Abstract

An optical vortex with orbital angular momentum (OAM) can be used to induce microscale chiral structures in various materials. Such chiral structures enable the generation of a nearfield vortex, i.e. nearfield OAM light on a sub-wavelength scale, thereby leading to further nanoscale mass-transport. We report on the formation of a nanoscale chiral surface relief in azo-polymers due to nearfield OAM light. The resulting nanoscale chiral relief exhibits a diameter of ca. 400 nm, which corresponds to less than 1/5–1/6th of the original chiral structure (ca. 2.1 µm). Such a nanoscale chiral surface relief is established by the simple irradiation of uniform visible plane-wave light with an intensity of <500 mW/cm2.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Azo-polymer film twisted to form a helical surface relief by illumination with a circularly polarized Gaussian beam

Keigo Masuda, Shogo Nakano, Daisuke Barada, Mitsutaka Kumakura, Katsuhiko Miyamoto, and Takashige Omatsu
Opt. Express 25(11) 12499-12507 (2017)

Epoxy-based azo polymer for photofabricating surface-relief quasi-crystal structures

Renbo Wei, Zeda Xu, and Xiaogong Wang
Opt. Mater. Express 5(6) 1348-1355 (2015)

Surface-relief formation in azo-polyelectrolyte layers with a protective polymer coating

Francesca Frascella, Angelo Angelini, Serena Ricciardi, Fabrizio Pirri, and Emiliano Descrovi
Opt. Mater. Express 6(2) 444-450 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the Transformation of Laguerre-Gaussian Laser Modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref] [PubMed]
  2. M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
    [Crossref]
  3. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
    [Crossref]
  4. S. M. Barnett, R. P. Cameron, S. M. Barnett, L. Allen, R. P. Cameron, S. Y. Buhmann, D. T. Butcher, S. Scheel, S. M. Barnett, and R. P. Cameron, “On the natures of the spin and orbital parts of optical angular momentum Energy conservation and the constitutive relations in chiral and non-reciprocal media,” J. Opt. 18(6), 064004 (2016).
    [Crossref]
  5. M. Soskin, S. V. Boriskina, Y. Chong, M. R. Dennis, and A. Desyatnikov, “Singular optics and topological photonics,” J. Opt. 19(1), 010401 (2017).
    [Crossref]
  6. M. J. Padgett, “Orbital angular momentum 25 years on [Invited],” Opt. Express 25(10), 11265–11274 (2017).
    [Crossref] [PubMed]
  7. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
    [Crossref] [PubMed]
  8. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [Crossref] [PubMed]
  9. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
    [Crossref]
  10. K. T. Gahagan and G. A. Swartzlander., “Optical vortex trapping of particles,” Opt. Lett. 21(11), 827–829 (1996).
    [Crossref] [PubMed]
  11. L. M. Zhou, K. W. Xian, J. Chen, and N. Zhan, “Optical levitation of nanodiamonds by doughnut beams in vacuum,” Laser Photonics Rev. 11(2), 1600284 (2017).
    [Crossref]
  12. Y. Arita, M. Chen, E. M. Wright, and K. Dholakia, “Dynamics of a levitated microparticle in vacuum trapped by a perfect vortex beam: three-dimensional motion around a complex optical potential,” J. Opt. Soc. B 34(6), C14–C19 (2017).
    [Crossref]
  13. T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18(17), 17967–17973 (2010).
    [Crossref] [PubMed]
  14. K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
    [Crossref] [PubMed]
  15. K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
    [Crossref] [PubMed]
  16. M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4(1), 4281 (2014).
    [Crossref] [PubMed]
  17. J. J. J. Nivas, H. Shutong, K. K. Anoop, A. Rubano, R. Fittipaldi, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Laser ablation of silicon induced by a femtosecond optical vortex beam,” Opt. Lett. 40(20), 4611–4614 (2015).
    [Crossref] [PubMed]
  18. F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6(1), 21738 (2016).
    [Crossref] [PubMed]
  19. F. Takahashi, S. Takizawa, H. Hidai, K. Miyamoto, R. Morita, and T. Omatsu, “Optical vortex pulse illumination to create chiral monocrystalline silicon nanostructures,” Phys. Status Solidi Appl. Mater. Sci. 213(4), 1063–1068 (2016).
    [Crossref]
  20. D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
    [Crossref]
  21. S. Syubaev, A. Zhizhchenko, A. Kuchmizhak, A. Porfirev, E. Pustovalov, O. Vitrik, Y. Kulchin, S. Khonina, and S. Kudryashov, “Direct laser printing of chiral plasmonic nanojets by vortex beams,” Opt. Express 25(9), 10214–10223 (2017).
    [Crossref] [PubMed]
  22. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
    [Crossref] [PubMed]
  23. J. Sun, T. Xu, and N. M. Litchinitser, “Experimental Demonstration of Demagnifying Hyperlens,” Nano Lett. 16(12), 7905–7909 (2016).
    [Crossref] [PubMed]
  24. J. Sun and N. M. Litchinitser, “Toward Practical, Subwavelength, Visible-Light Photolithography with Hyperlens,” ACS Nano 12(1), 542–548 (2018).
    [Crossref] [PubMed]
  25. L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, “A sensitivity-enhanced field-effect chiral sensor,” Nat. Mater. 7(5), 412–417 (2008).
    [Crossref] [PubMed]
  26. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
    [Crossref] [PubMed]
  27. C. M. Dobson, G. B. Ellison, A. F. Tuck, and V. Vaida, “Atmospheric aerosols as prebiotic chemical reactors,” Proc. Natl. Acad. Sci. U.S.A. 97(22), 11864–11868 (2000).
    [Crossref] [PubMed]
  28. V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
    [Crossref] [PubMed]
  29. S. Khumpuang, M. Horade, K. Fujioka, and S. Sugiyama, “Microneedle fabrication using the plane pattern to cross-section transfer method,” Smart Mater. Struct. 15(2), 600–606 (2006).
    [Crossref]
  30. W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective Trapping or Rotation of Isotropic Dielectric Microparticles by Optical Near Field in a Plasmonic Archimedes Spiral,” Nano Lett. 14(2), 547–552 (2014).
    [Crossref] [PubMed]
  31. L. Mao, Y. Ren, Y. Lu, X. Lei, K. Jiang, K. Li, Y. Wang, C. Cui, X. Wen, and P. Wang, “Far-field radially polarized focal spot from plasmonic spiral structure combined with central aperture antenna,” Sci. Rep. 6(1), 23751 (2016).
    [Crossref] [PubMed]
  32. Y. Wang, P. Zhao, X. Feng, Y. Xu, F. Liu, K. Cui, W. Zhang, and Y. Huang, “Dynamically sculpturing plasmonic vortices: from integer to fractional orbital angular momentum,” Sci. Rep. 6(1), 36269 (2016).
    [Crossref] [PubMed]
  33. G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer Zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355(6330), 1187–1191 (2017).
    [Crossref] [PubMed]
  34. D. Garoli, P. Zilio, F. De Angelis, and Y. Gorodetski, “Helicity locking of chiral light emitted from a plasmonic nanotaper,” Nanoscale 9(21), 6965–6969 (2017).
    [Crossref] [PubMed]
  35. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
    [Crossref] [PubMed]
  36. V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
    [Crossref] [PubMed]
  37. Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4(1), 2374 (2013).
    [Crossref] [PubMed]
  38. K. Masuda, S. Nakano, D. Barada, M. Kumakura, K. Miyamoto, and T. Omatsu, “Azo-polymer film twisted to form a helical surface relief by illumination with a circularly polarized Gaussian beam,” Opt. Express 25(11), 12499–12507 (2017).
    [Crossref] [PubMed]
  39. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
    [Crossref]
  40. Norland Optical Adhesive 61 data sheet, https://www.norlandprod.com/adhesives/noa61pg2.html .
  41. S. Hashiyada, T. Narushima, and H. Okamoto, “Imaging Chirality of Optical Fields near Achiral Metal Nanostructures Excited with Linearly Polarized Light,” ACS Photonics 5(4), 1486–1492 (2018).
    [Crossref]
  42. B. S. Luk’yanchunk, R. Paniagua-Dominguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow [Invited],” Opt. Mater. Express 7(6), 1820–1847 (2017).
    [Crossref]
  43. K. Munakata, K. Harada, H. Anji, M. Itoh, T. Yatagai, and S. Umegaki, “Diffraction efficiency increase by corona discharge in photoinduced surface-relief gratings on an azo polymer film,” Opt. Lett. 26(1), 4–6 (2001).
    [Crossref] [PubMed]
  44. S. Li, Y. Feng, P. Long, C. Qin, and W. Feng, “The light-switching conductance of an anisotropic azobenzene-based polymer close-packed on horizontally aligned carbon nanotubes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(21), 5068–5075 (2017).
    [Crossref]

