Abstract

We present a new method to measure the velocity of sound in pure water and seawater using the Raman-Nath diffraction caused by acousto-optic effect between the optical frequency comb and the ultrasonic pulse. In the Mach-Zehnder interferometry system we established, the measurement and reference arms are tagged with sharp negative pulses caused by the pulsed ultrasound passing through them. The difference in optical path between the two parallel beams is twice the flight distance of the ultrasonic waves. The span between the two negative pulses reflects the time interval. At the same time, the distance between the two arms can be measured precisely using the femtosecond laser interferometry. Consequently, the time interval and the distance can be used to measure the sound velocity. The experimental results show that, the uncertainty of the sound speed measurement can achieve 0.03m/s@1482m/s in pure water and 0.029m/s@1527m/s in seawater, respectively, compared with the commercial sound velocity profiler (SVP). More importantly, benefiting from the faster and cleaner response of the acousto-optic effect than the piezoelectric effect which is widely adopted in direct sound velocity measurement method, our method provides a new idea for the metrology of sound velocity in seawater.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Underwater distance measurement using frequency comb laser

Xiaoyu Zhai, Zhaopeng Meng, Haoyun Zhang, Xinyang Xu, Zhiwen Qian, Bin Xue, and Hanzhong Wu
Opt. Express 27(5) 6757-6769 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. E. Dosso and J. Dettmer, “Studying the sea with sound,” J. Acoust. Soc. Am. 133(5), 3223 (2013).
    [Crossref]
  2. Z. Li, J. Zhu, T. Li, and B. Zhang, “An absolute instrument for determination of the speed of sound in water,” Rev. Sci. Instrum. 87(5), 055107 (2016).
    [Crossref] [PubMed]
  3. C. von Rohden, F. Fehres, and S. Rudtsch, “Capability of pure water calibrated time-of-flight sensors for the determination of speed of sound in seawater,” J. Acoust. Soc. Am. 138(2), 651–662 (2015).
    [Crossref] [PubMed]
  4. K. Meier and S. Kabelac, “Speed of sound instrument for fluids with pressures up to 100 MPa,” Rev. Sci. Instrum. 77(12), 1 (2006).
    [Crossref]
  5. C. W. Lin and J. P. M. Trusler, “The speed of sound and derived thermodynamic properties of pure water at temperatures between (253 and 473) K and at pressures up to 400 MPa,” J. Chem. Phys. 136(9), 094511 (2012).
    [Crossref] [PubMed]
  6. K. Siddiqui and M. Nabavi, “Measurement of the acoustic velocity characteristics in a standing-wave tube using out of phase PIV,” Flow Meas. Instrum. 19(6), 364–369 (2008).
    [Crossref]
  7. J. Chen, S. Zhao, Z. Huang, and C. Qiao, “Acoustic velocity measurement in seawater based on phase difference of signal,” in Proceedings of IEEE Conference on Electronic Measurement & Instruments (IEEE, 2011), pp. 181–184.
    [Crossref]
  8. W. D. Wilson, “Speed of Sound in Distilled Water as a Function of Temperature and Pressure,” J. Acoust. Soc. Am. 31(8), 1067–1072 (1959).
    [Crossref]
  9. W. D. Wilson, “Speed of Sound in Sea Water as a Function of Temperature, Pressure, and Salinity,” J. Acoust. Soc. Am. 32(6), 641–644 (1960).
    [Crossref]
  10. V. A. D. Grosso and C. W. Mader, “Speed of Sound in Pure Water,” J. Acoust. Soc. Am. 52(5B), 1442–1446 (1972).
    [Crossref]
  11. V. A. D. Grosso, “New equation for the speed of sound in natural waters (with comparisons to other equations),” J. Acoust. Soc. Am. 56(4), 1084–1091 (1974).
    [Crossref]
  12. F. J. Millero and T. Kubinski, “Speed of sound in seawater as a function of temperature and salinity at one atmosphere,” J. Acoust. Soc. Am. 57(2), 312–319 (1975).
    [Crossref]
  13. C. Chen and F. J. Millero, “Speed of sound in seawater at high pressures,” J. Acoust. Soc. Am. 62(5), 1129–1135 (1977).
    [Crossref]
  14. J. G. Hirschberg, J. D. Byrne, A. W. Wouters, and G. C. Boynton, “Speed of sound and temperature in the ocean by Brillouin scattering,” Appl. Opt. 23(15), 2624–2628 (1984).
    [Crossref] [PubMed]
  15. B. D. Joelson and G. W. Kattawar, “Multiple scattering effects on the remote sensing of the speed of sound in the ocean by Brillouin scattering,” Appl. Opt. 35(15), 2693–2701 (1996).
