crystal devices for adaptive window application,” Proc. SPIE 7618. Emerging Liquid Crystal Technologies V, 76180W (2010).

R. Baetens, B. P. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Sol. Energy Mater. Sol. Cells 94(2), 87–105 (2010).
[Crossref]

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10(4), 1347–1353 (2010).
[Crossref] [PubMed]

2005 (1)

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E 72(6), 061707 (2005).
[Crossref] [PubMed]

2003 (1)

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

2002 (1)

H. Ren and S.-T. Wu, “Anisotropic liquid crystal gels for switchable polarizers and displays,” Appl. Phys. Lett. 81(8), 1432–1434 (2002).
[Crossref]

1994 (1)

K. A. Crandall, M. R. Fisch, R. G. Petschek, and C. Rosenblatt, “Vanishing Freedericksz transition threshold voltage in a chiral nematic liquid crystal,” Appl. Phys. Lett. 64(13), 1741–1743 (1994).
[Crossref]

1981 (1)

T. Uchida, H. Seki, C. Shishido, and M. Wada, “Bright dichroic guest–host LCDs without a polarizer,” Proc. Soc. Inf. Disp. 22(1), 41–46 (1981).

1968 (1)

G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals. A new electro-optic effect,” Appl. Phys. Lett. 13(3), 91–92 (1968).
[Crossref]

Baetens, R.

R. Baetens, B. P. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Sol. Energy Mater. Sol. Cells 94(2), 87–105 (2010).
[Crossref]

Bodnar, V.

B. Taheri, T. Kosa, V. Bodnar, L. Sukhomlinova, L. Su, C. Martincic, J. Chonko, and E.-Y. Park, “Guest-host liquid crystal devices for adaptive window application,” Proc. SPIE 7618. Emerging Liquid Crystal Technologies V, 76180W (2010).

Bodnar, V. H.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E 72(6), 061707 (2005).
[Crossref] [PubMed]

Chen, J.

X. Ye, C. Zheng, J. Chen, Y. Gao, and C. B. Murray, “Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods,” Nano Lett. 13(2), 765–771 (2013).
[Crossref] [PubMed]

Chonko, J.

B. Taheri, T. Kosa, V. Bodnar, L. Sukhomlinova, L. Su, C. Martincic, J. Chonko, and E.-Y. Park, “Guest-host liquid crystal devices for adaptive window application,” Proc. SPIE 7618. Emerging Liquid Crystal Technologies V, 76180W (2010).

Crandall, K. A.

K. A. Crandall, M. R. Fisch, R. G. Petschek, and C. Rosenblatt, “Vanishing Freedericksz transition threshold voltage in a chiral nematic liquid crystal,” Appl. Phys. Lett. 64(13), 1741–1743 (1994).
[Crossref]

Cui, Y.

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10(4), 1347–1353 (2010).
[Crossref] [PubMed]

El-Sayed, M. A.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

Evans, J. S.

D. F. Gardner, J. S. Evans, and I. I. Smalyukh, “Towards reconfigurable optical metamaterials: Colloidal nanoparticle self-assembly and self-alignment in liquid crystals,” Mol. Cryst. Liq. Cryst. 545(1), 1227–1245 (2011).
[Crossref]

Fisch, M. R.

K. A. Crandall, M. R. Fisch, R. G. Petschek, and C. Rosenblatt, “Vanishing Freedericksz transition threshold voltage in a chiral nematic liquid crystal,” Appl. Phys. Lett. 64(13), 1741–1743 (1994).
[Crossref]

Gao, Y.

X. Ye, C. Zheng, J. Chen, Y. Gao, and C. B. Murray, “Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods,” Nano Lett. 13(2), 765–771 (2013).
[Crossref] [PubMed]

Gardner, D.

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10(4), 1347–1353 (2010).
[Crossref] [PubMed]

Gardner, D. F.

D. F. Gardner, J. S. Evans, and I. I. Smalyukh, “Towards reconfigurable optical metamaterials: Colloidal nanoparticle self-assembly and self-alignment in liquid crystals,” Mol. Cryst. Liq. Cryst. 545(1), 1227–1245 (2011).
[Crossref]

Gartland, E. C.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E 72(6), 061707 (2005).
[Crossref] [PubMed]

Gustavsen, A.

R. Baetens, B. P. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Sol. Energy Mater. Sol. Cells 94(2), 87–105 (2010).
[Crossref]

He, S.

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10(4), 1347–1353 (2010).
[Crossref] [PubMed]

Heilmeier, G. H.

G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals. A new electro-optic effect,” Appl. Phys. Lett. 13(3), 91–92 (1968).
[Crossref]

Heo, J.