2018 (2)

J. Sun and N. M. Litchinitser, “Toward Practical, Subwavelength, Visible-Light Photolithography with Hyperlens,” ACS Nano 12(1), 542–548 (2018).
[Crossref] [PubMed]

S. Hashiyada, T. Narushima, and H. Okamoto, “Imaging Chirality of Optical Fields near Achiral Metal Nanostructures Excited with Linearly Polarized Light,” ACS Photonics 5(4), 1486–1492 (2018).
[Crossref]

2017 (10)

S. Li, Y. Feng, P. Long, C. Qin, and W. Feng, “The light-switching conductance of an anisotropic azobenzene-based polymer close-packed on horizontally aligned carbon nanotubes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(21), 5068–5075 (2017).
[Crossref]

L. M. Zhou, K. W. Xian, J. Chen, and N. Zhan, “Optical levitation of nanodiamonds by doughnut beams in vacuum,” Laser Photonics Rev. 11(2), 1600284 (2017).
[Crossref]

Y. Arita, M. Chen, E. M. Wright, and K. Dholakia, “Dynamics of a levitated microparticle in vacuum trapped by a perfect vortex beam: three-dimensional motion around a complex optical potential,” J. Opt. Soc. B 34(6), C14–C19 (2017).
[Crossref]

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer Zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355(6330), 1187–1191 (2017).
[Crossref] [PubMed]

D. Garoli, P. Zilio, F. De Angelis, and Y. Gorodetski, “Helicity locking of chiral light emitted from a plasmonic nanotaper,” Nanoscale 9(21), 6965–6969 (2017).
[Crossref] [PubMed]

M. Soskin, S. V. Boriskina, Y. Chong, M. R. Dennis, and A. Desyatnikov, “Singular optics and topological photonics,” J. Opt. 19(1), 010401 (2017).
[Crossref]

S. Syubaev, A. Zhizhchenko, A. Kuchmizhak, A. Porfirev, E. Pustovalov, O. Vitrik, Y. Kulchin, S. Khonina, and S. Kudryashov, “Direct laser printing of chiral plasmonic nanojets by vortex beams,” Opt. Express 25(9), 10214–10223 (2017).
[Crossref] [PubMed]

M. J. Padgett, “Orbital angular momentum 25 years on [Invited],” Opt. Express 25(10), 11265–11274 (2017).
[Crossref] [PubMed]

B. S. Luk’yanchunk, R. Paniagua-Dominguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow [Invited],” Opt. Mater. Express 7(6), 1820–1847 (2017).
[Crossref]

K. Masuda, S. Nakano, D. Barada, M. Kumakura, K. Miyamoto, and T. Omatsu, “Azo-polymer film twisted to form a helical surface relief by illumination with a circularly polarized Gaussian beam,” Opt. Express 25(11), 12499–12507 (2017).
[Crossref] [PubMed]

2016 (7)

S. M. Barnett, R. P. Cameron, S. M. Barnett, L. Allen, R. P. Cameron, S. Y. Buhmann, D. T. Butcher, S. Scheel, S. M. Barnett, and R. P. Cameron, “On the natures of the spin and orbital parts of optical angular momentum Energy conservation and the constitutive relations in chiral and non-reciprocal media,” J. Opt. 18(6), 064004 (2016).
[Crossref]

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6(1), 21738 (2016).
[Crossref] [PubMed]

F. Takahashi, S. Takizawa, H. Hidai, K. Miyamoto, R. Morita, and T. Omatsu, “Optical vortex pulse illumination to create chiral monocrystalline silicon nanostructures,” Phys. Status Solidi Appl. Mater. Sci. 213(4), 1063–1068 (2016).
[Crossref]

D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
[Crossref]

J. Sun, T. Xu, and N. M. Litchinitser, “Experimental Demonstration of Demagnifying Hyperlens,” Nano Lett. 16(12), 7905–7909 (2016).
[Crossref] [PubMed]

L. Mao, Y. Ren, Y. Lu, X. Lei, K. Jiang, K. Li, Y. Wang, C. Cui, X. Wen, and P. Wang, “Far-field radially polarized focal spot from plasmonic spiral structure combined with central aperture antenna,” Sci. Rep. 6(1), 23751 (2016).
[Crossref] [PubMed]

Y. Wang, P. Zhao, X. Feng, Y. Xu, F. Liu, K. Cui, W. Zhang, and Y. Huang, “Dynamically sculpturing plasmonic vortices: from integer to fractional orbital angular momentum,” Sci. Rep. 6(1), 36269 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (2)

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4(1), 4281 (2014).
[Crossref] [PubMed]