    [Crossref] [PubMed]
  16. D. Liu, J. Xu, R. Li, R. Dai, and W. Gong, “Measurements of sound speed in the water by Brillouin scattering using pulsed Nd:YAG laser,” Opt. Commun. 203(3–6), 335–340 (2002).
    [Crossref]
  17. Y. Shibagaki, M. Kawabe, S. Takayanagi, K. Mori, T. Yanagitani, and M. Matsukawa, “Rapid wave velocity measurement by Brillouin scattering using artificially induced phonon,” J. Acoust. Soc. Am. 140(4), 3204 (2016).
    [Crossref]
  18. N. Savage, “Acousto-optic devices,” Nat. Photonics 4(10), 728–729 (2010).
    [Crossref]
  19. Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
    [Crossref]
  20. C. Zhang, H. Wang, Z. Zhang, J. Yuan, L. Shi, Z. Sheng, and X. Zhang, “Non-radio-frequency signal tuned acousto-optic tunable filter,” Opt. Express 26(2), 1049–1054 (2018).
    [Crossref] [PubMed]
  21. G. J. Evans, P. A. Kirkby, K. M. Naga Srinivas Nadella, B. Marin, and R. Angus Silver, “Development and application of a ray-based model of light propagation through a spherical acousto-optic lens,” Opt. Express 23(18), 23493–23510 (2015).
    [Crossref] [PubMed]
  22. S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5(1), 5402 (2014).
    [Crossref] [PubMed]
  23. M. Lejman, G. Vaudel, I. C. Infante, I. Chaban, T. Pezeril, M. Edely, G. F. Nataf, M. Guennou, J. Kreisel, V. E. Gusev, B. Dkhil, and P. Ruello, “Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics,” Nat. Commun. 7, 12345 (2016).
    [Crossref] [PubMed]
  24. Q. Rolland, S. Dupont, J. Gazalet, J. C. Kastelik, Y. Pennec, B. Djafari-Rouhani, and V. Laude, “Simultaneous bandgaps in LiNbO3 phoxonic crystal slab,” Opt. Express 22(13), 16288–16297 (2014).
    [Crossref] [PubMed]
  25. I. E. Psarobas, N. Papanikolaou, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity,” Phys. Rev. B 82(17), 174303 (2010).
    [Crossref]
  26. M. Maldovan and E. L. Thomas, “Simultaneous localization of photons and phonons in two-dimensional periodic structures,” Appl. Phys. Lett. 88(25), 251907 (2006).
    [Crossref]
  27. T. X. Ma, Y. S. Wang, Y. F. Wang, and X. X. Su, “Three-dimensional dielectric phoxonic crystals with network topology,” Opt. Express 21(3), 2727–2732 (2013).
    [Crossref] [PubMed]
  28. C. C. Chiu, W. M. Chen, K. W. Sung, and F. L. Hsiao, “High-efficiency acousto-optic coupling in phoxonic resonator based on silicon fishbone nanobeam cavity,” Opt. Express 25(6), 6076–6091 (2017).
    [Crossref] [PubMed]
  29. J. C. Hsu, T. Y. Lu, and T. R. Lin, “Acousto-optic coupling in phoxonic crystal nanobeam cavities with plasmonic behavior,” Opt. Express 23(20), 25814–25826 (2015).
    [Crossref] [PubMed]
  30. S. G. Resink, E. Hondebrink, and W. Steenbergen, “Towards acousto-optic tissue imaging with nanosecond laser pulses,” Opt. Express 22(3), 3564–3571 (2014).
    [Crossref] [PubMed]
  31. J. B. Laudereau, A. A. Grabar, M. Tanter, J. L. Gennisson, and F. Ramaz, “Ultrafast acousto-optic imaging with ultrasonic plane waves,” Opt. Express 24(4), 3774–3789 (2016).
    [Crossref] [PubMed]
  32. J. C. Hsu, T. Y. Lu, and T. R. Lin, “Acousto-optic coupling in phoxonic crystal nanobeam cavities with plasmonic behavior,” Opt. Express 23(20), 25814–25826 (2015).
    [Crossref] [PubMed]
  33. M. G. Moharam and L. Young, “Criterion for Bragg and Raman-Nath diffraction regimes,” Appl. Opt. 17(11), 1757–1759 (1978).
    [Crossref] [PubMed]
  34. H. Wu, F. Zhang, S. Cao, S. Xing, and X. Qu, “Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser,” Opt. Express 22(9), 10380–10397 (2014).
    [Crossref] [PubMed]
  35. R. Miao, Z. Yang, J. Zhu, and C. Shen, “Visualization of low-frequency liquid surface acoustic waves by means of optical diffraction,” Appl. Phys. Lett. 80(17), 3033–3035 (2002).
    [Crossref]
  36. Y. Miao and S. Wang, “Nonlinear Acoustic-Optical Effect and Extraordinary Diffraction Distribution in Liquid Surface,” Chin. Phys. Lett. 30(12), 124304 (2013).
    [Crossref]
  37. L. He, F. Zhu, Y. Chen, K. Duan, X. Lin, Y. Pan, and J. Tao, “Ultrasonic power measurement system based on acousto-optic interaction,” Rev. Sci. Instrum. 87(5), 054903 (2016).
    [Crossref] [PubMed]
  38. C. Weng and X. Zhang, “Fluctuations of optical phase of diffracted light for Raman–Nath diffraction in acousto–optic effect,” Chin. Phys. B 24(1), 293–297 (2015).
    [Crossref]

