Abstract

In this work, high mobility indium tin oxide (ITO) thin films with uniform crystallographic orientation are prepared. These films present a wide-range transmittance window and could be used as transparent electrodes at ultraviolet-visible-infrared wavelengths. In particular, the ITO thin film is characterized by low resistivity (5.1 × 10−4 Ωcm) and high infrared transmittance (88.5% at 2.5 μm) due to the improved mobility, achieving higher infrared performance than other transparent conductive materials. A model based on carrier’s transport theory and Lorentz-Drude dielectric function is proposed to quantitatively calculate the optical performance of conductive thin films under the influence of plasma effect. The calculation demonstrates that ITO is a suitable electrode material for near/middle infrared optoelectronic applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband terahertz conductivity and optical transmission of indium-tin-oxide (ITO) nanomaterials

Chan-Shan Yang, Chan-Ming Chang, Po-Han Chen, Peichen Yu, and Ci-Ling Pan
Opt. Express 21(14) 16670-16682 (2013)

Optical and electrical properties of ultra-thin indium tin oxide nanofilms on silicon for infrared photonics

Justin W. Cleary, Evan M. Smith, Kevin D. Leedy, Gordon Grzybowski, and Junpeng Guo
Opt. Mater. Express 8(5) 1231-1245 (2018)

Tunability of indium tin oxide materials for mid-infrared plasmonics applications

Yu Wang, Adam C. Overvig, Sajan Shrestha, Ran Zhang, Ren Wang, Nanfang Yu, and Luca Dal Negro
Opt. Mater. Express 7(8) 2727-2739 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
    [Crossref]
  2. D. J. Seo, J. P. Shim, S. B. Choi, T. H. Seo, E. K. Suh, and D. S. Lee, “Efficiency improvement in InGaN-based solar cells by indium tin oxide nano dots covered with ITO films,” Opt. Express 20(S6), A991–A996 (2012).
    [Crossref]
  3. R. H. Horng, K. C. Shen, C. Y. Yin, C. Y. Huang, and D. S. Wuu, “High performance of Ga-doped ZnO transparent conductive layers using MOCVD for GaN LED applications,” Opt. Express 21(12), 14452–14457 (2013).
    [Crossref] [PubMed]
  4. A. Rogalski, “Recent progress in infrared detector technologies,” Infrared Phys. Technol. 54(3), 136–154 (2011).
    [Crossref]
  5. F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four‐junction GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
    [Crossref]
  6. J. H. Yoo, M. Matthews, P. Ramsey, A. C. Barrios, A. Carter, A. Lange, J. Bude, and S. Elhadj, “Thermally ruggedized ITO transparent electrode films for high power optoelectronics,” Opt. Express 25(21), 25533–25545 (2017).
    [Crossref] [PubMed]
  7. H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z. X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4(4), 281–286 (2012).
    [Crossref] [PubMed]
  8. M. Marus, A. Hubarevich, H. Wang, A. Smirnov, X. Sun, and W. Fan, “Optoelectronic performance optimization for transparent conductive layers based on randomly arranged silver nanorods,” Opt. Express 23(5), 6209–6214 (2015).
    [Crossref] [PubMed]
  9. L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
    [Crossref] [PubMed]
  10. L. Hu, D. S. Hecht, and G. Gruner, “Infrared transparent carbon nanotube thin films,” Appl. Phys. Lett. 94(8), 081103 (2009).
    [Crossref]
  11. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
    [Crossref] [PubMed]
  12. T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. V. D. Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
    [Crossref]
  13. X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
    [Crossref] [PubMed]
  14. W. Zheng, R. Lin, Y. Zhu, Z. Zhang, X. Ji, and F. Huang, “Vacuum Ultraviolet Photodetection in Two-Dimensional Oxides,” ACS Appl. Mater. Interfaces 10(24), 20696–20702 (2018).
    [Crossref] [PubMed]
  15. W. Zheng, R. Lin, J. Ran, Z. Zhang, X. Ji, and F. Huang, “Vacuum-Ultraviolet Photovoltaic Detector,” ACS Nano 12(1), 425–431 (2018).
    [Crossref] [PubMed]
  16. L. Barraud, Z. C. Holman, N. Badel, P. Reiss, A. Descoeudres, C. Battaglia, S. D. Wolf, and C. Ballif, “Hydrogen-doped indium oxide/indium tin oxide bilayers for high-efficiency silicon heterojunction solar cells,” Sol. Energy Mater. Sol. Cells 115, 151–156 (2013).
    [Crossref]
  17. T. Koida, H. Fujiwara, and M. Kondo, “Hydrogen-doped In2O3 as high-mobility transparent conductive oxide,” Jpn. J. Appl. Phys. 46(28), L685–L687 (2007).
    [Crossref]
  18. T. Koida, H. Fujiwara, and M. Kondo, “High-mobility hydrogen-doped In2O3 transparent conductive oxide for a-Si:H/c-Si heterojunction solar cells,” Sol. Energy Mater. Sol. Cells 93(6-7), 851–854 (2009).
    [Crossref]
  19. E. Kobayashi, Y. Watabe, and T. Yamamoto, “High-mobility transparent conductive thin films of cerium-doped hydrogenated indium oxide,” Appl. Phys. Express 8(1), 015505 (2015).
    [Crossref]
  20. Y. Wang, A. C. Overvig, S. Shrestha, R. Zhang, R. Wang, N. Yu, and L. Dal Negro, “Tunability of indium tin oxide materials for mid-infrared plasmonics applications,” Opt. Mater. Express 7(8), 2727–2739 (2017).
    [Crossref]
  21. D. A. Lampasi, A. Tamburrano, S. Bellini, M. Tului, A. Albolino, and M. S. Sarto, “Effect of Grain Size and Distribution on the Shielding Effectiveness of Transparent Conducting Thin Films,” IEEE Trans. Electromagn. C. 56(2), 352–359 (2014).
    [Crossref]
  22. B. Macco, H. C. M. Knoops, and W. M. M. Kessels, “Electron scattering and doping mechanisms in solid-phase-crystallized In2O3:H prepared by atomic layer deposition,” ACS Appl. Mater. Interfaces 7(30), 16723–16729 (2015).
    [Crossref] [PubMed]
  23. K. C. Kim, B. Kwon, H. J. Kim, S. H. Baek, D. B. Hyun, S. K. Kim, and J. S. Kim, “Sn doping in thermoelectric Bi2Te3 films by metal-organic chemical vapor deposition,” Appl. Surf. Sci. 353, 232–237 (2015).
    [Crossref]
  24. C. Jacoboni and L. Reggiani, “The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials,” Rev. Mod. Phys. 55(3), 645–705 (1983).
    [Crossref]
  25. N. Preissler, O. Bierwagen, A. T. Ramu, and J. S. Speck, “Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films,” Phys. Rev. B 88(8), 4049–4057 (2013).
    [Crossref]
  26. D. Mergel and Z. Qiao, “Dielectric modelling of optical spectra of thin In2O3:Sn films,” J. Phys. D Appl. Phys. 35(8), 794–801 (2002).
    [Crossref]
  27. M. Feneberg, J. Nixdorf, C. Lidig, R. Goldhahn, Z. Galazka, O. Bierwagen, and J. S. Speck, “Many-electron effects on the dielectric function of cubic In2O3: Effective electron mass, band nonparabolicity, band gap renormalization, and Burstein-Moss shift,” Phys. Rev. B 93(4), 045203 (2016).
    [Crossref]
  28. Z. Chen, Y. Zhuo, W. Tu, X. Ma, Y. Pei, C. Wang, and G. Wang, “Highly ultraviolet transparent textured indium tin oxide thin films and the application in light emitting diodes,” Appl. Phys. Lett. 110(24), 242101 (2017).
    [Crossref]
  29. K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, T. Kaplas, and Y. Svirko, “Enhanced microwave shielding effectiveness of ultrathin pyrolytic carbon films,” Appl. Phys. Lett. 103(7), 073117 (2013).
    [Crossref]
  30. M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
    [Crossref] [PubMed]
  31. A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
    [Crossref] [PubMed]
  32. H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband Electroabsorption Modulators Design Based on Epsilon-Near-Zero Indium Tin Oxide,” IEEE J. Sel. Top. Quant. 21, 3300207 (2015).
  33. Y. Zhuo, Z. Chen, W. Tu, X. Ma, and G. Wang, “Structural, electrical and optical properties of indium tin oxide thin film grown by metal organic chemical vapor deposition with tetramethyltin-precursor,” Jpn. J. Appl. Phys. 57(1S), 01AE03 (2018).
    [Crossref]
  34. Z. Chen, Y. Zhuo, R. Hu, W. Tu, Y. Pei, B. Fan, C. Wang, and G. Wang, “Control of morphology and orientation for textured nanocrystalline indium oxide thin film: A growth zone diagram,” Mater. Des. 131, 410–418 (2017).
    [Crossref]
  35. K. H. Zhang, A. Walsh, C. R. Catlow, V. K. Lazarov, and R. G. Egdell, “Surface energies control the self-organization of oriented In2O3 nanostructures on cubic zirconia,” Nano Lett. 10(9), 3740–3746 (2010).
    [Crossref] [PubMed]
  36. T. M. Inerbaev, R. Sahara, H. Mizuseki, Y. Kawazoe, and T. Nakamura, “Reducible and non-reducible defect clusters in tin-doped indium oxide,” Solid State Commun. 150(1-2), 18–21 (2010).
    [Crossref]
  37. M. Goano, E. Bellotti, E. Ghillino, G. Ghione, and K. F. Brennan, “Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part I. Binary compounds GaN, AlN, and InN,” J. Appl. Phys. 88(11), 6467–6475 (2000).
    [Crossref]
  38. D. L. Rode, “Electron mobility in II-VI semiconductors,” Phys. Rev. B 2(10), 4036–4044 (1970).
    [Crossref]