W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective Trapping or Rotation of Isotropic Dielectric Microparticles by Optical Near Field in a Plasmonic Archimedes Spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

2013 (3)

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4(1), 2374 (2013).
[Crossref] [PubMed]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

2012 (1)

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

2011 (2)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

2010 (2)

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18(17), 17967–17973 (2010).
[Crossref] [PubMed]

2008 (1)

L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, “A sensitivity-enhanced field-effect chiral sensor,” Nat. Mater. 7(5), 412–417 (2008).
[Crossref] [PubMed]

2006 (2)

S. Khumpuang, M. Horade, K. Fujioka, and S. Sugiyama, “Microneedle fabrication using the plane pattern to cross-section transfer method,” Smart Mater. Struct. 15(2), 600–606 (2006).
[Crossref]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[Crossref] [PubMed]

2004 (2)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

2003 (1)

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[Crossref] [PubMed]

2002 (1)

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

2001 (1)

2000 (1)

C. M. Dobson, G. B. Ellison, A. F. Tuck, and V. Vaida, “Atmospheric aerosols as prebiotic chemical reactors,” Proc. Natl. Acad. Sci. U.S.A. 97(22), 11864–11868 (2000).
[Crossref] [PubMed]

1996 (2)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[Crossref]

K. T. Gahagan and G. A. Swartzlander., “Optical vortex trapping of particles,” Opt. Lett. 21(11), 827–829 (1996).
[Crossref] [PubMed]

1995 (1)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref] [PubMed]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the Transformation of Laguerre-Gaussian Laser Modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Aeschlimann, M.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer Zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355(6330), 1187–1191 (2017).
[Crossref] [PubMed]

Alekseyev, L. V.

Allen, L.

S. M. Barnett, R. P. Cameron, S. M. Barnett, L. Allen, R. P. Cameron, S. Y. Buhmann, D. T. Butcher, S. Scheel, S. M. Barnett, and R. P. Cameron, “On the natures of the spin and orbital parts of optical angular momentum Energy conservation and the constitutive relations in chiral and non-reciprocal media,” J. Opt. 18(6), 064004 (2016).
[Crossref]

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the Transformation of Laguerre-Gaussian Laser Modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Amoruso, S.

Anji, H.

Anoop, K. K.

Aoki, N.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18(17), 17967–17973 (2010).
[Crossref] [PubMed]

Arita, Y.

Y. Arita, M. Chen, E. M. Wright, and K. Dholakia, “Dynamics of a levitated microparticle in vacuum trapped by a perfect vortex beam: three-dimensional motion around a complex optical potential,” J. Opt. Soc. B 34(6), C14–C19 (2017).
[Crossref]

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4(1), 2374 (2013).
[Crossref] [PubMed]

Babudri, F.

L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, “A sensitivity-enhanced field-effect chiral sensor,” Nat. Mater. 7(5), 412–417 (2008).
[Crossref] [PubMed]

Barada, D.

K. Masuda, S. Nakano, D. Barada, M. Kumakura, K. Miyamoto, and T. Omatsu, “Azo-polymer film twisted to form a helical surface relief by illumination with a circularly polarized Gaussian beam,” Opt. Express 25(11), 12499–12507 (2017).
[Crossref] [PubMed]

D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
[Crossref]

Barnett, S. M.

S. M. Barnett, R. P. Cameron, S. M. Barnett, L. Allen, R. P. Cameron, S. Y. Buhmann, D. T. Butcher, S. Scheel, S. M. Barnett, and R. P. Cameron, “On the natures of the spin and orbital parts of optical angular momentum Energy conservation and the constitutive relations in chiral and non-reciprocal media,” J. Opt. 18(6), 064004 (2016).
[Crossref]

S. M. Barnett, R. P. Cameron, S. M. Barnett, L. Allen, R. P. Cameron, S. Y. Buhmann, D. T. Butcher, S. Scheel, S. M. Barnett, and R. P. Cameron, “On the natures of the spin and orbital parts of optical angular momentum Energy conservation and the constitutive relations in chiral and non-reciprocal media,” J. Opt. 18(6), 064004 (2016).
[Crossref]

S. M. Barnett, R. P. Cameron, S. M. Barnett, L. Allen, R. P. Cameron, S. Y. Buhmann, D. T. Butcher, S. Scheel, S. M. Barnett, and R. P. Cameron, “On the natures of the spin and orbital parts of optical angular momentum Energy conservation and the constitutive relations in chiral and non-reciprocal media,” J. Opt. 18(6), 064004 (2016).
[Crossref]

Barron, L. D.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Baumberg, J. J.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the Transformation of Laguerre-Gaussian Laser Modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Boriskina, S. V.

M. Soskin, S. V. Boriskina, Y. Chong, M. R. Dennis, and A. Desyatnikov, “Singular optics and topological photonics,” J. Opt. 19(1), 010401 (2017).
[Crossref]

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Bruzzese, R.

Buhmann, S. Y.

S. M. Barnett, R. P. Cameron, S. M. Barnett, L. Allen, R. P. Cameron, S. Y. Buhmann, D. T. Butcher, S. Scheel, S. M. Barnett, and R. P. Cameron, “On the natures of the spin and orbital parts of optical angular momentum Energy conservation and the constitutive relations in chiral and non-reciprocal media,” J. Opt. 18(6), 064004 (2016).
[Crossref]

Butcher, D. T.

S. M. Barnett, R. P. Cameron, S. M. Barnett, L. Allen, R. P. Cameron, S. Y. Buhmann, D. T. Butcher, S. Scheel, S. M. Barnett, and R. P. Cameron, “On the natures of the spin and orbital parts of optical angular momentum Energy conservation and the constitutive relations in chiral and non-reciprocal media,” J. Opt. 18(6), 064004 (2016).
[Crossref]

Cameron, R. P.

S. M. Barnett, R. P. Cameron, S. M. Barnett, L. Allen, R. P. Cameron, S. Y. Buhmann, D. T. Butcher, S. Scheel, S. M. Barnett, and R. P. Cameron, “On the natures of the spin and orbital parts of optical angular momentum Energy conservation and the constitutive relations in chiral and non-reciprocal media,” J. Opt. 18(6), 064004 (2016).
[Crossref]

S. M. Barnett, R. P. Cameron, S. M. Barnett, L. Allen, R. P. Cameron, S. Y. Buhmann, D. T. Butcher, S. Scheel, S. M. Barnett, and R. P. Cameron, “On the natures of the spin and orbital parts of optical angular momentum Energy conservation and the constitutive relations in chiral and non-reciprocal media,” J. Opt. 18(6), 064004 (2016).
[Crossref]

S. M. Barnett, R. P. Cameron, S. M. Barnett, L. Allen, R. P. Cameron, S. Y. Buhmann, D. T. Butcher, S. Scheel, S. M. Barnett, and R. P. Cameron, “On the natures of the spin and orbital parts of optical angular momentum Energy conservation and the constitutive relations in chiral and non-reciprocal media,” J. Opt. 18(6), 064004 (2016).
[Crossref]

Carpy, T.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Chen, J.