2018 (1)

2017 (1)

2016 (6)

M. Lejman, G. Vaudel, I. C. Infante, I. Chaban, T. Pezeril, M. Edely, G. F. Nataf, M. Guennou, J. Kreisel, V. E. Gusev, B. Dkhil, and P. Ruello, “Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics,” Nat. Commun. 7, 12345 (2016).
[Crossref] [PubMed]

J. B. Laudereau, A. A. Grabar, M. Tanter, J. L. Gennisson, and F. Ramaz, “Ultrafast acousto-optic imaging with ultrasonic plane waves,” Opt. Express 24(4), 3774–3789 (2016).
[Crossref] [PubMed]

L. He, F. Zhu, Y. Chen, K. Duan, X. Lin, Y. Pan, and J. Tao, “Ultrasonic power measurement system based on acousto-optic interaction,” Rev. Sci. Instrum. 87(5), 054903 (2016).
[Crossref] [PubMed]

Z. Li, J. Zhu, T. Li, and B. Zhang, “An absolute instrument for determination of the speed of sound in water,” Rev. Sci. Instrum. 87(5), 055107 (2016).
[Crossref] [PubMed]

Y. Shibagaki, M. Kawabe, S. Takayanagi, K. Mori, T. Yanagitani, and M. Matsukawa, “Rapid wave velocity measurement by Brillouin scattering using artificially induced phonon,” J. Acoust. Soc. Am. 140(4), 3204 (2016).
[Crossref]

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
[Crossref]

2015 (5)

2014 (4)

2013 (3)

T. X. Ma, Y. S. Wang, Y. F. Wang, and X. X. Su, “Three-dimensional dielectric phoxonic crystals with network topology,” Opt. Express 21(3), 2727–2732 (2013).
[Crossref] [PubMed]

Y. Miao and S. Wang, “Nonlinear Acoustic-Optical Effect and Extraordinary Diffraction Distribution in Liquid Surface,” Chin. Phys. Lett. 30(12), 124304 (2013).
[Crossref]

S. E. Dosso and J. Dettmer, “Studying the sea with sound,” J. Acoust. Soc. Am. 133(5), 3223 (2013).
[Crossref]

2012 (1)

C. W. Lin and J. P. M. Trusler, “The speed of sound and derived thermodynamic properties of pure water at temperatures between (253 and 473) K and at pressures up to 400 MPa,” J. Chem. Phys. 136(9), 094511 (2012).
[Crossref] [PubMed]

2010 (2)

N. Savage, “Acousto-optic devices,” Nat. Photonics 4(10), 728–729 (2010).
[Crossref]

I. E. Psarobas, N. Papanikolaou, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity,” Phys. Rev. B 82(17), 174303 (2010).
[Crossref]

2008 (1)

K. Siddiqui and M. Nabavi, “Measurement of the acoustic velocity characteristics in a standing-wave tube using out of phase PIV,” Flow Meas. Instrum. 19(6), 364–369 (2008).
[Crossref]

2006 (2)

K. Meier and S. Kabelac, “Speed of sound instrument for fluids with pressures up to 100 MPa,” Rev. Sci. Instrum. 77(12), 1 (2006).
[Crossref]