2018 (3)

W. Zheng, R. Lin, Y. Zhu, Z. Zhang, X. Ji, and F. Huang, “Vacuum Ultraviolet Photodetection in Two-Dimensional Oxides,” ACS Appl. Mater. Interfaces 10(24), 20696–20702 (2018).
[Crossref] [PubMed]

W. Zheng, R. Lin, J. Ran, Z. Zhang, X. Ji, and F. Huang, “Vacuum-Ultraviolet Photovoltaic Detector,” ACS Nano 12(1), 425–431 (2018).
[Crossref] [PubMed]

Y. Zhuo, Z. Chen, W. Tu, X. Ma, and G. Wang, “Structural, electrical and optical properties of indium tin oxide thin film grown by metal organic chemical vapor deposition with tetramethyltin-precursor,” Jpn. J. Appl. Phys. 57(1S), 01AE03 (2018).
[Crossref]

2017 (4)

Z. Chen, Y. Zhuo, R. Hu, W. Tu, Y. Pei, B. Fan, C. Wang, and G. Wang, “Control of morphology and orientation for textured nanocrystalline indium oxide thin film: A growth zone diagram,” Mater. Des. 131, 410–418 (2017).
[Crossref]

Z. Chen, Y. Zhuo, W. Tu, X. Ma, Y. Pei, C. Wang, and G. Wang, “Highly ultraviolet transparent textured indium tin oxide thin films and the application in light emitting diodes,” Appl. Phys. Lett. 110(24), 242101 (2017).
[Crossref]

Y. Wang, A. C. Overvig, S. Shrestha, R. Zhang, R. Wang, N. Yu, and L. Dal Negro, “Tunability of indium tin oxide materials for mid-infrared plasmonics applications,” Opt. Mater. Express 7(8), 2727–2739 (2017).
[Crossref]

J. H. Yoo, M. Matthews, P. Ramsey, A. C. Barrios, A. Carter, A. Lange, J. Bude, and S. Elhadj, “Thermally ruggedized ITO transparent electrode films for high power optoelectronics,” Opt. Express 25(21), 25533–25545 (2017).
[Crossref] [PubMed]

2016 (3)

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[Crossref] [PubMed]

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

M. Feneberg, J. Nixdorf, C. Lidig, R. Goldhahn, Z. Galazka, O. Bierwagen, and J. S. Speck, “Many-electron effects on the dielectric function of cubic In2O3: Effective electron mass, band nonparabolicity, band gap renormalization, and Burstein-Moss shift,” Phys. Rev. B 93(4), 045203 (2016).
[Crossref]

2015 (6)

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
[Crossref] [PubMed]

H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband Electroabsorption Modulators Design Based on Epsilon-Near-Zero Indium Tin Oxide,” IEEE J. Sel. Top. Quant. 21, 3300207 (2015).

E. Kobayashi, Y. Watabe, and T. Yamamoto, “High-mobility transparent conductive thin films of cerium-doped hydrogenated indium oxide,” Appl. Phys. Express 8(1), 015505 (2015).
[Crossref]

B. Macco, H. C. M. Knoops, and W. M. M. Kessels, “Electron scattering and doping mechanisms in solid-phase-crystallized In2O3:H prepared by atomic layer deposition,” ACS Appl. Mater. Interfaces 7(30), 16723–16729 (2015).
[Crossref] [PubMed]

K. C. Kim, B. Kwon, H. J. Kim, S. H. Baek, D. B. Hyun, S. K. Kim, and J. S. Kim, “Sn doping in thermoelectric Bi2Te3 films by metal-organic chemical vapor deposition,” Appl. Surf. Sci. 353, 232–237 (2015).
[Crossref]

M. Marus, A. Hubarevich, H. Wang, A. Smirnov, X. Sun, and W. Fan, “Optoelectronic performance optimization for transparent conductive layers based on randomly arranged silver nanorods,” Opt. Express 23(5), 6209–6214 (2015).
[Crossref] [PubMed]

2014 (2)

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four‐junction GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

D. A. Lampasi, A. Tamburrano, S. Bellini, M. Tului, A. Albolino, and M. S. Sarto, “Effect of Grain Size and Distribution on the Shielding Effectiveness of Transparent Conducting Thin Films,” IEEE Trans. Electromagn. C. 56(2), 352–359 (2014).
[Crossref]

2013 (4)

N. Preissler, O. Bierwagen, A. T. Ramu, and J. S. Speck, “Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films,” Phys. Rev. B 88(8), 4049–4057 (2013).
[Crossref]

K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, T. Kaplas, and Y. Svirko, “Enhanced microwave shielding effectiveness of ultrathin pyrolytic carbon films,” Appl. Phys. Lett. 103(7), 073117 (2013).
[Crossref]

R. H. Horng, K. C. Shen, C. Y. Yin, C. Y. Huang, and D. S. Wuu, “High performance of Ga-doped ZnO transparent conductive layers using MOCVD for GaN LED applications,” Opt. Express 21(12), 14452–14457 (2013).
[Crossref] [PubMed]

L. Barraud, Z. C. Holman, N. Badel, P. Reiss, A. Descoeudres, C. Battaglia, S. D. Wolf, and C. Ballif, “Hydrogen-doped indium oxide/indium tin oxide bilayers for high-efficiency silicon heterojunction solar cells,” Sol. Energy Mater. Sol. Cells 115, 151–156 (2013).
[Crossref]

2012 (4)

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. V. D. Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
[Crossref]

D. J. Seo, J. P. Shim, S. B. Choi, T. H. Seo, E. K. Suh, and D. S. Lee, “Efficiency improvement in InGaN-based solar cells by indium tin oxide nano dots covered with ITO films,” Opt. Express 20(S6), A991–A996 (2012).
[Crossref]

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z. X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4(4), 281–286 (2012).
[Crossref] [PubMed]

2011 (1)

A. Rogalski, “Recent progress in infrared detector technologies,” Infrared Phys. Technol. 54(3), 136–154 (2011).
[Crossref]

2010 (2)

K. H. Zhang, A. Walsh, C. R. Catlow, V. K. Lazarov, and R. G. Egdell, “Surface energies control the self-organization of oriented In2O3 nanostructures on cubic zirconia,” Nano Lett. 10(9), 3740–3746 (2010).
[Crossref] [PubMed]

T. M. Inerbaev, R. Sahara, H. Mizuseki, Y. Kawazoe, and T. Nakamura, “Reducible and non-reducible defect clusters in tin-doped indium oxide,” Solid State Commun. 150(1-2), 18–21 (2010).
[Crossref]

2009 (2)

T. Koida, H. Fujiwara, and M. Kondo, “High-mobility hydrogen-doped In2O3 transparent conductive oxide for a-Si:H/c-Si heterojunction solar cells,” Sol. Energy Mater. Sol. Cells 93(6-7), 851–854 (2009).
[Crossref]