L. M. Zhou, K. W. Xian, J. Chen, and N. Zhan, “Optical levitation of nanodiamonds by doughnut beams in vacuum,” Laser Photonics Rev. 11(2), 1600284 (2017).
[Crossref]

Chen, M.

Y. Arita, M. Chen, E. M. Wright, and K. Dholakia, “Dynamics of a levitated microparticle in vacuum trapped by a perfect vortex beam: three-dimensional motion around a complex optical potential,” J. Opt. Soc. B 34(6), C14–C19 (2017).
[Crossref]

Chong, Y.

M. Soskin, S. V. Boriskina, Y. Chong, M. R. Dennis, and A. Desyatnikov, “Singular optics and topological photonics,” J. Opt. 19(1), 010401 (2017).
[Crossref]

Chou, S. Y.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[Crossref]

Chujo, K.

Courtial, J.

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

Cui, C.

L. Mao, Y. Ren, Y. Lu, X. Lei, K. Jiang, K. Li, Y. Wang, C. Cui, X. Wen, and P. Wang, “Far-field radially polarized focal spot from plasmonic spiral structure combined with central aperture antenna,” Sci. Rep. 6(1), 23751 (2016).
[Crossref] [PubMed]

Cui, K.

Y. Wang, P. Zhao, X. Feng, Y. Xu, F. Liu, K. Cui, W. Zhang, and Y. Huang, “Dynamically sculpturing plasmonic vortices: from integer to fractional orbital angular momentum,” Sci. Rep. 6(1), 36269 (2016).
[Crossref] [PubMed]

De Angelis, F.

D. Garoli, P. Zilio, F. De Angelis, and Y. Gorodetski, “Helicity locking of chiral light emitted from a plasmonic nanotaper,” Nanoscale 9(21), 6965–6969 (2017).
[Crossref] [PubMed]

Dennis, M. R.

M. Soskin, S. V. Boriskina, Y. Chong, M. R. Dennis, and A. Desyatnikov, “Singular optics and topological photonics,” J. Opt. 19(1), 010401 (2017).
[Crossref]

Desyatnikov, A.

M. Soskin, S. V. Boriskina, Y. Chong, M. R. Dennis, and A. Desyatnikov, “Singular optics and topological photonics,” J. Opt. 19(1), 010401 (2017).
[Crossref]

Dholakia, K.

Y. Arita, M. Chen, E. M. Wright, and K. Dholakia, “Dynamics of a levitated microparticle in vacuum trapped by a perfect vortex beam: three-dimensional motion around a complex optical potential,” J. Opt. Soc. B 34(6), C14–C19 (2017).
[Crossref]

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4(1), 2374 (2013).
[Crossref] [PubMed]

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[Crossref] [PubMed]

Dobson, C. M.

C. M. Dobson, G. B. Ellison, A. F. Tuck, and V. Vaida, “Atmospheric aerosols as prebiotic chemical reactors,” Proc. Natl. Acad. Sci. U.S.A. 97(22), 11864–11868 (2000).
[Crossref] [PubMed]

Dultz, W.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[Crossref] [PubMed]

Ellison, G. B.

C. M. Dobson, G. B. Ellison, A. F. Tuck, and V. Vaida, “Atmospheric aerosols as prebiotic chemical reactors,” Proc. Natl. Acad. Sci. U.S.A. 97(22), 11864–11868 (2000).
[Crossref] [PubMed]

Farinola, G. M.

L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, “A sensitivity-enhanced field-effect chiral sensor,” Nat. Mater. 7(5), 412–417 (2008).
[Crossref] [PubMed]

Feng, W.

S. Li, Y. Feng, P. Long, C. Qin, and W. Feng, “The light-switching conductance of an anisotropic azobenzene-based polymer close-packed on horizontally aligned carbon nanotubes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(21), 5068–5075 (2017).
[Crossref]

Feng, X.

Y. Wang, P. Zhao, X. Feng, Y. Xu, F. Liu, K. Cui, W. Zhang, and Y. Huang, “Dynamically sculpturing plasmonic vortices: from integer to fractional orbital angular momentum,” Sci. Rep. 6(1), 36269 (2016).
[Crossref] [PubMed]

Feng, Y.

S. Li, Y. Feng, P. Long, C. Qin, and W. Feng, “The light-switching conductance of an anisotropic azobenzene-based polymer close-packed on horizontally aligned carbon nanotubes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(21), 5068–5075 (2017).
[Crossref]

Fittipaldi, R.

Frank, B.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer Zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355(6330), 1187–1191 (2017).
[Crossref] [PubMed]

Friese, M. E. J.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref] [PubMed]

Fujioka, K.

S. Khumpuang, M. Horade, K. Fujioka, and S. Sugiyama, “Microneedle fabrication using the plane pattern to cross-section transfer method,” Smart Mater. Struct. 15(2), 600–606 (2006).
[Crossref]

Gadegaard, N.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Gahagan, K. T.

Gal, L.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer Zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355(6330), 1187–1191 (2017).
[Crossref] [PubMed]

Garcés-Chávez, V.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[Crossref] [PubMed]

Garoli, D.

D. Garoli, P. Zilio, F. De Angelis, and Y. Gorodetski, “Helicity locking of chiral light emitted from a plasmonic nanotaper,” Nanoscale 9(21), 6965–6969 (2017).
[Crossref] [PubMed]

Giessen, H.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer Zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355(6330), 1187–1191 (2017).
[Crossref] [PubMed]

Gorodetski, Y.

D. Garoli, P. Zilio, F. De Angelis, and Y. Gorodetski, “Helicity locking of chiral light emitted from a plasmonic nanotaper,” Nanoscale 9(21), 6965–6969 (2017).
[Crossref] [PubMed]

Harada, K.

Hashiyada, S.

S. Hashiyada, T. Narushima, and H. Okamoto, “Imaging Chirality of Optical Fields near Achiral Metal Nanostructures Excited with Linearly Polarized Light,” ACS Photonics 5(4), 1486–1492 (2018).
[Crossref]

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref] [PubMed]

Heckenberg, N. R.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref] [PubMed]

Hendry, E.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Hidai, H.

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6(1), 21738 (2016).
[Crossref] [PubMed]

F. Takahashi, S. Takizawa, H. Hidai, K. Miyamoto, R. Morita, and T. Omatsu, “Optical vortex pulse illumination to create chiral monocrystalline silicon nanostructures,” Phys. Status Solidi Appl. Mater. Sci. 213(4), 1063–1068 (2016).
[Crossref]

Horade, M.