M. Maldovan and E. L. Thomas, “Simultaneous localization of photons and phonons in two-dimensional periodic structures,” Appl. Phys. Lett. 88(25), 251907 (2006).
[Crossref]

2002 (2)

R. Miao, Z. Yang, J. Zhu, and C. Shen, “Visualization of low-frequency liquid surface acoustic waves by means of optical diffraction,” Appl. Phys. Lett. 80(17), 3033–3035 (2002).
[Crossref]

D. Liu, J. Xu, R. Li, R. Dai, and W. Gong, “Measurements of sound speed in the water by Brillouin scattering using pulsed Nd:YAG laser,” Opt. Commun. 203(3–6), 335–340 (2002).
[Crossref]

1996 (1)

1984 (1)

1978 (1)

1977 (1)

C. Chen and F. J. Millero, “Speed of sound in seawater at high pressures,” J. Acoust. Soc. Am. 62(5), 1129–1135 (1977).
[Crossref]

1975 (1)

F. J. Millero and T. Kubinski, “Speed of sound in seawater as a function of temperature and salinity at one atmosphere,” J. Acoust. Soc. Am. 57(2), 312–319 (1975).
[Crossref]

1974 (1)

V. A. D. Grosso, “New equation for the speed of sound in natural waters (with comparisons to other equations),” J. Acoust. Soc. Am. 56(4), 1084–1091 (1974).
[Crossref]

1972 (1)

V. A. D. Grosso and C. W. Mader, “Speed of Sound in Pure Water,” J. Acoust. Soc. Am. 52(5B), 1442–1446 (1972).
[Crossref]

1960 (1)

W. D. Wilson, “Speed of Sound in Sea Water as a Function of Temperature, Pressure, and Salinity,” J. Acoust. Soc. Am. 32(6), 641–644 (1960).
[Crossref]

1959 (1)

W. D. Wilson, “Speed of Sound in Distilled Water as a Function of Temperature and Pressure,” J. Acoust. Soc. Am. 31(8), 1067–1072 (1959).
[Crossref]

Angus Silver, R.

Bonello, B.

I. E. Psarobas, N. Papanikolaou, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity,” Phys. Rev. B 82(17), 174303 (2010).
[Crossref]

Boynton, G. C.

Byrne, J. D.

Cao, S.

Chaban, I.

M. Lejman, G. Vaudel, I. C. Infante, I. Chaban, T. Pezeril, M. Edely, G. F. Nataf, M. Guennou, J. Kreisel, V. E. Gusev, B. Dkhil, and P. Ruello, “Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics,” Nat. Commun. 7, 12345 (2016).
[Crossref] [PubMed]

Chen, C.

C. Chen and F. J. Millero, “Speed of sound in seawater at high pressures,” J. Acoust. Soc. Am. 62(5), 1129–1135 (1977).
[Crossref]

Chen, J.

J. Chen, S. Zhao, Z. Huang, and C. Qiao, “Acoustic velocity measurement in seawater based on phase difference of signal,” in Proceedings of IEEE Conference on Electronic Measurement & Instruments (IEEE, 2011), pp. 181–184.
[Crossref]

Chen, W. M.

Chen, Y.

L. He, F. Zhu, Y. Chen, K. Duan, X. Lin, Y. Pan, and J. Tao, “Ultrasonic power measurement system based on acousto-optic interaction,” Rev. Sci. Instrum. 87(5), 054903 (2016).
[Crossref] [PubMed]

Chiu, C. C.

Dai, R.

D. Liu, J. Xu, R. Li, R. Dai, and W. Gong, “Measurements of sound speed in the water by Brillouin scattering using pulsed Nd:YAG laser,” Opt. Commun. 203(3–6), 335–340 (2002).
[Crossref]

Dettmer, J.

S. E. Dosso and J. Dettmer, “Studying the sea with sound,” J. Acoust. Soc. Am. 133(5), 3223 (2013).
[Crossref]

Djafari-Rouhani, B.

Q. Rolland, S. Dupont, J. Gazalet, J. C. Kastelik, Y. Pennec, B. Djafari-Rouhani, and V. Laude, “Simultaneous bandgaps in LiNbO3 phoxonic crystal slab,” Opt. Express 22(13), 16288–16297 (2014).
[Crossref] [PubMed]

I. E. Psarobas, N. Papanikolaou, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity,” Phys. Rev. B 82(17), 174303 (2010).
[Crossref]

Dkhil, B.