L. Hu, D. S. Hecht, and G. Gruner, “Infrared transparent carbon nanotube thin films,” Appl. Phys. Lett. 94(8), 081103 (2009).
[Crossref]

2008 (1)

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[Crossref] [PubMed]

2007 (1)

T. Koida, H. Fujiwara, and M. Kondo, “Hydrogen-doped In2O3 as high-mobility transparent conductive oxide,” Jpn. J. Appl. Phys. 46(28), L685–L687 (2007).
[Crossref]

2004 (1)

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

2002 (1)

D. Mergel and Z. Qiao, “Dielectric modelling of optical spectra of thin In2O3:Sn films,” J. Phys. D Appl. Phys. 35(8), 794–801 (2002).
[Crossref]

2000 (1)

M. Goano, E. Bellotti, E. Ghillino, G. Ghione, and K. F. Brennan, “Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part I. Binary compounds GaN, AlN, and InN,” J. Appl. Phys. 88(11), 6467–6475 (2000).
[Crossref]

1983 (1)

C. Jacoboni and L. Reggiani, “The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials,” Rev. Mod. Phys. 55(3), 645–705 (1983).
[Crossref]

1970 (1)

D. L. Rode, “Electron mobility in II-VI semiconductors,” Phys. Rev. B 2(10), 4036–4044 (1970).
[Crossref]

Alam, M. Z.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

Albolino, A.

D. A. Lampasi, A. Tamburrano, S. Bellini, M. Tului, A. Albolino, and M. S. Sarto, “Effect of Grain Size and Distribution on the Shielding Effectiveness of Transparent Conducting Thin Films,” IEEE Trans. Electromagn. C. 56(2), 352–359 (2014).
[Crossref]

Badel, N.

L. Barraud, Z. C. Holman, N. Badel, P. Reiss, A. Descoeudres, C. Battaglia, S. D. Wolf, and C. Ballif, “Hydrogen-doped indium oxide/indium tin oxide bilayers for high-efficiency silicon heterojunction solar cells,” Sol. Energy Mater. Sol. Cells 115, 151–156 (2013).
[Crossref]

Baek, S. H.

K. C. Kim, B. Kwon, H. J. Kim, S. H. Baek, D. B. Hyun, S. K. Kim, and J. S. Kim, “Sn doping in thermoelectric Bi2Te3 films by metal-organic chemical vapor deposition,” Appl. Surf. Sci. 353, 232–237 (2015).
[Crossref]

Ballif, C.

L. Barraud, Z. C. Holman, N. Badel, P. Reiss, A. Descoeudres, C. Battaglia, S. D. Wolf, and C. Ballif, “Hydrogen-doped indium oxide/indium tin oxide bilayers for high-efficiency silicon heterojunction solar cells,” Sol. Energy Mater. Sol. Cells 115, 151–156 (2013).
[Crossref]

Barnes, A.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[Crossref] [PubMed]

Barnes, T. M.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. V. D. Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

Barraud, L.

L. Barraud, Z. C. Holman, N. Badel, P. Reiss, A. Descoeudres, C. Battaglia, S. D. Wolf, and C. Ballif, “Hydrogen-doped indium oxide/indium tin oxide bilayers for high-efficiency silicon heterojunction solar cells,” Sol. Energy Mater. Sol. Cells 115, 151–156 (2013).
[Crossref]

Barrios, A. C.

Batrakov, K.

K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, T. Kaplas, and Y. Svirko, “Enhanced microwave shielding effectiveness of ultrathin pyrolytic carbon films,” Appl. Phys. Lett. 103(7), 073117 (2013).
[Crossref]

Battaglia, C.

L. Barraud, Z. C. Holman, N. Badel, P. Reiss, A. Descoeudres, C. Battaglia, S. D. Wolf, and C. Ballif, “Hydrogen-doped indium oxide/indium tin oxide bilayers for high-efficiency silicon heterojunction solar cells,” Sol. Energy Mater. Sol. Cells 115, 151–156 (2013).
[Crossref]

Beard, M. C.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. V. D. Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

Bellini, S.

D. A. Lampasi, A. Tamburrano, S. Bellini, M. Tului, A. Albolino, and M. S. Sarto, “Effect of Grain Size and Distribution on the Shielding Effectiveness of Transparent Conducting Thin Films,” IEEE Trans. Electromagn. C. 56(2), 352–359 (2014).
[Crossref]

Bellotti, E.

M. Goano, E. Bellotti, E. Ghillino, G. Ghione, and K. F. Brennan, “Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part I. Binary compounds GaN, AlN, and InN,” J. Appl. Phys. 88(11), 6467–6475 (2000).
[Crossref]

Bergeson, J. D.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. V. D. Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

Bett, A. W.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four‐junction GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Beutel, P.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four‐junction GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Bierwagen, O.

M. Feneberg, J. Nixdorf, C. Lidig, R. Goldhahn, Z. Galazka, O. Bierwagen, and J. S. Speck, “Many-electron effects on the dielectric function of cubic In2O3: Effective electron mass, band nonparabolicity, band gap renormalization, and Burstein-Moss shift,” Phys. Rev. B 93(4), 045203 (2016).
[Crossref]

N. Preissler, O. Bierwagen, A. T. Ramu, and J. S. Speck, “Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films,” Phys. Rev. B 88(8), 4049–4057 (2013).
[Crossref]

Blackburn, J. L.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. V. D. Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

Blanc, N.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four‐junction GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Boyd, R. W.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

Brahlek, M.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[Crossref] [PubMed]

Brennan, K. F.

M. Goano, E. Bellotti, E. Ghillino, G. Ghione, and K. F. Brennan, “Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part I. Binary compounds GaN, AlN, and InN,” J. Appl. Phys. 88(11), 6467–6475 (2000).
[Crossref]

Bude, J.

Bult, J.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. V. D. Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

Cao, J.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z. X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4(4), 281–286 (2012).
[Crossref] [PubMed]

Capretti, A.

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
[Crossref] [PubMed]

H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband Electroabsorption Modulators Design Based on Epsilon-Near-Zero Indium Tin Oxide,” IEEE J. Sel. Top. Quant. 21, 3300207 (2015).

Carter, A.

Catlow, C. R.

K. H. Zhang, A. Walsh, C. R. Catlow, V. K. Lazarov, and R. G. Egdell, “Surface energies control the self-organization of oriented In2O3 nanostructures on cubic zirconia,” Nano Lett. 10(9), 3740–3746 (2010).
[Crossref] [PubMed]

Chan, M. H.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[Crossref] [PubMed]

Chen, Y.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z. X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4(4), 281–286 (2012).
[Crossref] [PubMed]

Chen, Z.

Y. Zhuo, Z. Chen, W. Tu, X. Ma, and G. Wang, “Structural, electrical and optical properties of indium tin oxide thin film grown by metal organic chemical vapor deposition with tetramethyltin-precursor,” Jpn. J. Appl. Phys. 57(1S), 01AE03 (2018).
[Crossref]

Z. Chen, Y. Zhuo, R. Hu, W. Tu, Y. Pei, B. Fan, C. Wang, and G. Wang, “Control of morphology and orientation for textured nanocrystalline indium oxide thin film: A growth zone diagram,” Mater. Des. 131, 410–418 (2017).
[Crossref]

Z. Chen, Y. Zhuo, W. Tu, X. Ma, Y. Pei, C. Wang, and G. Wang, “Highly ultraviolet transparent textured indium tin oxide thin films and the application in light emitting diodes,” Appl. Phys. Lett. 110(24), 242101 (2017).
[Crossref]

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Choi, S. B.

Dal Negro, L.

Dang, W.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z. X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4(4), 281–286 (2012).
[Crossref] [PubMed]

De Leon, I.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

Descoeudres, A.

L. Barraud, Z. C. Holman, N. Badel, P. Reiss, A. Descoeudres, C. Battaglia, S. D. Wolf, and C. Ballif, “Hydrogen-doped indium oxide/indium tin oxide bilayers for high-efficiency silicon heterojunction solar cells,” Sol. Energy Mater. Sol. Cells 115, 151–156 (2013).
[Crossref]

Dimroth, F.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four‐junction GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Dobrich, A.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four‐junction GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Drazek, C.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four‐junction GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Du, X.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Eaton, C.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[Crossref] [PubMed]

Egdell, R. G.