S. Khumpuang, M. Horade, K. Fujioka, and S. Sugiyama, “Microneedle fabrication using the plane pattern to cross-section transfer method,” Smart Mater. Struct. 15(2), 600–606 (2006).
[Crossref]

Huang, C. B.

W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective Trapping or Rotation of Isotropic Dielectric Microparticles by Optical Near Field in a Plasmonic Archimedes Spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

Huang, J. S.

W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective Trapping or Rotation of Isotropic Dielectric Microparticles by Optical Near Field in a Plasmonic Archimedes Spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

Huang, Y.

Y. Wang, P. Zhao, X. Feng, Y. Xu, F. Liu, K. Cui, W. Zhang, and Y. Huang, “Dynamically sculpturing plasmonic vortices: from integer to fractional orbital angular momentum,” Sci. Rep. 6(1), 36269 (2016).
[Crossref] [PubMed]

Itoh, M.

Jacob, Z.

Jiang, K.

L. Mao, Y. Ren, Y. Lu, X. Lei, K. Jiang, K. Li, Y. Wang, C. Cui, X. Wen, and P. Wang, “Far-field radially polarized focal spot from plasmonic spiral structure combined with central aperture antenna,” Sci. Rep. 6(1), 23751 (2016).
[Crossref] [PubMed]

Johnston, J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Juman, G.

D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
[Crossref]

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4(1), 4281 (2014).
[Crossref] [PubMed]

Kadodwala, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Kahl, P.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer Zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355(6330), 1187–1191 (2017).
[Crossref] [PubMed]

Kawata, S.

D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
[Crossref]

Kelly, S. M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Khonina, S.

Khumpuang, S.

S. Khumpuang, M. Horade, K. Fujioka, and S. Sugiyama, “Microneedle fabrication using the plane pattern to cross-section transfer method,” Smart Mater. Struct. 15(2), 600–606 (2006).
[Crossref]

Kilbane, D.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer Zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355(6330), 1187–1191 (2017).
[Crossref] [PubMed]

Krauss, P. R.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[Crossref]

Kuchmizhak, A.

Kudryashov, S.

Kulchin, Y.

Kumakura, M.

Lapthorn, A. J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Lei, X.

L. Mao, Y. Ren, Y. Lu, X. Lei, K. Jiang, K. Li, Y. Wang, C. Cui, X. Wen, and P. Wang, “Far-field radially polarized focal spot from plasmonic spiral structure combined with central aperture antenna,” Sci. Rep. 6(1), 23751 (2016).
[Crossref] [PubMed]

Li, K.

L. Mao, Y. Ren, Y. Lu, X. Lei, K. Jiang, K. Li, Y. Wang, C. Cui, X. Wen, and P. Wang, “Far-field radially polarized focal spot from plasmonic spiral structure combined with central aperture antenna,” Sci. Rep. 6(1), 23751 (2016).
[Crossref] [PubMed]

Li, S.

S. Li, Y. Feng, P. Long, C. Qin, and W. Feng, “The light-switching conductance of an anisotropic azobenzene-based polymer close-packed on horizontally aligned carbon nanotubes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(21), 5068–5075 (2017).
[Crossref]

Litchinitser, N. M.

J. Sun and N. M. Litchinitser, “Toward Practical, Subwavelength, Visible-Light Photolithography with Hyperlens,” ACS Nano 12(1), 542–548 (2018).
[Crossref] [PubMed]

J. Sun, T. Xu, and N. M. Litchinitser, “Experimental Demonstration of Demagnifying Hyperlens,” Nano Lett. 16(12), 7905–7909 (2016).
[Crossref] [PubMed]

Liu, F.

Y. Wang, P. Zhao, X. Feng, Y. Xu, F. Liu, K. Cui, W. Zhang, and Y. Huang, “Dynamically sculpturing plasmonic vortices: from integer to fractional orbital angular momentum,” Sci. Rep. 6(1), 36269 (2016).
[Crossref] [PubMed]

Long, P.

S. Li, Y. Feng, P. Long, C. Qin, and W. Feng, “The light-switching conductance of an anisotropic azobenzene-based polymer close-packed on horizontally aligned carbon nanotubes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(21), 5068–5075 (2017).
[Crossref]

Lu, Y.

L. Mao, Y. Ren, Y. Lu, X. Lei, K. Jiang, K. Li, Y. Wang, C. Cui, X. Wen, and P. Wang, “Far-field radially polarized focal spot from plasmonic spiral structure combined with central aperture antenna,” Sci. Rep. 6(1), 23751 (2016).
[Crossref] [PubMed]

Luk’yanchunk, B. S.

MacVicar, I.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

Mahro, A. K.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer Zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355(6330), 1187–1191 (2017).
[Crossref] [PubMed]

Mao, L.

L. Mao, Y. Ren, Y. Lu, X. Lei, K. Jiang, K. Li, Y. Wang, C. Cui, X. Wen, and P. Wang, “Far-field radially polarized focal spot from plasmonic spiral structure combined with central aperture antenna,” Sci. Rep. 6(1), 23751 (2016).
[Crossref] [PubMed]

Marinelli, F.

L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, “A sensitivity-enhanced field-effect chiral sensor,” Nat. Mater. 7(5), 412–417 (2008).
[Crossref] [PubMed]

Marrucci, L.

Masuda, K.

Mathias, S.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer Zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355(6330), 1187–1191 (2017).
[Crossref] [PubMed]

Mazilu, M.

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4(1), 2374 (2013).
[Crossref] [PubMed]

McGloin, D.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[Crossref] [PubMed]

Meyer Zu Heringdorf, F. J.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer Zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355(6330), 1187–1191 (2017).
[Crossref] [PubMed]

Mikhaylovskiy, R. V.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Minin, I.

Minin, O.

Miyamoto, K.

K. Masuda, S. Nakano, D. Barada, M. Kumakura, K. Miyamoto, and T. Omatsu, “Azo-polymer film twisted to form a helical surface relief by illumination with a circularly polarized Gaussian beam,” Opt. Express 25(11), 12499–12507 (2017).
[Crossref] [PubMed]

D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
[Crossref]

F. Takahashi, S. Takizawa, H. Hidai, K. Miyamoto, R. Morita, and T. Omatsu, “Optical vortex pulse illumination to create chiral monocrystalline silicon nanostructures,” Phys. Status Solidi Appl. Mater. Sci. 213(4), 1063–1068 (2016).
[Crossref]

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6(1), 21738 (2016).
[Crossref] [PubMed]

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4(1), 4281 (2014).
[Crossref] [PubMed]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18(17), 17967–17973 (2010).
[Crossref] [PubMed]

Morita, R.