M. Lejman, G. Vaudel, I. C. Infante, I. Chaban, T. Pezeril, M. Edely, G. F. Nataf, M. Guennou, J. Kreisel, V. E. Gusev, B. Dkhil, and P. Ruello, “Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics,” Nat. Commun. 7, 12345 (2016).
[Crossref] [PubMed]

Dosso, S. E.

S. E. Dosso and J. Dettmer, “Studying the sea with sound,” J. Acoust. Soc. Am. 133(5), 3223 (2013).
[Crossref]

Duan, K.

L. He, F. Zhu, Y. Chen, K. Duan, X. Lin, Y. Pan, and J. Tao, “Ultrasonic power measurement system based on acousto-optic interaction,” Rev. Sci. Instrum. 87(5), 054903 (2016).
[Crossref] [PubMed]

Dupont, S.

Edely, M.

M. Lejman, G. Vaudel, I. C. Infante, I. Chaban, T. Pezeril, M. Edely, G. F. Nataf, M. Guennou, J. Kreisel, V. E. Gusev, B. Dkhil, and P. Ruello, “Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics,” Nat. Commun. 7, 12345 (2016).
[Crossref] [PubMed]

Evans, G. J.

Fehres, F.

C. von Rohden, F. Fehres, and S. Rudtsch, “Capability of pure water calibrated time-of-flight sensors for the determination of speed of sound in seawater,” J. Acoust. Soc. Am. 138(2), 651–662 (2015).
[Crossref] [PubMed]

Gazalet, J.

Gennisson, J. L.

Gong, W.

D. Liu, J. Xu, R. Li, R. Dai, and W. Gong, “Measurements of sound speed in the water by Brillouin scattering using pulsed Nd:YAG laser,” Opt. Commun. 203(3–6), 335–340 (2002).
[Crossref]

Grabar, A. A.

Grosso, V. A. D.

V. A. D. Grosso, “New equation for the speed of sound in natural waters (with comparisons to other equations),” J. Acoust. Soc. Am. 56(4), 1084–1091 (1974).
[Crossref]

V. A. D. Grosso and C. W. Mader, “Speed of Sound in Pure Water,” J. Acoust. Soc. Am. 52(5B), 1442–1446 (1972).
[Crossref]

Guennou, M.

M. Lejman, G. Vaudel, I. C. Infante, I. Chaban, T. Pezeril, M. Edely, G. F. Nataf, M. Guennou, J. Kreisel, V. E. Gusev, B. Dkhil, and P. Ruello, “Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics,” Nat. Commun. 7, 12345 (2016).
[Crossref] [PubMed]

Gusev, V. E.

M. Lejman, G. Vaudel, I. C. Infante, I. Chaban, T. Pezeril, M. Edely, G. F. Nataf, M. Guennou, J. Kreisel, V. E. Gusev, B. Dkhil, and P. Ruello, “Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics,” Nat. Commun. 7, 12345 (2016).
[Crossref] [PubMed]

He, L.

L. He, F. Zhu, Y. Chen, K. Duan, X. Lin, Y. Pan, and J. Tao, “Ultrasonic power measurement system based on acousto-optic interaction,” Rev. Sci. Instrum. 87(5), 054903 (2016).
[Crossref] [PubMed]

Hirschberg, J. G.

Hondebrink, E.

Hsiao, F. L.

Hsu, J. C.

Huang, Z.

J. Chen, S. Zhao, Z. Huang, and C. Qiao, “Acoustic velocity measurement in seawater based on phase difference of signal,” in Proceedings of IEEE Conference on Electronic Measurement & Instruments (IEEE, 2011), pp. 181–184.
[Crossref]

Infante, I. C.

M. Lejman, G. Vaudel, I. C. Infante, I. Chaban, T. Pezeril, M. Edely, G. F. Nataf, M. Guennou, J. Kreisel, V. E. Gusev, B. Dkhil, and P. Ruello, “Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics,” Nat. Commun. 7, 12345 (2016).
[Crossref] [PubMed]

Joelson, B. D.

Kabelac, S.

K. Meier and S. Kabelac, “Speed of sound instrument for fluids with pressures up to 100 MPa,” Rev. Sci. Instrum. 77(12), 1 (2006).
[Crossref]

Kastelik, J. C.

Kattawar, G. W.

Kawabe, M.