K. H. Zhang, A. Walsh, C. R. Catlow, V. K. Lazarov, and R. G. Egdell, “Surface energies control the self-organization of oriented In2O3 nanostructures on cubic zirconia,” Nano Lett. 10(9), 3740–3746 (2010).
[Crossref] [PubMed]

Elhadj, S.

Ellmer, K.

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
[Crossref]

Engel-Herbert, R.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[Crossref] [PubMed]

Engheta, N.

Fan, B.

Z. Chen, Y. Zhuo, R. Hu, W. Tu, Y. Pei, B. Fan, C. Wang, and G. Wang, “Control of morphology and orientation for textured nanocrystalline indium oxide thin film: A growth zone diagram,” Mater. Des. 131, 410–418 (2017).
[Crossref]

Fan, W.

Feneberg, M.

M. Feneberg, J. Nixdorf, C. Lidig, R. Goldhahn, Z. Galazka, O. Bierwagen, and J. S. Speck, “Many-electron effects on the dielectric function of cubic In2O3: Effective electron mass, band nonparabolicity, band gap renormalization, and Burstein-Moss shift,” Phys. Rev. B 93(4), 045203 (2016).
[Crossref]

Fiedeler, U.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four‐junction GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Fujiwara, H.

T. Koida, H. Fujiwara, and M. Kondo, “High-mobility hydrogen-doped In2O3 transparent conductive oxide for a-Si:H/c-Si heterojunction solar cells,” Sol. Energy Mater. Sol. Cells 93(6-7), 851–854 (2009).
[Crossref]

T. Koida, H. Fujiwara, and M. Kondo, “Hydrogen-doped In2O3 as high-mobility transparent conductive oxide,” Jpn. J. Appl. Phys. 46(28), L685–L687 (2007).
[Crossref]

Galazka, Z.

M. Feneberg, J. Nixdorf, C. Lidig, R. Goldhahn, Z. Galazka, O. Bierwagen, and J. S. Speck, “Many-electron effects on the dielectric function of cubic In2O3: Effective electron mass, band nonparabolicity, band gap renormalization, and Burstein-Moss shift,” Phys. Rev. B 93(4), 045203 (2016).
[Crossref]

Ghillino, E.

M. Goano, E. Bellotti, E. Ghillino, G. Ghione, and K. F. Brennan, “Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part I. Binary compounds GaN, AlN, and InN,” J. Appl. Phys. 88(11), 6467–6475 (2000).
[Crossref]

Ghione, G.

M. Goano, E. Bellotti, E. Ghillino, G. Ghione, and K. F. Brennan, “Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part I. Binary compounds GaN, AlN, and InN,” J. Appl. Phys. 88(11), 6467–6475 (2000).
[Crossref]

Ghyselen, B.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four‐junction GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Goano, M.

M. Goano, E. Bellotti, E. Ghillino, G. Ghione, and K. F. Brennan, “Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part I. Binary compounds GaN, AlN, and InN,” J. Appl. Phys. 88(11), 6467–6475 (2000).
[Crossref]

Goldhahn, R.

M. Feneberg, J. Nixdorf, C. Lidig, R. Goldhahn, Z. Galazka, O. Bierwagen, and J. S. Speck, “Many-electron effects on the dielectric function of cubic In2O3: Effective electron mass, band nonparabolicity, band gap renormalization, and Burstein-Moss shift,” Phys. Rev. B 93(4), 045203 (2016).
[Crossref]

Gopalan, V.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[Crossref] [PubMed]

Grave, M.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four‐junction GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Gruner, G.

L. Hu, D. S. Hecht, and G. Gruner, “Infrared transparent carbon nanotube thin films,” Appl. Phys. Lett. 94(8), 081103 (2009).
[Crossref]

Guiot, E.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four‐junction GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Guo, L.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[Crossref] [PubMed]

Haneef, H. F.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[Crossref] [PubMed]

Hannappel, T.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four‐junction GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Hebard, A. F.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Hecht, D. S.

L. Hu, D. S. Hecht, and G. Gruner, “Infrared transparent carbon nanotube thin films,” Appl. Phys. Lett. 94(8), 081103 (2009).
[Crossref]

Holman, Z. C.

L. Barraud, Z. C. Holman, N. Badel, P. Reiss, A. Descoeudres, C. Battaglia, S. D. Wolf, and C. Ballif, “Hydrogen-doped indium oxide/indium tin oxide bilayers for high-efficiency silicon heterojunction solar cells,” Sol. Energy Mater. Sol. Cells 115, 151–156 (2013).
[Crossref]

Horng, R. H.

Hu, L.

L. Hu, D. S. Hecht, and G. Gruner, “Infrared transparent carbon nanotube thin films,” Appl. Phys. Lett. 94(8), 081103 (2009).
[Crossref]

Hu, R.

Z. Chen, Y. Zhuo, R. Hu, W. Tu, Y. Pei, B. Fan, C. Wang, and G. Wang, “Control of morphology and orientation for textured nanocrystalline indium oxide thin film: A growth zone diagram,” Mater. Des. 131, 410–418 (2017).
[Crossref]

Huang, C. Y.

Huang, F.

W. Zheng, R. Lin, Y. Zhu, Z. Zhang, X. Ji, and F. Huang, “Vacuum Ultraviolet Photodetection in Two-Dimensional Oxides,” ACS Appl. Mater. Interfaces 10(24), 20696–20702 (2018).
[Crossref] [PubMed]

W. Zheng, R. Lin, J. Ran, Z. Zhang, X. Ji, and F. Huang, “Vacuum-Ultraviolet Photovoltaic Detector,” ACS Nano 12(1), 425–431 (2018).
[Crossref] [PubMed]

Hubarevich, A.

Hyun, D. B.

K. C. Kim, B. Kwon, H. J. Kim, S. H. Baek, D. B. Hyun, S. K. Kim, and J. S. Kim, “Sn doping in thermoelectric Bi2Te3 films by metal-organic chemical vapor deposition,” Appl. Surf. Sci. 353, 232–237 (2015).
[Crossref]

Inerbaev, T. M.

T. M. Inerbaev, R. Sahara, H. Mizuseki, Y. Kawazoe, and T. Nakamura, “Reducible and non-reducible defect clusters in tin-doped indium oxide,” Solid State Commun. 150(1-2), 18–21 (2010).
[Crossref]

Jacoboni, C.

C. Jacoboni and L. Reggiani, “The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials,” Rev. Mod. Phys. 55(3), 645–705 (1983).
[Crossref]

Ji, X.

W. Zheng, R. Lin, Y. Zhu, Z. Zhang, X. Ji, and F. Huang, “Vacuum Ultraviolet Photodetection in Two-Dimensional Oxides,” ACS Appl. Mater. Interfaces 10(24), 20696–20702 (2018).
[Crossref] [PubMed]

W. Zheng, R. Lin, J. Ran, Z. Zhang, X. Ji, and F. Huang, “Vacuum-Ultraviolet Photovoltaic Detector,” ACS Nano 12(1), 425–431 (2018).
[Crossref] [PubMed]

Kamaras, K.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Kaplas, T.

K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, T. Kaplas, and Y. Svirko, “Enhanced microwave shielding effectiveness of ultrathin pyrolytic carbon films,” Appl. Phys. Lett. 103(7), 073117 (2013).
[Crossref]

Karcher, C.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four‐junction GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Kawazoe, Y.

T. M. Inerbaev, R. Sahara, H. Mizuseki, Y. Kawazoe, and T. Nakamura, “Reducible and non-reducible defect clusters in tin-doped indium oxide,” Solid State Commun. 150(1-2), 18–21 (2010).
[Crossref]

Kessels, W. M. M.

B. Macco, H. C. M. Knoops, and W. M. M. Kessels, “Electron scattering and doping mechanisms in solid-phase-crystallized In2O3:H prepared by atomic layer deposition,” ACS Appl. Mater. Interfaces 7(30), 16723–16729 (2015).
[Crossref] [PubMed]

Kim, H. J.

K. C. Kim, B. Kwon, H. J. Kim, S. H. Baek, D. B. Hyun, S. K. Kim, and J. S. Kim, “Sn doping in thermoelectric Bi2Te3 films by metal-organic chemical vapor deposition,” Appl. Surf. Sci. 353, 232–237 (2015).
[Crossref]

Kim, J. S.

K. C. Kim, B. Kwon, H. J. Kim, S. H. Baek, D. B. Hyun, S. K. Kim, and J. S. Kim, “Sn doping in thermoelectric Bi2Te3 films by metal-organic chemical vapor deposition,” Appl. Surf. Sci. 353, 232–237 (2015).
[Crossref]

Kim, K. C.