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6(1), 21738 (2016).
[Crossref] [PubMed]

F. Takahashi, S. Takizawa, H. Hidai, K. Miyamoto, R. Morita, and T. Omatsu, “Optical vortex pulse illumination to create chiral monocrystalline silicon nanostructures,” Phys. Status Solidi Appl. Mater. Sci. 213(4), 1063–1068 (2016).
[Crossref]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18(17), 17967–17973 (2010).
[Crossref] [PubMed]

Munakata, K.

Nakamura, K.

Nakano, S.

Narimanov, E.

Narushima, T.

S. Hashiyada, T. Narushima, and H. Okamoto, “Imaging Chirality of Optical Fields near Achiral Metal Nanostructures Excited with Linearly Polarized Light,” ACS Photonics 5(4), 1486–1492 (2018).
[Crossref]

Naso, F.

L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, “A sensitivity-enhanced field-effect chiral sensor,” Nat. Mater. 7(5), 412–417 (2008).
[Crossref] [PubMed]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Nivas, J. J. J.

O’Neil, A. T.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

Ohno, S.

D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
[Crossref]

Okamoto, H.

S. Hashiyada, T. Narushima, and H. Okamoto, “Imaging Chirality of Optical Fields near Achiral Metal Nanostructures Excited with Linearly Polarized Light,” ACS Photonics 5(4), 1486–1492 (2018).
[Crossref]

Okida, M.

Omar, O. H.

L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, “A sensitivity-enhanced field-effect chiral sensor,” Nat. Mater. 7(5), 412–417 (2008).
[Crossref] [PubMed]

Omatsu, T.

K. Masuda, S. Nakano, D. Barada, M. Kumakura, K. Miyamoto, and T. Omatsu, “Azo-polymer film twisted to form a helical surface relief by illumination with a circularly polarized Gaussian beam,” Opt. Express 25(11), 12499–12507 (2017).
[Crossref] [PubMed]

D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
[Crossref]

F. Takahashi, S. Takizawa, H. Hidai, K. Miyamoto, R. Morita, and T. Omatsu, “Optical vortex pulse illumination to create chiral monocrystalline silicon nanostructures,” Phys. Status Solidi Appl. Mater. Sci. 213(4), 1063–1068 (2016).
[Crossref]

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6(1), 21738 (2016).
[Crossref] [PubMed]

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4(1), 4281 (2014).
[Crossref] [PubMed]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18(17), 17967–17973 (2010).
[Crossref] [PubMed]

Orenstein, M.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer Zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355(6330), 1187–1191 (2017).
[Crossref] [PubMed]

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

Padgett, M. J.

M. J. Padgett, “Orbital angular momentum 25 years on [Invited],” Opt. Express 25(10), 11265–11274 (2017).
[Crossref] [PubMed]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[Crossref] [PubMed]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

Palmisano, F.

L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, “A sensitivity-enhanced field-effect chiral sensor,” Nat. Mater. 7(5), 412–417 (2008).
[Crossref] [PubMed]

Paniagua-Dominguez, R.

Paparo, D.

Podbiel, D.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer Zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355(6330), 1187–1191 (2017).
[Crossref] [PubMed]

Popland, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Porfirev, A.

Pustovalov, E.

Qin, C.

S. Li, Y. Feng, P. Long, C. Qin, and W. Feng, “The light-switching conductance of an anisotropic azobenzene-based polymer close-packed on horizontally aligned carbon nanotubes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(21), 5068–5075 (2017).
[Crossref]

Ren, Y.

L. Mao, Y. Ren, Y. Lu, X. Lei, K. Jiang, K. Li, Y. Wang, C. Cui, X. Wen, and P. Wang, “Far-field radially polarized focal spot from plasmonic spiral structure combined with central aperture antenna,” Sci. Rep. 6(1), 23751 (2016).
[Crossref] [PubMed]

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[Crossref]

Ristok, S.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer Zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355(6330), 1187–1191 (2017).
[Crossref] [PubMed]

Rubano, A.

Rubinsztein-Dunlop, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref] [PubMed]

Scheel, S.

S. M. Barnett, R. P. Cameron, S. M. Barnett, L. Allen, R. P. Cameron, S. Y. Buhmann, D. T. Butcher, S. Scheel, S. M. Barnett, and R. P. Cameron, “On the natures of the spin and orbital parts of optical angular momentum Energy conservation and the constitutive relations in chiral and non-reciprocal media,” J. Opt. 18(6), 064004 (2016).
[Crossref]

Schmitzer, H.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[Crossref] [PubMed]

Shutong, H.

Sibilia, C.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Soskin, M.

M. Soskin, S. V. Boriskina, Y. Chong, M. R. Dennis, and A. Desyatnikov, “Singular optics and topological photonics,” J. Opt. 19(1), 010401 (2017).
[Crossref]

Spektor, G.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer Zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355(6330), 1187–1191 (2017).
[Crossref] [PubMed]

Spreeuw, R. J.

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the Transformation of Laguerre-Gaussian Laser Modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Sugiyama, S.

S. Khumpuang, M. Horade, K. Fujioka, and S. Sugiyama, “Microneedle fabrication using the plane pattern to cross-section transfer method,” Smart Mater. Struct. 15(2), 600–606 (2006).
[Crossref]

Sun, J.

J. Sun and N. M. Litchinitser, “Toward Practical, Subwavelength, Visible-Light Photolithography with Hyperlens,” ACS Nano 12(1), 542–548 (2018).
[Crossref] [PubMed]

J. Sun, T. Xu, and N. M. Litchinitser, “Experimental Demonstration of Demagnifying Hyperlens,” Nano Lett. 16(12), 7905–7909 (2016).
[Crossref] [PubMed]

Swartzlander, G. A.

Syubaev, S.

Takahashi, F.

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6(1), 21738 (2016).
[Crossref] [PubMed]

F. Takahashi, S. Takizawa, H. Hidai, K. Miyamoto, R. Morita, and T. Omatsu, “Optical vortex pulse illumination to create chiral monocrystalline silicon nanostructures,” Phys. Status Solidi Appl. Mater. Sci. 213(4), 1063–1068 (2016).
[Crossref]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Takizawa, S.

F. Takahashi, S. Takizawa, H. Hidai, K. Miyamoto, R. Morita, and T. Omatsu, “Optical vortex pulse illumination to create chiral monocrystalline silicon nanostructures,” Phys. Status Solidi Appl. Mater. Sci. 213(4), 1063–1068 (2016).
[Crossref]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Tanese, M. C.

L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, “A sensitivity-enhanced field-effect chiral sensor,” Nat. Mater. 7(5), 412–417 (2008).
[Crossref] [PubMed]

Tokizane, Y.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Torsi, L.