J. Heo, J.-W. Huh, and T.-H. Yoon, “Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes,” AIP Adv. 5(4), 047118 (2015).
[Crossref]

Hsiao, Y.-C.

Huang, H.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E 72(6), 061707 (2005).
[Crossref] [PubMed]

Huang, K.-C.

Huh, J.-W.

J. Heo, J.-W. Huh, and T.-H. Yoon, “Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes,” AIP Adv. 5(4), 047118 (2015).
[Crossref]

Jelle, B. P.

R. Baetens, B. P. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Sol. Energy Mater. Sol. Cells 94(2), 87–105 (2010).
[Crossref]

Jiang, L.

L. Jiang, H. Mundoor, Q. Liu, and I. I. Smalyukh, “Electric switching of fluorescence decay in gold-silica-dye nematic nanocolloids mediated by surface plasmons,” ACS Nano 10(7), 7064–7072 (2016).
[Crossref] [PubMed]

Kosa, T.

B. Taheri, T. Kosa, V. Bodnar, L. Sukhomlinova, L. Su, C. Martincic, J. Chonko, and E.-Y. Park, “Guest-host liquid crystal devices for adaptive window application,” Proc. SPIE 7618. Emerging Liquid Crystal Technologies V, 76180W (2010).

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E 72(6), 061707 (2005).
[Crossref] [PubMed]

Lavrentovich, O. D.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E 72(6), 061707 (2005).
[Crossref] [PubMed]

Lee, W.

Li, X.

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10(4), 1347–1353 (2010).
[Crossref] [PubMed]

Liu, Q.

L. Jiang, H. Mundoor, Q. Liu, and I. I. Smalyukh, “Electric switching of fluorescence decay in gold-silica-dye nematic nanocolloids mediated by surface plasmons,” ACS Nano 10(7), 7064–7072 (2016).
[Crossref] [PubMed]

G. H. Sheetah, Q. Liu, and I. I. Smalyukh, “Self-assembly of predesigned optical materials in nematic codispersions of plasmonic nanorods,” Opt. Lett. 41(21), 4899–4902 (2016).
[Crossref] [PubMed]

Y. Zhang, Q. Liu, H. Mundoor, Y. Yuan, and I. I. Smalyukh, “Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and E-polarizers,” ACS Nano 9(3), 3097–3108 (2015).
[Crossref] [PubMed]

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles,” Nano Lett. 14(7), 4071–4077 (2014).
[Crossref] [PubMed]

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10(4), 1347–1353 (2010).
[Crossref] [PubMed]

Llordés, A.

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. (Camb.) 50(73), 10555–10572 (2014).
[Crossref] [PubMed]

Lounis, S. D.

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. (Camb.) 50(73), 10555–10572 (2014).
[Crossref] [PubMed]

Martincic, C.

B. Taheri, T. Kosa, V. Bodnar, L. Sukhomlinova, L. Su, C. Martincic, J. Chonko, and E.-Y. Park, “Guest-host liquid crystal devices for adaptive window application,” Proc. SPIE 7618. Emerging Liquid Crystal Technologies V, 76180W (2010).

Milliron, D. J.

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. (Camb.) 50(73), 10555–10572 (2014).
[Crossref] [PubMed]

Mundoor, H.

L. Jiang, H. Mundoor, Q. Liu, and I. I. Smalyukh, “Electric switching of fluorescence decay in gold-silica-dye nematic nanocolloids mediated by surface plasmons,” ACS Nano 10(7), 7064–7072 (2016).
[Crossref] [PubMed]

Y. Zhang, Q. Liu, H. Mundoor, Y. Yuan, and I. I. Smalyukh, “Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and E-polarizers,” ACS Nano 9(3), 3097–3108 (2015).
[Crossref] [PubMed]

Murray, C. B.

X. Ye, C. Zheng, J. Chen, Y. Gao, and C. B. Murray, “Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods,” Nano Lett. 13(2), 765–771 (2013).
[Crossref] [PubMed]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

Palffy-Muhoray, P.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E 72(6), 061707 (2005).
[Crossref] [PubMed]

Park, E.-Y.

B. Taheri, T. Kosa, V. Bodnar, L. Sukhomlinova, L. Su, C. Martincic, J. Chonko, and E.-Y. Park, “Guest-host liquid crystal devices for adaptive window application,” Proc. SPIE 7618. Emerging Liquid Crystal Technologies V, 76180W (2010).

Petschek, R. G.