K. C. Kim, B. Kwon, H. J. Kim, S. H. Baek, D. B. Hyun, S. K. Kim, and J. S. Kim, “Sn doping in thermoelectric Bi2Te3 films by metal-organic chemical vapor deposition,” Appl. Surf. Sci. 353, 232–237 (2015).
[Crossref]

Kim, S. K.

K. C. Kim, B. Kwon, H. J. Kim, S. H. Baek, D. B. Hyun, S. K. Kim, and J. S. Kim, “Sn doping in thermoelectric Bi2Te3 films by metal-organic chemical vapor deposition,” Appl. Surf. Sci. 353, 232–237 (2015).
[Crossref]

Klamkin, J.

H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband Electroabsorption Modulators Design Based on Epsilon-Near-Zero Indium Tin Oxide,” IEEE J. Sel. Top. Quant. 21, 3300207 (2015).

Knoops, H. C. M.

B. Macco, H. C. M. Knoops, and W. M. M. Kessels, “Electron scattering and doping mechanisms in solid-phase-crystallized In2O3:H prepared by atomic layer deposition,” ACS Appl. Mater. Interfaces 7(30), 16723–16729 (2015).
[Crossref] [PubMed]

Kobayashi, E.

E. Kobayashi, Y. Watabe, and T. Yamamoto, “High-mobility transparent conductive thin films of cerium-doped hydrogenated indium oxide,” Appl. Phys. Express 8(1), 015505 (2015).
[Crossref]

Koida, T.

T. Koida, H. Fujiwara, and M. Kondo, “High-mobility hydrogen-doped In2O3 transparent conductive oxide for a-Si:H/c-Si heterojunction solar cells,” Sol. Energy Mater. Sol. Cells 93(6-7), 851–854 (2009).
[Crossref]

T. Koida, H. Fujiwara, and M. Kondo, “Hydrogen-doped In2O3 as high-mobility transparent conductive oxide,” Jpn. J. Appl. Phys. 46(28), L685–L687 (2007).
[Crossref]

Kondo, M.

T. Koida, H. Fujiwara, and M. Kondo, “High-mobility hydrogen-doped In2O3 transparent conductive oxide for a-Si:H/c-Si heterojunction solar cells,” Sol. Energy Mater. Sol. Cells 93(6-7), 851–854 (2009).
[Crossref]

T. Koida, H. Fujiwara, and M. Kondo, “Hydrogen-doped In2O3 as high-mobility transparent conductive oxide,” Jpn. J. Appl. Phys. 46(28), L685–L687 (2007).
[Crossref]

Krause, R.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four‐junction GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Kuzhir, P.

K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, T. Kaplas, and Y. Svirko, “Enhanced microwave shielding effectiveness of ultrathin pyrolytic carbon films,” Appl. Phys. Lett. 103(7), 073117 (2013).
[Crossref]

Kwon, B.

K. C. Kim, B. Kwon, H. J. Kim, S. H. Baek, D. B. Hyun, S. K. Kim, and J. S. Kim, “Sn doping in thermoelectric Bi2Te3 films by metal-organic chemical vapor deposition,” Appl. Surf. Sci. 353, 232–237 (2015).
[Crossref]

Lagemaat, J. V. D.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. V. D. Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

Lampasi, D. A.

D. A. Lampasi, A. Tamburrano, S. Bellini, M. Tului, A. Albolino, and M. S. Sarto, “Effect of Grain Size and Distribution on the Shielding Effectiveness of Transparent Conducting Thin Films,” IEEE Trans. Electromagn. C. 56(2), 352–359 (2014).
[Crossref]

Lange, A.

Larsen, B. A.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. V. D. Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

Lazarov, V. K.

K. H. Zhang, A. Walsh, C. R. Catlow, V. K. Lazarov, and R. G. Egdell, “Surface energies control the self-organization of oriented In2O3 nanostructures on cubic zirconia,” Nano Lett. 10(9), 3740–3746 (2010).
[Crossref] [PubMed]

Lee, D. S.

Li, H.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z. X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4(4), 281–286 (2012).
[Crossref] [PubMed]

Lidig, C.

M. Feneberg, J. Nixdorf, C. Lidig, R. Goldhahn, Z. Galazka, O. Bierwagen, and J. S. Speck, “Many-electron effects on the dielectric function of cubic In2O3: Effective electron mass, band nonparabolicity, band gap renormalization, and Burstein-Moss shift,” Phys. Rev. B 93(4), 045203 (2016).
[Crossref]

Lin, R.

W. Zheng, R. Lin, Y. Zhu, Z. Zhang, X. Ji, and F. Huang, “Vacuum Ultraviolet Photodetection in Two-Dimensional Oxides,” ACS Appl. Mater. Interfaces 10(24), 20696–20702 (2018).
[Crossref] [PubMed]

W. Zheng, R. Lin, J. Ran, Z. Zhang, X. Ji, and F. Huang, “Vacuum-Ultraviolet Photovoltaic Detector,” ACS Nano 12(1), 425–431 (2018).
[Crossref] [PubMed]

Liu, Z.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z. X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4(4), 281–286 (2012).
[Crossref] [PubMed]

Logan, J. M.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Ma, X.

Y. Zhuo, Z. Chen, W. Tu, X. Ma, and G. Wang, “Structural, electrical and optical properties of indium tin oxide thin film grown by metal organic chemical vapor deposition with tetramethyltin-precursor,” Jpn. J. Appl. Phys. 57(1S), 01AE03 (2018).
[Crossref]

Z. Chen, Y. Zhuo, W. Tu, X. Ma, Y. Pei, C. Wang, and G. Wang, “Highly ultraviolet transparent textured indium tin oxide thin films and the application in light emitting diodes,” Appl. Phys. Lett. 110(24), 242101 (2017).
[Crossref]

Macco, B.

B. Macco, H. C. M. Knoops, and W. M. M. Kessels, “Electron scattering and doping mechanisms in solid-phase-crystallized In2O3:H prepared by atomic layer deposition,” ACS Appl. Mater. Interfaces 7(30), 16723–16729 (2015).
[Crossref] [PubMed]

Maksimenko, S.

K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, T. Kaplas, and Y. Svirko, “Enhanced microwave shielding effectiveness of ultrathin pyrolytic carbon films,” Appl. Phys. Lett. 103(7), 073117 (2013).
[Crossref]

Marus, M.

Matthews, M.

Mergel, D.

D. Mergel and Z. Qiao, “Dielectric modelling of optical spectra of thin In2O3:Sn films,” J. Phys. D Appl. Phys. 35(8), 794–801 (2002).
[Crossref]

Mizuseki, H.

T. M. Inerbaev, R. Sahara, H. Mizuseki, Y. Kawazoe, and T. Nakamura, “Reducible and non-reducible defect clusters in tin-doped indium oxide,” Solid State Commun. 150(1-2), 18–21 (2010).
[Crossref]

Müllen, K.

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[Crossref] [PubMed]

Nakamura, T.

T. M. Inerbaev, R. Sahara, H. Mizuseki, Y. Kawazoe, and T. Nakamura, “Reducible and non-reducible defect clusters in tin-doped indium oxide,” Solid State Commun. 150(1-2), 18–21 (2010).
[Crossref]

Nikolou, M.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Nixdorf, J.

M. Feneberg, J. Nixdorf, C. Lidig, R. Goldhahn, Z. Galazka, O. Bierwagen, and J. S. Speck, “Many-electron effects on the dielectric function of cubic In2O3: Effective electron mass, band nonparabolicity, band gap renormalization, and Burstein-Moss shift,” Phys. Rev. B 93(4), 045203 (2016).
[Crossref]

Oliva, E.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four‐junction GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Overvig, A. C.

Paddubskaya, A.

K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, T. Kaplas, and Y. Svirko, “Enhanced microwave shielding effectiveness of ultrathin pyrolytic carbon films,” Appl. Phys. Lett. 103(7), 073117 (2013).
[Crossref]

Pei, Y.