L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, “A sensitivity-enhanced field-effect chiral sensor,” Nat. Mater. 7(5), 412–417 (2008).
[Crossref] [PubMed]

Toyoda, K.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

Tsai, W. Y.

W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective Trapping or Rotation of Isotropic Dielectric Microparticles by Optical Near Field in a Plasmonic Archimedes Spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

Tuck, A. F.

C. M. Dobson, G. B. Ellison, A. F. Tuck, and V. Vaida, “Atmospheric aerosols as prebiotic chemical reactors,” Proc. Natl. Acad. Sci. U.S.A. 97(22), 11864–11868 (2000).
[Crossref] [PubMed]

Umegaki, S.

Vaida, V.

C. M. Dobson, G. B. Ellison, A. F. Tuck, and V. Vaida, “Atmospheric aerosols as prebiotic chemical reactors,” Proc. Natl. Acad. Sci. U.S.A. 97(22), 11864–11868 (2000).
[Crossref] [PubMed]

Valev, V. K.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Valli, L.

L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, “A sensitivity-enhanced field-effect chiral sensor,” Nat. Mater. 7(5), 412–417 (2008).
[Crossref] [PubMed]

Vecchione, A.

Verbiest, T.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Vitrik, O.

Wang, P.

L. Mao, Y. Ren, Y. Lu, X. Lei, K. Jiang, K. Li, Y. Wang, C. Cui, X. Wen, and P. Wang, “Far-field radially polarized focal spot from plasmonic spiral structure combined with central aperture antenna,” Sci. Rep. 6(1), 23751 (2016).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, P. Zhao, X. Feng, Y. Xu, F. Liu, K. Cui, W. Zhang, and Y. Huang, “Dynamically sculpturing plasmonic vortices: from integer to fractional orbital angular momentum,” Sci. Rep. 6(1), 36269 (2016).
[Crossref] [PubMed]

L. Mao, Y. Ren, Y. Lu, X. Lei, K. Jiang, K. Li, Y. Wang, C. Cui, X. Wen, and P. Wang, “Far-field radially polarized focal spot from plasmonic spiral structure combined with central aperture antenna,” Sci. Rep. 6(1), 23751 (2016).
[Crossref] [PubMed]

Wang, Z.

Watabe, M.

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4(1), 4281 (2014).
[Crossref] [PubMed]

Wen, X.

L. Mao, Y. Ren, Y. Lu, X. Lei, K. Jiang, K. Li, Y. Wang, C. Cui, X. Wen, and P. Wang, “Far-field radially polarized focal spot from plasmonic spiral structure combined with central aperture antenna,” Sci. Rep. 6(1), 23751 (2016).
[Crossref] [PubMed]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the Transformation of Laguerre-Gaussian Laser Modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Wright, E. M.

Y. Arita, M. Chen, E. M. Wright, and K. Dholakia, “Dynamics of a levitated microparticle in vacuum trapped by a perfect vortex beam: three-dimensional motion around a complex optical potential,” J. Opt. Soc. B 34(6), C14–C19 (2017).
[Crossref]

Xian, K. W.

L. M. Zhou, K. W. Xian, J. Chen, and N. Zhan, “Optical levitation of nanodiamonds by doughnut beams in vacuum,” Laser Photonics Rev. 11(2), 1600284 (2017).
[Crossref]

Xu, T.

J. Sun, T. Xu, and N. M. Litchinitser, “Experimental Demonstration of Demagnifying Hyperlens,” Nano Lett. 16(12), 7905–7909 (2016).
[Crossref] [PubMed]

Xu, Y.

Y. Wang, P. Zhao, X. Feng, Y. Xu, F. Liu, K. Cui, W. Zhang, and Y. Huang, “Dynamically sculpturing plasmonic vortices: from integer to fractional orbital angular momentum,” Sci. Rep. 6(1), 36269 (2016).
[Crossref] [PubMed]

Yamane, K.

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6(1), 21738 (2016).
[Crossref] [PubMed]

Yao, A. M.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Yatagai, T.

Yoshida, I.

D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
[Crossref]

Zambonin, P. G.

L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, “A sensitivity-enhanced field-effect chiral sensor,” Nat. Mater. 7(5), 412–417 (2008).
[Crossref] [PubMed]

Zhan, N.

L. M. Zhou, K. W. Xian, J. Chen, and N. Zhan, “Optical levitation of nanodiamonds by doughnut beams in vacuum,” Laser Photonics Rev. 11(2), 1600284 (2017).
[Crossref]

Zhang, W.

Y. Wang, P. Zhao, X. Feng, Y. Xu, F. Liu, K. Cui, W. Zhang, and Y. Huang, “Dynamically sculpturing plasmonic vortices: from integer to fractional orbital angular momentum,” Sci. Rep. 6(1), 36269 (2016).
[Crossref] [PubMed]

Zhao, P.

Y. Wang, P. Zhao, X. Feng, Y. Xu, F. Liu, K. Cui, W. Zhang, and Y. Huang, “Dynamically sculpturing plasmonic vortices: from integer to fractional orbital angular momentum,” Sci. Rep. 6(1), 36269 (2016).
[Crossref] [PubMed]

Zhizhchenko, A.

Zhou, L. M.

L. M. Zhou, K. W. Xian, J. Chen, and N. Zhan, “Optical levitation of nanodiamonds by doughnut beams in vacuum,” Laser Photonics Rev. 11(2), 1600284 (2017).
[Crossref]

Zilio, P.

D. Garoli, P. Zilio, F. De Angelis, and Y. Gorodetski, “Helicity locking of chiral light emitted from a plasmonic nanotaper,” Nanoscale 9(21), 6965–6969 (2017).
[Crossref] [PubMed]

ACS Nano (1)

J. Sun and N. M. Litchinitser, “Toward Practical, Subwavelength, Visible-Light Photolithography with Hyperlens,” ACS Nano 12(1), 542–548 (2018).
[Crossref] [PubMed]

ACS Photonics (1)

S. Hashiyada, T. Narushima, and H. Okamoto, “Imaging Chirality of Optical Fields near Achiral Metal Nanostructures Excited with Linearly Polarized Light,” ACS Photonics 5(4), 1486–1492 (2018).
[Crossref]

Adv. Mater. (1)

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Appl. Phys. Lett. (1)

D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

S. Li, Y. Feng, P. Long, C. Qin, and W. Feng, “The light-switching conductance of an anisotropic azobenzene-based polymer close-packed on horizontally aligned carbon nanotubes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(21), 5068–5075 (2017).
[Crossref]

J. Opt. (2)

S. M. Barnett, R. P. Cameron, S. M. Barnett, L. Allen, R. P. Cameron, S. Y. Buhmann, D. T. Butcher, S. Scheel, S. M. Barnett, and R. P. Cameron, “On the natures of the spin and orbital parts of optical angular momentum Energy conservation and the constitutive relations in chiral and non-reciprocal media,” J. Opt. 18(6), 064004 (2016).
[Crossref]