Y. Shibagaki, M. Kawabe, S. Takayanagi, K. Mori, T. Yanagitani, and M. Matsukawa, “Rapid wave velocity measurement by Brillouin scattering using artificially induced phonon,” J. Acoust. Soc. Am. 140(4), 3204 (2016).
[Crossref]

Kirkby, P. A.

Kreisel, J.

M. Lejman, G. Vaudel, I. C. Infante, I. Chaban, T. Pezeril, M. Edely, G. F. Nataf, M. Guennou, J. Kreisel, V. E. Gusev, B. Dkhil, and P. Ruello, “Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics,” Nat. Commun. 7, 12345 (2016).
[Crossref] [PubMed]

Kubinski, T.

F. J. Millero and T. Kubinski, “Speed of sound in seawater as a function of temperature and salinity at one atmosphere,” J. Acoust. Soc. Am. 57(2), 312–319 (1975).
[Crossref]

Laude, V.

Q. Rolland, S. Dupont, J. Gazalet, J. C. Kastelik, Y. Pennec, B. Djafari-Rouhani, and V. Laude, “Simultaneous bandgaps in LiNbO3 phoxonic crystal slab,” Opt. Express 22(13), 16288–16297 (2014).
[Crossref] [PubMed]

I. E. Psarobas, N. Papanikolaou, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity,” Phys. Rev. B 82(17), 174303 (2010).
[Crossref]

Laudereau, J. B.

Lejman, M.

M. Lejman, G. Vaudel, I. C. Infante, I. Chaban, T. Pezeril, M. Edely, G. F. Nataf, M. Guennou, J. Kreisel, V. E. Gusev, B. Dkhil, and P. Ruello, “Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics,” Nat. Commun. 7, 12345 (2016).
[Crossref] [PubMed]

Li, M.

S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5(1), 5402 (2014).
[Crossref] [PubMed]

Li, R.

D. Liu, J. Xu, R. Li, R. Dai, and W. Gong, “Measurements of sound speed in the water by Brillouin scattering using pulsed Nd:YAG laser,” Opt. Commun. 203(3–6), 335–340 (2002).
[Crossref]

Li, T.

Z. Li, J. Zhu, T. Li, and B. Zhang, “An absolute instrument for determination of the speed of sound in water,” Rev. Sci. Instrum. 87(5), 055107 (2016).
[Crossref] [PubMed]

Li, Z.

Z. Li, J. Zhu, T. Li, and B. Zhang, “An absolute instrument for determination of the speed of sound in water,” Rev. Sci. Instrum. 87(5), 055107 (2016).
[Crossref] [PubMed]

Lin, C. W.

C. W. Lin and J. P. M. Trusler, “The speed of sound and derived thermodynamic properties of pure water at temperatures between (253 and 473) K and at pressures up to 400 MPa,” J. Chem. Phys. 136(9), 094511 (2012).
[Crossref] [PubMed]

Lin, T. R.

Lin, X.

L. He, F. Zhu, Y. Chen, K. Duan, X. Lin, Y. Pan, and J. Tao, “Ultrasonic power measurement system based on acousto-optic interaction,” Rev. Sci. Instrum. 87(5), 054903 (2016).
[Crossref] [PubMed]

Liu, D.

D. Liu, J. Xu, R. Li, R. Dai, and W. Gong, “Measurements of sound speed in the water by Brillouin scattering using pulsed Nd:YAG laser,” Opt. Commun. 203(3–6), 335–340 (2002).
[Crossref]

Lu, T. Y.

Ma, T. X.

Mader, C. W.

V. A. D. Grosso and C. W. Mader, “Speed of Sound in Pure Water,” J. Acoust. Soc. Am. 52(5B), 1442–1446 (1972).
[Crossref]

Maldovan, M.

M. Maldovan and E. L. Thomas, “Simultaneous localization of photons and phonons in two-dimensional periodic structures,” Appl. Phys. Lett. 88(25), 251907 (2006).
[Crossref]

Marin, B.

Martinez, A.

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
[Crossref]

Matsukawa, M.

Y. Shibagaki, M. Kawabe, S. Takayanagi, K. Mori, T. Yanagitani, and M. Matsukawa, “Rapid wave velocity measurement by Brillouin scattering using artificially induced phonon,” J. Acoust. Soc. Am. 140(4), 3204 (2016).
[Crossref]

Meier, K.

K. Meier and S. Kabelac, “Speed of sound instrument for fluids with pressures up to 100 MPa,” Rev. Sci. Instrum. 77(12), 1 (2006).
[Crossref]

Miao, R.