Z. Chen, Y. Zhuo, W. Tu, X. Ma, Y. Pei, C. Wang, and G. Wang, “Highly ultraviolet transparent textured indium tin oxide thin films and the application in light emitting diodes,” Appl. Phys. Lett. 110(24), 242101 (2017).
[Crossref]

Z. Chen, Y. Zhuo, R. Hu, W. Tu, Y. Pei, B. Fan, C. Wang, and G. Wang, “Control of morphology and orientation for textured nanocrystalline indium oxide thin film: A growth zone diagram,” Mater. Des. 131, 410–418 (2017).
[Crossref]

Peng, H.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z. X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4(4), 281–286 (2012).
[Crossref] [PubMed]

Piccin, M.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four‐junction GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Podraza, N. J.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[Crossref] [PubMed]

Preissler, N.

N. Preissler, O. Bierwagen, A. T. Ramu, and J. S. Speck, “Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films,” Phys. Rev. B 88(8), 4049–4057 (2013).
[Crossref]

Qiao, Z.

D. Mergel and Z. Qiao, “Dielectric modelling of optical spectra of thin In2O3:Sn films,” J. Phys. D Appl. Phys. 35(8), 794–801 (2002).
[Crossref]

Rabe, K. M.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[Crossref] [PubMed]

Ramsey, P.

Ramu, A. T.

N. Preissler, O. Bierwagen, A. T. Ramu, and J. S. Speck, “Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films,” Phys. Rev. B 88(8), 4049–4057 (2013).
[Crossref]

Ran, J.

W. Zheng, R. Lin, J. Ran, Z. Zhang, X. Ji, and F. Huang, “Vacuum-Ultraviolet Photovoltaic Detector,” ACS Nano 12(1), 425–431 (2018).
[Crossref] [PubMed]

Reese, M. O.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. V. D. Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

Reggiani, L.

C. Jacoboni and L. Reggiani, “The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials,” Rev. Mod. Phys. 55(3), 645–705 (1983).
[Crossref]

Reiss, P.

L. Barraud, Z. C. Holman, N. Badel, P. Reiss, A. Descoeudres, C. Battaglia, S. D. Wolf, and C. Ballif, “Hydrogen-doped indium oxide/indium tin oxide bilayers for high-efficiency silicon heterojunction solar cells,” Sol. Energy Mater. Sol. Cells 115, 151–156 (2013).
[Crossref]

Reynolds, J. R.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Rinzler, A. G.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Rode, D. L.

D. L. Rode, “Electron mobility in II-VI semiconductors,” Phys. Rev. B 2(10), 4036–4044 (1970).
[Crossref]

Rogalski, A.

A. Rogalski, “Recent progress in infrared detector technologies,” Infrared Phys. Technol. 54(3), 136–154 (2011).
[Crossref]

Sahara, R.

T. M. Inerbaev, R. Sahara, H. Mizuseki, Y. Kawazoe, and T. Nakamura, “Reducible and non-reducible defect clusters in tin-doped indium oxide,” Solid State Commun. 150(1-2), 18–21 (2010).
[Crossref]

Salvetat, T.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four‐junction GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Sarto, M. S.

D. A. Lampasi, A. Tamburrano, S. Bellini, M. Tului, A. Albolino, and M. S. Sarto, “Effect of Grain Size and Distribution on the Shielding Effectiveness of Transparent Conducting Thin Films,” IEEE Trans. Electromagn. C. 56(2), 352–359 (2014).
[Crossref]

Schachtner, M.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four‐junction GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Schwarzburg, K.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four‐junction GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Seo, D. J.

Seo, T. H.

Shen, K. C.

Shen, Z. X.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z. X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4(4), 281–286 (2012).
[Crossref] [PubMed]

Shim, J. P.

Shrestha, S.

Siefer, G.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four‐junction GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Signamarcheix, T.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four‐junction GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Sippel, J.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Smirnov, A.

Speck, J. S.

M. Feneberg, J. Nixdorf, C. Lidig, R. Goldhahn, Z. Galazka, O. Bierwagen, and J. S. Speck, “Many-electron effects on the dielectric function of cubic In2O3: Effective electron mass, band nonparabolicity, band gap renormalization, and Burstein-Moss shift,” Phys. Rev. B 93(4), 045203 (2016).
[Crossref]

N. Preissler, O. Bierwagen, A. T. Ramu, and J. S. Speck, “Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films,” Phys. Rev. B 88(8), 4049–4057 (2013).
[Crossref]

Suh, E. K.

Sun, X.

Svirko, Y.

K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, T. Kaplas, and Y. Svirko, “Enhanced microwave shielding effectiveness of ultrathin pyrolytic carbon films,” Appl. Phys. Lett. 103(7), 073117 (2013).
[Crossref]

Tamburrano, A.

D. A. Lampasi, A. Tamburrano, S. Bellini, M. Tului, A. Albolino, and M. S. Sarto, “Effect of Grain Size and Distribution on the Shielding Effectiveness of Transparent Conducting Thin Films,” IEEE Trans. Electromagn. C. 56(2), 352–359 (2014).
[Crossref]

Tanner, D. B.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Tauzin, A.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four‐junction GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Tibbits, T. N. D.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four‐junction GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Tu, W.

Y. Zhuo, Z. Chen, W. Tu, X. Ma, and G. Wang, “Structural, electrical and optical properties of indium tin oxide thin film grown by metal organic chemical vapor deposition with tetramethyltin-precursor,” Jpn. J. Appl. Phys. 57(1S), 01AE03 (2018).
[Crossref]

Z. Chen, Y. Zhuo, R. Hu, W. Tu, Y. Pei, B. Fan, C. Wang, and G. Wang, “Control of morphology and orientation for textured nanocrystalline indium oxide thin film: A growth zone diagram,” Mater. Des. 131, 410–418 (2017).
[Crossref]

Z. Chen, Y. Zhuo, W. Tu, X. Ma, Y. Pei, C. Wang, and G. Wang, “Highly ultraviolet transparent textured indium tin oxide thin films and the application in light emitting diodes,” Appl. Phys. Lett. 110(24), 242101 (2017).
[Crossref]

Tului, M.

D. A. Lampasi, A. Tamburrano, S. Bellini, M. Tului, A. Albolino, and M. S. Sarto, “Effect of Grain Size and Distribution on the Shielding Effectiveness of Transparent Conducting Thin Films,” IEEE Trans. Electromagn. C. 56(2), 352–359 (2014).
[Crossref]

Voronovich, S.

K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, T. Kaplas, and Y. Svirko, “Enhanced microwave shielding effectiveness of ultrathin pyrolytic carbon films,” Appl. Phys. Lett. 103(7), 073117 (2013).
[Crossref]

Walsh, A.

K. H. Zhang, A. Walsh, C. R. Catlow, V. K. Lazarov, and R. G. Egdell, “Surface energies control the self-organization of oriented In2O3 nanostructures on cubic zirconia,” Nano Lett. 10(9), 3740–3746 (2010).
[Crossref] [PubMed]

Wang, C.

Z. Chen, Y. Zhuo, R. Hu, W. Tu, Y. Pei, B. Fan, C. Wang, and G. Wang, “Control of morphology and orientation for textured nanocrystalline indium oxide thin film: A growth zone diagram,” Mater. Des. 131, 410–418 (2017).
[Crossref]

Z. Chen, Y. Zhuo, W. Tu, X. Ma, Y. Pei, C. Wang, and G. Wang, “Highly ultraviolet transparent textured indium tin oxide thin films and the application in light emitting diodes,” Appl. Phys. Lett. 110(24), 242101 (2017).
[Crossref]

Wang, G.

Y. Zhuo, Z. Chen, W. Tu, X. Ma, and G. Wang, “Structural, electrical and optical properties of indium tin oxide thin film grown by metal organic chemical vapor deposition with tetramethyltin-precursor,” Jpn. J. Appl. Phys. 57(1S), 01AE03 (2018).
[Crossref]

Z. Chen, Y. Zhuo, R. Hu, W. Tu, Y. Pei, B. Fan, C. Wang, and G. Wang, “Control of morphology and orientation for textured nanocrystalline indium oxide thin film: A growth zone diagram,” Mater. Des. 131, 410–418 (2017).
[Crossref]

Z. Chen, Y. Zhuo, W. Tu, X. Ma, Y. Pei, C. Wang, and G. Wang, “Highly ultraviolet transparent textured indium tin oxide thin films and the application in light emitting diodes,” Appl. Phys. Lett. 110(24), 242101 (2017).
[Crossref]

Wang, H.

Wang, R.

Wang, X.

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[Crossref] [PubMed]

Wang, Y.

Watabe, Y.