M. Soskin, S. V. Boriskina, Y. Chong, M. R. Dennis, and A. Desyatnikov, “Singular optics and topological photonics,” J. Opt. 19(1), 010401 (2017).
[Crossref]

J. Opt. Soc. B (1)

Y. Arita, M. Chen, E. M. Wright, and K. Dholakia, “Dynamics of a levitated microparticle in vacuum trapped by a perfect vortex beam: three-dimensional motion around a complex optical potential,” J. Opt. Soc. B 34(6), C14–C19 (2017).
[Crossref]

J. Vac. Sci. Technol. B (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[Crossref]

Laser Photonics Rev. (1)

L. M. Zhou, K. W. Xian, J. Chen, and N. Zhan, “Optical levitation of nanodiamonds by doughnut beams in vacuum,” Laser Photonics Rev. 11(2), 1600284 (2017).
[Crossref]

Nano Lett. (3)

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective Trapping or Rotation of Isotropic Dielectric Microparticles by Optical Near Field in a Plasmonic Archimedes Spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

J. Sun, T. Xu, and N. M. Litchinitser, “Experimental Demonstration of Demagnifying Hyperlens,” Nano Lett. 16(12), 7905–7909 (2016).
[Crossref] [PubMed]

Nanoscale (1)

D. Garoli, P. Zilio, F. De Angelis, and Y. Gorodetski, “Helicity locking of chiral light emitted from a plasmonic nanotaper,” Nanoscale 9(21), 6965–6969 (2017).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4(1), 2374 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, “A sensitivity-enhanced field-effect chiral sensor,” Nat. Mater. 7(5), 412–417 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the Transformation of Laguerre-Gaussian Laser Modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref] [PubMed]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[Crossref] [PubMed]

Phys. Status Solidi Appl. Mater. Sci. (1)

F. Takahashi, S. Takizawa, H. Hidai, K. Miyamoto, R. Morita, and T. Omatsu, “Optical vortex pulse illumination to create chiral monocrystalline silicon nanostructures,” Phys. Status Solidi Appl. Mater. Sci. 213(4), 1063–1068 (2016).
[Crossref]

Phys. Today (1)

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

C. M. Dobson, G. B. Ellison, A. F. Tuck, and V. Vaida, “Atmospheric aerosols as prebiotic chemical reactors,” Proc. Natl. Acad. Sci. U.S.A. 97(22), 11864–11868 (2000).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Sci. Rep. (4)

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6(1), 21738 (2016).
[Crossref] [PubMed]

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4(1), 4281 (2014).
[Crossref] [PubMed]

L. Mao, Y. Ren, Y. Lu, X. Lei, K. Jiang, K. Li, Y. Wang, C. Cui, X. Wen, and P. Wang, “Far-field radially polarized focal spot from plasmonic spiral structure combined with central aperture antenna,” Sci. Rep. 6(1), 23751 (2016).
[Crossref] [PubMed]

Y. Wang, P. Zhao, X. Feng, Y. Xu, F. Liu, K. Cui, W. Zhang, and Y. Huang, “Dynamically sculpturing plasmonic vortices: from integer to fractional orbital angular momentum,” Sci. Rep. 6(1), 36269 (2016).
[Crossref] [PubMed]

Science (1)

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer Zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355(6330), 1187–1191 (2017).
[Crossref] [PubMed]

Smart Mater. Struct. (1)

S. Khumpuang, M. Horade, K. Fujioka, and S. Sugiyama, “Microneedle fabrication using the plane pattern to cross-section transfer method,” Smart Mater. Struct. 15(2), 600–606 (2006).
[Crossref]

Other (1)

Norland Optical Adhesive 61 data sheet, https://www.norlandprod.com/adhesives/noa61pg2.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Top-, side- and 3D-views of the two-dimensional model of the OAM-induced right-handed chiral surface relief with the laminated azo-polymer layer (b) Amplitude and phase distribution along the z-direction of the nearfield light generated around the two-dimensional model by irradiation with right-handed circularly polarized uniform CW visible light at wavelengths of 500-580 nm.
Fig. 2
Fig. 2 Amplitude and phase distribution along the z-direction of the nearfield light generated around the two-dimensional model by irradiation with (a)-(b) right-handed-, (c)-(d) horizontal-linearly-, and (e)-(f) left-handed-polarized uniform CW 532 nm light.
Fig. 3
Fig. 3 AFM images of (a) a right-handed chiral surface relief on an azo-polymer film created by irradiation with a focused right-handed circularly polarized CW 532 nm optical vortex, (b) the positive replica with the same height and diameter as the original relief on a glass plate formed by nanoimprinting, (c) the Au-coated replica, and (d) the superimposed azo-polymer on the Au-coated replica. (e) Schematic 3D and cross-sectional views of the device.
Fig. 4
Fig. 4 Temporal evolution of the nearfield OAM light-induced right-handed chiral surface relief in the superimposed azo-polymer. AFM images of surface relief in the superimposed azo-polymer film formed by irradiation with uniform right-handed circularly polarized 532 nm plane-wave light.
Fig. 5
Fig. 5 (a) Right-handed-, (b) linearly- and (c) left-handed- polarized CW 532 nm light for an exposure time of 10 min. (d) Right-handed circularly polarized light was irradiated on the device without Au thin film by for the exposure time of 10 min. (e) Original chiral surface relief in azo-polymer film formed using a focused right-handed circularly polarized 532 nm optical vortex.
Fig. 6
Fig. 6 Height of the nearfield-induced surface relief in a superimposed azo-polymer at various exposure times. RCP, LCP, and LP indicate right-handed, horizontal-linear, and left-handed circular polarizations, respectively.
Fig. 7
Fig. 7 Experimentally observed polarization of scattered light upon linearly polarized nearfield (532 nm) excitation. Its (a) ellipticity angle and (b) extinction through the probe aperture from its top. The white arrow shows the direction of the incident polarization.
Fig. 8
Fig. 8 AFM images of (a) a left-handed chiral surface relief on the azo-polymer film formed by irradiation with a focused left-handed circularly polarized CW 532 nm optical vortex and (b) a left-handed chiral surface relief on the superimposed azo-polymer formed by irradiation with uniform left-handed circularly polarized CW 532 nm light for an exposure time of 10 minutes.
Fig. 9
Fig. 9 Height of the surface relief formed on an azo-polymer film by irradiation with a focused CW 532 nm optical vortex at various beam intensities for an exposure time of 10 minutes.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

r( ϕ )={ r 0 e bϕ   (0ϕ<2π) r 1       ( 2πϕ4π ) ,
J = l+s,

Metrics