K. A. Crandall, M. R. Fisch, R. G. Petschek, and C. Rosenblatt, “Vanishing Freedericksz transition threshold voltage in a chiral nematic liquid crystal,” Appl. Phys. Lett. 64(13), 1741–1743 (1994).
[Crossref]

Ren, H.

H. Ren and S.-T. Wu, “Anisotropic liquid crystal gels for switchable polarizers and displays,” Appl. Phys. Lett. 81(8), 1432–1434 (2002).
[Crossref]

Rosenblatt, C.

K. A. Crandall, M. R. Fisch, R. G. Petschek, and C. Rosenblatt, “Vanishing Freedericksz transition threshold voltage in a chiral nematic liquid crystal,” Appl. Phys. Lett. 64(13), 1741–1743 (1994).
[Crossref]

Runnerstrom, E. L.

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. (Camb.) 50(73), 10555–10572 (2014).
[Crossref] [PubMed]

Sage, I.

I. Sage, “Thermochromic liquid crystals,” Liq. Cryst. 38(11–12), 1551–1561 (2011).
[Crossref]

Seki, H.

T. Uchida, H. Seki, C. Shishido, and M. Wada, “Bright dichroic guest–host LCDs without a polarizer,” Proc. Soc. Inf. Disp. 22(1), 41–46 (1981).

Senyuk, B. I.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E 72(6), 061707 (2005).
[Crossref] [PubMed]

Sheetah, G. H.

Shishido, C.

T. Uchida, H. Seki, C. Shishido, and M. Wada, “Bright dichroic guest–host LCDs without a polarizer,” Proc. Soc. Inf. Disp. 22(1), 41–46 (1981).

Smalyukh, I. I.

L. Jiang, H. Mundoor, Q. Liu, and I. I. Smalyukh, “Electric switching of fluorescence decay in gold-silica-dye nematic nanocolloids mediated by surface plasmons,” ACS Nano 10(7), 7064–7072 (2016).
[Crossref] [PubMed]

G. H. Sheetah, Q. Liu, and I. I. Smalyukh, “Self-assembly of predesigned optical materials in nematic codispersions of plasmonic nanorods,” Opt. Lett. 41(21), 4899–4902 (2016).
[Crossref] [PubMed]

Y. Zhang, Q. Liu, H. Mundoor, Y. Yuan, and I. I. Smalyukh, “Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and E-polarizers,” ACS Nano 9(3), 3097–3108 (2015).
[Crossref] [PubMed]

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles,” Nano Lett. 14(7), 4071–4077 (2014).
[Crossref] [PubMed]

D. F. Gardner, J. S. Evans, and I. I. Smalyukh, “Towards reconfigurable optical metamaterials: Colloidal nanoparticle self-assembly and self-alignment in liquid crystals,” Mol. Cryst. Liq. Cryst. 545(1), 1227–1245 (2011).
[Crossref]

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10(4), 1347–1353 (2010).
[Crossref] [PubMed]

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E 72(6), 061707 (2005).
[Crossref] [PubMed]

Su, L.

B. Taheri, T. Kosa, V. Bodnar, L. Sukhomlinova, L. Su, C. Martincic, J. Chonko, and E.-Y. Park, “Guest-host liquid crystal devices for adaptive window application,” Proc. SPIE 7618. Emerging Liquid Crystal Technologies V, 76180W (2010).

Sukhomlinova, L.

B. Taheri, T. Kosa, V. Bodnar, L. Sukhomlinova, L. Su, C. Martincic, J. Chonko, and E.-Y. Park, “Guest-host liquid crystal devices for adaptive window application,” Proc. SPIE 7618. Emerging Liquid Crystal Technologies V, 76180W (2010).

Taheri, B.

B. Taheri, T. Kosa, V. Bodnar, L. Sukhomlinova, L. Su, C. Martincic, J. Chonko, and E.-Y. Park, “Guest-host liquid crystal devices for adaptive window application,” Proc. SPIE 7618. Emerging Liquid Crystal Technologies V, 76180W (2010).

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E 72(6), 061707 (2005).
[Crossref] [PubMed]

Uchida, T.

T. Uchida, H. Seki, C. Shishido, and M. Wada, “Bright dichroic guest–host LCDs without a polarizer,” Proc. Soc. Inf. Disp. 22(1), 41–46 (1981).

Wada, M.

T. Uchida, H. Seki, C. Shishido, and M. Wada, “Bright dichroic guest–host LCDs without a polarizer,” Proc. Soc. Inf. Disp. 22(1), 41–46 (1981).

Wu, S.-T.

H. Ren and S.-T. Wu, “Anisotropic liquid crystal gels for switchable polarizers and displays,” Appl. Phys. Lett. 81(8), 1432–1434 (2002).
[Crossref]

Ye, X.