E. Kobayashi, Y. Watabe, and T. Yamamoto, “High-mobility transparent conductive thin films of cerium-doped hydrogenated indium oxide,” Appl. Phys. Express 8(1), 015505 (2015).
[Crossref]

Wekkeli, A.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four‐junction GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Wolf, S. D.

L. Barraud, Z. C. Holman, N. Badel, P. Reiss, A. Descoeudres, C. Battaglia, S. D. Wolf, and C. Ballif, “Hydrogen-doped indium oxide/indium tin oxide bilayers for high-efficiency silicon heterojunction solar cells,” Sol. Energy Mater. Sol. Cells 115, 151–156 (2013).
[Crossref]

Wu, D.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z. X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4(4), 281–286 (2012).
[Crossref] [PubMed]

Wu, Z.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Wuu, D. S.

Yamamoto, T.

E. Kobayashi, Y. Watabe, and T. Yamamoto, “High-mobility transparent conductive thin films of cerium-doped hydrogenated indium oxide,” Appl. Phys. Express 8(1), 015505 (2015).
[Crossref]

Yin, C. Y.

Yoo, J. H.

Yu, N.

Zhang, H. T.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[Crossref] [PubMed]

Zhang, K. H.

K. H. Zhang, A. Walsh, C. R. Catlow, V. K. Lazarov, and R. G. Egdell, “Surface energies control the self-organization of oriented In2O3 nanostructures on cubic zirconia,” Nano Lett. 10(9), 3740–3746 (2010).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[Crossref] [PubMed]

Zhang, R.

Zhang, Z.

W. Zheng, R. Lin, J. Ran, Z. Zhang, X. Ji, and F. Huang, “Vacuum-Ultraviolet Photovoltaic Detector,” ACS Nano 12(1), 425–431 (2018).
[Crossref] [PubMed]

W. Zheng, R. Lin, Y. Zhu, Z. Zhang, X. Ji, and F. Huang, “Vacuum Ultraviolet Photodetection in Two-Dimensional Oxides,” ACS Appl. Mater. Interfaces 10(24), 20696–20702 (2018).
[Crossref] [PubMed]

Zhao, H.

H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband Electroabsorption Modulators Design Based on Epsilon-Near-Zero Indium Tin Oxide,” IEEE J. Sel. Top. Quant. 21, 3300207 (2015).

Zhao, W.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[Crossref] [PubMed]

Zheng, W.

W. Zheng, R. Lin, Y. Zhu, Z. Zhang, X. Ji, and F. Huang, “Vacuum Ultraviolet Photodetection in Two-Dimensional Oxides,” ACS Appl. Mater. Interfaces 10(24), 20696–20702 (2018).
[Crossref] [PubMed]

W. Zheng, R. Lin, J. Ran, Z. Zhang, X. Ji, and F. Huang, “Vacuum-Ultraviolet Photovoltaic Detector,” ACS Nano 12(1), 425–431 (2018).
[Crossref] [PubMed]

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z. X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4(4), 281–286 (2012).
[Crossref] [PubMed]

Zheng, Y.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[Crossref] [PubMed]

Zhi, L.

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[Crossref] [PubMed]

Zhou, Y.

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[Crossref] [PubMed]

Zhu, Y.

W. Zheng, R. Lin, Y. Zhu, Z. Zhang, X. Ji, and F. Huang, “Vacuum Ultraviolet Photodetection in Two-Dimensional Oxides,” ACS Appl. Mater. Interfaces 10(24), 20696–20702 (2018).
[Crossref] [PubMed]

Zhuo, Y.

Y. Zhuo, Z. Chen, W. Tu, X. Ma, and G. Wang, “Structural, electrical and optical properties of indium tin oxide thin film grown by metal organic chemical vapor deposition with tetramethyltin-precursor,” Jpn. J. Appl. Phys. 57(1S), 01AE03 (2018).
[Crossref]

Z. Chen, Y. Zhuo, R. Hu, W. Tu, Y. Pei, B. Fan, C. Wang, and G. Wang, “Control of morphology and orientation for textured nanocrystalline indium oxide thin film: A growth zone diagram,” Mater. Des. 131, 410–418 (2017).
[Crossref]

Z. Chen, Y. Zhuo, W. Tu, X. Ma, Y. Pei, C. Wang, and G. Wang, “Highly ultraviolet transparent textured indium tin oxide thin films and the application in light emitting diodes,” Appl. Phys. Lett. 110(24), 242101 (2017).
[Crossref]

ACS Appl. Mater. Interfaces (2)

W. Zheng, R. Lin, Y. Zhu, Z. Zhang, X. Ji, and F. Huang, “Vacuum Ultraviolet Photodetection in Two-Dimensional Oxides,” ACS Appl. Mater. Interfaces 10(24), 20696–20702 (2018).
[Crossref] [PubMed]

B. Macco, H. C. M. Knoops, and W. M. M. Kessels, “Electron scattering and doping mechanisms in solid-phase-crystallized In2O3:H prepared by atomic layer deposition,” ACS Appl. Mater. Interfaces 7(30), 16723–16729 (2015).
[Crossref] [PubMed]

ACS Nano (1)

W. Zheng, R. Lin, J. Ran, Z. Zhang, X. Ji, and F. Huang, “Vacuum-Ultraviolet Photovoltaic Detector,” ACS Nano 12(1), 425–431 (2018).
[Crossref] [PubMed]

Adv. Energy Mater. (1)

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. V. D. Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

Appl. Phys. Express (1)

E. Kobayashi, Y. Watabe, and T. Yamamoto, “High-mobility transparent conductive thin films of cerium-doped hydrogenated indium oxide,” Appl. Phys. Express 8(1), 015505 (2015).
[Crossref]

Appl. Phys. Lett. (3)

Z. Chen, Y. Zhuo, W. Tu, X. Ma, Y. Pei, C. Wang, and G. Wang, “Highly ultraviolet transparent textured indium tin oxide thin films and the application in light emitting diodes,” Appl. Phys. Lett. 110(24), 242101 (2017).
[Crossref]

K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, T. Kaplas, and Y. Svirko, “Enhanced microwave shielding effectiveness of ultrathin pyrolytic carbon films,” Appl. Phys. Lett. 103(7), 073117 (2013).
[Crossref]

L. Hu, D. S. Hecht, and G. Gruner, “Infrared transparent carbon nanotube thin films,” Appl. Phys. Lett. 94(8), 081103 (2009).
[Crossref]

Appl. Surf. Sci. (1)

K. C. Kim, B. Kwon, H. J. Kim, S. H. Baek, D. B. Hyun, S. K. Kim, and J. S. Kim, “Sn doping in thermoelectric Bi2Te3 films by metal-organic chemical vapor deposition,” Appl. Surf. Sci. 353, 232–237 (2015).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband Electroabsorption Modulators Design Based on Epsilon-Near-Zero Indium Tin Oxide,” IEEE J. Sel. Top. Quant. 21, 3300207 (2015).

IEEE Trans. Electromagn. C. (1)

D. A. Lampasi, A. Tamburrano, S. Bellini, M. Tului, A. Albolino, and M. S. Sarto, “Effect of Grain Size and Distribution on the Shielding Effectiveness of Transparent Conducting Thin Films,” IEEE Trans. Electromagn. C. 56(2), 352–359 (2014).
[Crossref]

Infrared Phys. Technol. (1)

A. Rogalski, “Recent progress in infrared detector technologies,” Infrared Phys. Technol. 54(3), 136–154 (2011).
[Crossref]

J. Appl. Phys. (1)

M. Goano, E. Bellotti, E. Ghillino, G. Ghione, and K. F. Brennan, “Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part I. Binary compounds GaN, AlN, and InN,” J. Appl. Phys. 88(11), 6467–6475 (2000).
[Crossref]

J. Phys. D Appl. Phys. (1)

D. Mergel and Z. Qiao, “Dielectric modelling of optical spectra of thin In2O3:Sn films,” J. Phys. D Appl. Phys. 35(8), 794–801 (2002).
[Crossref]

Jpn. J. Appl. Phys. (2)

Y. Zhuo, Z. Chen, W. Tu, X. Ma, and G. Wang, “Structural, electrical and optical properties of indium tin oxide thin film grown by metal organic chemical vapor deposition with tetramethyltin-precursor,” Jpn. J. Appl. Phys. 57(1S), 01AE03 (2018).
[Crossref]