R. Miao, Z. Yang, J. Zhu, and C. Shen, “Visualization of low-frequency liquid surface acoustic waves by means of optical diffraction,” Appl. Phys. Lett. 80(17), 3033–3035 (2002).
[Crossref]

Miao, Y.

Y. Miao and S. Wang, “Nonlinear Acoustic-Optical Effect and Extraordinary Diffraction Distribution in Liquid Surface,” Chin. Phys. Lett. 30(12), 124304 (2013).
[Crossref]

Millero, F. J.

C. Chen and F. J. Millero, “Speed of sound in seawater at high pressures,” J. Acoust. Soc. Am. 62(5), 1129–1135 (1977).
[Crossref]

F. J. Millero and T. Kubinski, “Speed of sound in seawater as a function of temperature and salinity at one atmosphere,” J. Acoust. Soc. Am. 57(2), 312–319 (1975).
[Crossref]

Moharam, M. G.

Mori, K.

Y. Shibagaki, M. Kawabe, S. Takayanagi, K. Mori, T. Yanagitani, and M. Matsukawa, “Rapid wave velocity measurement by Brillouin scattering using artificially induced phonon,” J. Acoust. Soc. Am. 140(4), 3204 (2016).
[Crossref]

Nabavi, M.

K. Siddiqui and M. Nabavi, “Measurement of the acoustic velocity characteristics in a standing-wave tube using out of phase PIV,” Flow Meas. Instrum. 19(6), 364–369 (2008).
[Crossref]

Naga Srinivas Nadella, K. M.

Nataf, G. F.

M. Lejman, G. Vaudel, I. C. Infante, I. Chaban, T. Pezeril, M. Edely, G. F. Nataf, M. Guennou, J. Kreisel, V. E. Gusev, B. Dkhil, and P. Ruello, “Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics,” Nat. Commun. 7, 12345 (2016).
[Crossref] [PubMed]

Pan, Y.

L. He, F. Zhu, Y. Chen, K. Duan, X. Lin, Y. Pan, and J. Tao, “Ultrasonic power measurement system based on acousto-optic interaction,” Rev. Sci. Instrum. 87(5), 054903 (2016).
[Crossref] [PubMed]

Papanikolaou, N.

I. E. Psarobas, N. Papanikolaou, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity,” Phys. Rev. B 82(17), 174303 (2010).
[Crossref]

Pennec, Y.

Pezeril, T.

M. Lejman, G. Vaudel, I. C. Infante, I. Chaban, T. Pezeril, M. Edely, G. F. Nataf, M. Guennou, J. Kreisel, V. E. Gusev, B. Dkhil, and P. Ruello, “Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics,” Nat. Commun. 7, 12345 (2016).
[Crossref] [PubMed]

Psarobas, I. E.

I. E. Psarobas, N. Papanikolaou, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity,” Phys. Rev. B 82(17), 174303 (2010).
[Crossref]

Qiao, C.

J. Chen, S. Zhao, Z. Huang, and C. Qiao, “Acoustic velocity measurement in seawater based on phase difference of signal,” in Proceedings of IEEE Conference on Electronic Measurement & Instruments (IEEE, 2011), pp. 181–184.
[Crossref]

Qu, X.

Ramaz, F.

Resink, S. G.

Rolland, Q.

Rudtsch, S.

C. von Rohden, F. Fehres, and S. Rudtsch, “Capability of pure water calibrated time-of-flight sensors for the determination of speed of sound in seawater,” J. Acoust. Soc. Am. 138(2), 651–662 (2015).
[Crossref] [PubMed]

Ruello, P.

M. Lejman, G. Vaudel, I. C. Infante, I. Chaban, T. Pezeril, M. Edely, G. F. Nataf, M. Guennou, J. Kreisel, V. E. Gusev, B. Dkhil, and P. Ruello, “Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics,” Nat. Commun. 7, 12345 (2016).
[Crossref] [PubMed]

Savage, N.

N. Savage, “Acousto-optic devices,” Nat. Photonics 4(10), 728–729 (2010).
[Crossref]

Shen, C.

R. Miao, Z. Yang, J. Zhu, and C. Shen, “Visualization of low-frequency liquid surface acoustic waves by means of optical diffraction,” Appl. Phys. Lett. 80(17), 3033–3035 (2002).
[Crossref]

Sheng, Z.

Shi, L.

Shibagaki, Y.