X. Ye, C. Zheng, J. Chen, Y. Gao, and C. B. Murray, “Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods,” Nano Lett. 13(2), 765–771 (2013).
[Crossref] [PubMed]

Yoon, T.-H.

J. Heo, J.-W. Huh, and T.-H. Yoon, “Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes,” AIP Adv. 5(4), 047118 (2015).
[Crossref]

Yuan, Y.

Y. Zhang, Q. Liu, H. Mundoor, Y. Yuan, and I. I. Smalyukh, “Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and E-polarizers,” ACS Nano 9(3), 3097–3108 (2015).
[Crossref] [PubMed]

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles,” Nano Lett. 14(7), 4071–4077 (2014).
[Crossref] [PubMed]

Zanoni, L. A.

G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals. A new electro-optic effect,” Appl. Phys. Lett. 13(3), 91–92 (1968).
[Crossref]

Zhang, Y.

Y. Zhang, Q. Liu, H. Mundoor, Y. Yuan, and I. I. Smalyukh, “Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and E-polarizers,” ACS Nano 9(3), 3097–3108 (2015).
[Crossref] [PubMed]

Zheng, C.

X. Ye, C. Zheng, J. Chen, Y. Gao, and C. B. Murray, “Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods,” Nano Lett. 13(2), 765–771 (2013).
[Crossref] [PubMed]

ACS Nano (2)

L. Jiang, H. Mundoor, Q. Liu, and I. I. Smalyukh, “Electric switching of fluorescence decay in gold-silica-dye nematic nanocolloids mediated by surface plasmons,” ACS Nano 10(7), 7064–7072 (2016).
[Crossref] [PubMed]

Y. Zhang, Q. Liu, H. Mundoor, Y. Yuan, and I. I. Smalyukh, “Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and E-polarizers,” ACS Nano 9(3), 3097–3108 (2015).
[Crossref] [PubMed]

AIP Adv. (1)

J. Heo, J.-W. Huh, and T.-H. Yoon, “Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes,” AIP Adv. 5(4), 047118 (2015).
[Crossref]

Appl. Phys. Lett. (3)

H. Ren and S.-T. Wu, “Anisotropic liquid crystal gels for switchable polarizers and displays,” Appl. Phys. Lett. 81(8), 1432–1434 (2002).
[Crossref]

G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals. A new electro-optic effect,” Appl. Phys. Lett. 13(3), 91–92 (1968).
[Crossref]

K. A. Crandall, M. R. Fisch, R. G. Petschek, and C. Rosenblatt, “Vanishing Freedericksz transition threshold voltage in a chiral nematic liquid crystal,” Appl. Phys. Lett. 64(13), 1741–1743 (1994).
[Crossref]

Chem. Commun. (Camb.) (1)

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. (Camb.) 50(73), 10555–10572 (2014).
[Crossref] [PubMed]

Chem. Mater. (1)

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

Liq. Cryst. (1)

I. Sage, “Thermochromic liquid crystals,” Liq. Cryst. 38(11–12), 1551–1561 (2011).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

D. F. Gardner, J. S. Evans, and I. I. Smalyukh, “Towards reconfigurable optical metamaterials: Colloidal nanoparticle self-assembly and self-alignment in liquid crystals,” Mol. Cryst. Liq. Cryst. 545(1), 1227–1245 (2011).
[Crossref]

Nano Lett. (3)

X. Ye, C. Zheng, J. Chen, Y. Gao, and C. B. Murray, “Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods,” Nano Lett. 13(2), 765–771 (2013).
[Crossref] [PubMed]

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles,” Nano Lett. 14(7), 4071–4077 (2014).
[Crossref] [PubMed]

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10(4), 1347–1353 (2010).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. E (1)

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E 72(6), 061707 (2005).
[Crossref] [PubMed]

Proc. Soc. Inf. Disp. (1)

T. Uchida, H. Seki, C. Shishido, and M. Wada, “Bright dichroic guest–host LCDs without a polarizer,” Proc. Soc. Inf. Disp. 22(1), 41–46 (1981).

Proc. SPIE 7618. Emerging Liquid Crystal Technologies (1)

B. Taheri, T. Kosa, V. Bodnar, L. Sukhomlinova, L. Su, C. Martincic, J. Chonko, and E.-Y. Park, “Guest-host liquid crystal devices for adaptive window application,” Proc. SPIE 7618. Emerging Liquid Crystal Technologies V, 76180W (2010).