T. Koida, H. Fujiwara, and M. Kondo, “Hydrogen-doped In2O3 as high-mobility transparent conductive oxide,” Jpn. J. Appl. Phys. 46(28), L685–L687 (2007).
[Crossref]

Mater. Des. (1)

Z. Chen, Y. Zhuo, R. Hu, W. Tu, Y. Pei, B. Fan, C. Wang, and G. Wang, “Control of morphology and orientation for textured nanocrystalline indium oxide thin film: A growth zone diagram,” Mater. Des. 131, 410–418 (2017).
[Crossref]

Nano Lett. (2)

K. H. Zhang, A. Walsh, C. R. Catlow, V. K. Lazarov, and R. G. Egdell, “Surface energies control the self-organization of oriented In2O3 nanostructures on cubic zirconia,” Nano Lett. 10(9), 3740–3746 (2010).
[Crossref] [PubMed]

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[Crossref] [PubMed]

Nat. Chem. (1)

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z. X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4(4), 281–286 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H. T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. H. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors,” Nat. Mater. 15(2), 204–210 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B (3)

M. Feneberg, J. Nixdorf, C. Lidig, R. Goldhahn, Z. Galazka, O. Bierwagen, and J. S. Speck, “Many-electron effects on the dielectric function of cubic In2O3: Effective electron mass, band nonparabolicity, band gap renormalization, and Burstein-Moss shift,” Phys. Rev. B 93(4), 045203 (2016).
[Crossref]

N. Preissler, O. Bierwagen, A. T. Ramu, and J. S. Speck, “Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films,” Phys. Rev. B 88(8), 4049–4057 (2013).
[Crossref]

D. L. Rode, “Electron mobility in II-VI semiconductors,” Phys. Rev. B 2(10), 4036–4044 (1970).
[Crossref]

Prog. Photovolt. Res. Appl. (1)

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four‐junction GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Rev. Mod. Phys. (1)

C. Jacoboni and L. Reggiani, “The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials,” Rev. Mod. Phys. 55(3), 645–705 (1983).
[Crossref]

Science (2)

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (2)

T. Koida, H. Fujiwara, and M. Kondo, “High-mobility hydrogen-doped In2O3 transparent conductive oxide for a-Si:H/c-Si heterojunction solar cells,” Sol. Energy Mater. Sol. Cells 93(6-7), 851–854 (2009).
[Crossref]

L. Barraud, Z. C. Holman, N. Badel, P. Reiss, A. Descoeudres, C. Battaglia, S. D. Wolf, and C. Ballif, “Hydrogen-doped indium oxide/indium tin oxide bilayers for high-efficiency silicon heterojunction solar cells,” Sol. Energy Mater. Sol. Cells 115, 151–156 (2013).
[Crossref]

Solid State Commun. (1)

T. M. Inerbaev, R. Sahara, H. Mizuseki, Y. Kawazoe, and T. Nakamura, “Reducible and non-reducible defect clusters in tin-doped indium oxide,” Solid State Commun. 150(1-2), 18–21 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the optical path.
Fig. 2
Fig. 2 (a) Calculation of transmittance spectrum for 100-nm-thick ITO films with n = 1 × 1019 cm−3, 1 × 1020 cm−3 and 1 × 1021 cm−3. The theoretical drift mobility according to Eq. (1) is 147 cm2/Vs, 118 cm2/Vs and 62 cm2/Vs, respectively. (b) Calculation of transmittance spectrum for ITO films with n = 1 × 1020 cm−3and μ = 118 cm2/Vs. The thicknesses are 100nm, 300nm and 500nm, respectively. (c) Calculation of transmittance spectrums for 100-nm-thick ITO films with n = 2.3 × 1020 cm−3. The electron mobility is artificially set to be 101 cm2/Vs, 53 cm2/Vs and 49 cm2/Vs. (d) The dependence of screened plasma wavelength λsp, wavelength of epsilon-near-zero λENZ and wavelength with transmittance of 90% λ90% on electron density. λsp is calculated according to Eq. (9) and λENZ is calculated by letting ε1(ω) = 0 in Eq. (4). λ90% is determined by the measured values for samples grown with buffer layer. The lines are guide to eye of the power law fitting.
Fig. 3
Fig. 3 SEM morphology of the ITO thin films grown with (a) (b) Sn = 18 sccm, (c) (d) Sn = 60 sccm and (e) (f) Sn = 240 sccm. The samples in (a), (c) and (e) are grown without buffer layers. The samples in (b), (d) and (f) are grown with buffer layers. (g) The XRD 2θ-scan for ITO thin films. Different lines from up to bottom correspond to samples shown in (a)~(f), respectively. (h) The intensity ratio between (222) and (400) diffraction peaks for the samples shown in (a)~(f).
Fig. 4
Fig. 4 (a) Resistivity for samples grown with different Sn flow rates. (b) Electron density and mobility for samples shown in (a). The solid line in (b) is the calculated mobility. The inset offers more details of the calculated mobility.
Fig. 5
Fig. 5 UV-visible-NIR transmittance spectrum for ITO thin films grown (a) without and (b) with buffer layer. The insets show that the absorption edge shifts to shorter wavelength as the Sn flow rate increases. (c) Comparison of experiment and calculation for the NIR transmittance of ITO thin films. The sample with high (low) electron density is grown with Sn flow rate of 60 (18) sccm. The electron density and mobility used for calculation are determined by Hall effect measurements. The effective mass used for calculation is 0.43me (0.41me) for the sample with electron density of 5.1 × 10−20 cm−3 (4.3 × 10−20 cm−3) considering the non-parabolic conduction band.
Fig. 6
Fig. 6 Relationship between the resistivity and NIR (780~2500 nm) averaged transmittance. Different lines represent the theoretical values for different n-type single-crystalline semiconductor thin films with a thickness of 100 nm. The conduction band parameters used for calculation are: m0 = 0.23me and C = 0.29 eV−1 for wurtzite GaN [37], m0 = 0.20me and C = 0.27 eV−1 for zinc-blende ZnS [38], m0 = 0.13me and C = 0.60 eV−1 for wurtzite CdSe [38].
Fig. 7
Fig. 7 Haacke’s FOM for high mobility ITOs grown with a buffer layer at different wavelengths. Solid lines are guides to eye. As a comparison, TCMs like ITO and IHO grown by magnetron sputtering [17,21], Bi2Se3 nanosheet network [7], SWNT network [10,11], correlated metal SrVO3 [9], and Graphene network [13] are also examined at the wavelength of 2.5 μm. Values of transmittance are collected after extracting the reflection of substrates.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

μ = μ ( n ) =( μ a c 1 + μ p o 1 + μ i i ( n ) -1 ) -1 .
R s h e e t = 1 d n e μ ( n ) = R ( n , d ) .
ε ( ω ) = ε L o r e n t z ( ω ) + χ D r u d e ( ω ) ε + n e 2 m ε 0 1 ( ω 2 i ω γ )
ε ( ω ) = ε 1 ( ω ) + i ε 2 ( ω ) ε 1 ( ω ) = ε ω p 2 ( ω 2 + γ 2 ) and i ε 2 ( ω ) = i γ ω ω p 2 ( ω 2 + γ 2 )
2 k 2 2 m 0 = E + C E 2 and m = m ( E ) = ( 1 + 2 C E ) m 0
K ( ω ) = [ n ( ω ) + i n ˜ ( ω ) ] K 0 n ( ω ) = ( 1 2 { ε 1 ( ω ) + [ ε 1 ( ω ) 2 + ε 2 ( ω ) 2 ] 1 / 2 } ) 1 / 2 n ˜ ( ω ) = ( 1 2 { ε 1 ( ω ) + [ ε 1 ( ω ) 2 + ε 2 ( ω ) 2 ] 1 / 2 } ) 1 / 2
E 0 + + E 0 = E 1 + + E 1 K 0 ( E 0 + E 0 ) = K 1 ( E 1 + E 1 ) E 1 + exp ( i K 1 d 1 ) + E 1 exp ( i K 1 d 1 ) = E 2 + K 1 [ E 1 + exp ( i K 1 d 1 ) E 1 exp ( i K 1 d 1 ) ] = K 2 E 2 +
T = | E 3 + E 0 + | 2 = ε s a p | E 2 + E 0 + | 2 T s a p .
ω s p = 2 π c λ s p = ( n e 2 m ε s ε 0 ) 0.5

Metrics