Sol. Energy Mater. Sol. Cells (1)

R. Baetens, B. P. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Sol. Energy Mater. Sol. Cells 94(2), 87–105 (2010).
[Crossref]

Other (3)

B. Bahadur, Handbook of Liquid Crystals (Wiley-VCH, Weinheim, 1998), 2A.

L. M. Blinov and V. G. Chigrinov, Electrooptic effects in liquid crystal materials (Springer-Verlag, 1996).

P. M. Chaikin and T. C. Lubensky, Principles of condensed matter physics (Cambridge Univ. Press, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 TEM imaging of GNRs and extinction spectra of dye molecules and nanoparticles in isotropic solvents. (a-c) TEM images of GNRs with different longitudinal SPR peaks: (a) 780 nm, (b) 1010 nm and (c) 815 nm. GNRs shown in (a) and (b) are coated with a silica shell of average thickness of 21 nm and 25 nm, respectively. Scale bars are 200 nm. (d) Normalized by the maximum intensity extinction spectra of GNRs in water before (red and blue solid lines) and after silica capping (dashed corresponding lines). (e) Normalized by the maximum intensity extinction spectra of dye molecules and PEG-capped GNRs in toluene taken separately (green and orange lines) and when dispersed jointly (black line). Note that the extinction peaks of dye and the longitudinal SPR of GNRs are red-shifted due to the high refractive index of toluene.
Fig. 2
Fig. 2 Unidirectionally aligned and twisted structures of LC doped with GNRs and dichroic dye molecules. (a) Schematic of GNRs capped with mPEG-SH following N (blue lines) in a uniformly aligned LC; the inset shows details of surface functionalization of GNRs. (b) Schematic diagram of DMOAP-SiO2-GNRs that exhibit self-alignment perpendicular to N; the inset shows details of silica shells around GNRs and DMOAP surface functionalization. (c,d) Normalized by the maximum intensity extinction spectra of LC with (c) PEG-functionalized and (d) DMOAP-SiO2-GNRs in a planar cell for linear polarizations of probing light (P)||(N)0 and PN0. (e) Schematic diagram of the cholesteric LC co-doped with dichroic dye and PEG-functionalized GNRs in a planar cell with the alignment of N at cell substrates defined by the rubbing direction Nr. (f) Normalized spectra of cholesteric LC with Δε<0 (1:10 mixture of 5CB and AMLC-0010) co-doped with the dichroic dye and PEG-functionalized GNRs in a planar cell shown in (e); the spectra are obtained for P||Nr and PNr.
Fig. 3
Fig. 3 Electric switching of a cholesteric LC co-doped with GNRs and dichroic dyes in a homeotropic cell. (a) Integrated extinction of light traversing through a homeotropic cholesteric LC cell versus U. The threshold voltage Uth is marked by an arrow; cell thickness is dp/2 with p≈60 µm. Schematics in the insets show patterns of orientation of dichroic dye and LC molecules and GNRs within the LC at (left) U<Uth and (right) U>Uth. (b) Normalized by the maximum intensity extinction spectra of the homeotropic cell for linear polarizations with and without field, with insets of photographs of inch-size cells. (c) Voltage dependence of the transmittance of natural white light across the homeotropic cell measured separately utilizing optical filters for both PEG-GNR and the dichroic dye. (d) Voltage-dependent rise times for both dye and GNR in the same sample. (e, f) Rise and decay times for dye and PEG-GNR, respectively, measured based on changes of a relative transmittance (T-T0), where T0 is the minimum transmittance of the composite, for the same LC system by using corresponding optical filters.
Fig. 4
Fig. 4 Nematic LC co-doped with dye and DMOAP-SiO2-GNRs in a planar cell. (a) Schematics of GNRs (yellow rods) and dichroic dye molecules (green ellipsoids) self-aligning with respect to N at (left) U<Uth and (right) U>Uth. (b) Extinction spectra of the planar cell for polarizations P||Nr and PNr. Switching between the visible-range and the near infrared extinction bands can be done by rotating the cell 90° with respect to P, or by applying U. (c) Relative change of transmittance versus U in the spectral ranges of absorption of GNRs and dye obtained using natural white light through the planar cell measured separately utilizing the appropriate optical filters. Insets show micrographs of the planar cell upon rotating P from P||Nr to PNr and with applying U; the scale bar is 50 μm. (d) Comparison of U-dependent τrise for dye and GNRs within the same sample. (e,f) Characterization of (e) τrise and (f) τdecay for dye and GNRs based on relative changes of transmittance (T-T0) using optical filters to pre-select the respective absorbance bands. Average values of τdecay are 1.37 s and 1.41 s, as determined for the dye and GNRs, respectively.

Metrics