Y. Shibagaki, M. Kawabe, S. Takayanagi, K. Mori, T. Yanagitani, and M. Matsukawa, “Rapid wave velocity measurement by Brillouin scattering using artificially induced phonon,” J. Acoust. Soc. Am. 140(4), 3204 (2016).
[Crossref]

Siddiqui, K.

K. Siddiqui and M. Nabavi, “Measurement of the acoustic velocity characteristics in a standing-wave tube using out of phase PIV,” Flow Meas. Instrum. 19(6), 364–369 (2008).
[Crossref]

Steenbergen, W.

Stefanou, N.

I. E. Psarobas, N. Papanikolaou, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity,” Phys. Rev. B 82(17), 174303 (2010).
[Crossref]

Su, X. X.

Sun, Z.

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
[Crossref]

Sung, K. W.

Tadesse, S. A.

S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5(1), 5402 (2014).
[Crossref] [PubMed]

Takayanagi, S.

Y. Shibagaki, M. Kawabe, S. Takayanagi, K. Mori, T. Yanagitani, and M. Matsukawa, “Rapid wave velocity measurement by Brillouin scattering using artificially induced phonon,” J. Acoust. Soc. Am. 140(4), 3204 (2016).
[Crossref]

Tanter, M.

Tao, J.

L. He, F. Zhu, Y. Chen, K. Duan, X. Lin, Y. Pan, and J. Tao, “Ultrasonic power measurement system based on acousto-optic interaction,” Rev. Sci. Instrum. 87(5), 054903 (2016).
[Crossref] [PubMed]

Thomas, E. L.

M. Maldovan and E. L. Thomas, “Simultaneous localization of photons and phonons in two-dimensional periodic structures,” Appl. Phys. Lett. 88(25), 251907 (2006).
[Crossref]

Trusler, J. P. M.

C. W. Lin and J. P. M. Trusler, “The speed of sound and derived thermodynamic properties of pure water at temperatures between (253 and 473) K and at pressures up to 400 MPa,” J. Chem. Phys. 136(9), 094511 (2012).
[Crossref] [PubMed]

Vaudel, G.

M. Lejman, G. Vaudel, I. C. Infante, I. Chaban, T. Pezeril, M. Edely, G. F. Nataf, M. Guennou, J. Kreisel, V. E. Gusev, B. Dkhil, and P. Ruello, “Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics,” Nat. Commun. 7, 12345 (2016).
[Crossref] [PubMed]

von Rohden, C.

C. von Rohden, F. Fehres, and S. Rudtsch, “Capability of pure water calibrated time-of-flight sensors for the determination of speed of sound in seawater,” J. Acoust. Soc. Am. 138(2), 651–662 (2015).
[Crossref] [PubMed]

Wang, F.

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
[Crossref]

Wang, H.

Wang, S.

Y. Miao and S. Wang, “Nonlinear Acoustic-Optical Effect and Extraordinary Diffraction Distribution in Liquid Surface,” Chin. Phys. Lett. 30(12), 124304 (2013).
[Crossref]

Wang, Y. F.

Wang, Y. S.

Weng, C.

C. Weng and X. Zhang, “Fluctuations of optical phase of diffracted light for Raman–Nath diffraction in acousto–optic effect,” Chin. Phys. B 24(1), 293–297 (2015).
[Crossref]

Wilson, W. D.

W. D. Wilson, “Speed of Sound in Sea Water as a Function of Temperature, Pressure, and Salinity,” J. Acoust. Soc. Am. 32(6), 641–644 (1960).
[Crossref]

W. D. Wilson, “Speed of Sound in Distilled Water as a Function of Temperature and Pressure,” J. Acoust. Soc. Am. 31(8), 1067–1072 (1959).
[Crossref]

Wouters, A. W.

Wu, H.

Xing, S.

Xu, J.

D. Liu, J. Xu, R. Li, R. Dai, and W. Gong, “Measurements of sound speed in the water by Brillouin scattering using pulsed Nd:YAG laser,” Opt. Commun. 203(3–6), 335–340 (2002).
[Crossref]

Yanagitani, T.

Y. Shibagaki, M. Kawabe, S. Takayanagi, K. Mori, T. Yanagitani, and M. Matsukawa, “Rapid wave velocity measurement by Brillouin scattering using artificially induced phonon,” J. Acoust. Soc. Am. 140(4), 3204 (2016).
[Crossref]

Yang, Z.

R. Miao, Z. Yang, J. Zhu, and C. Shen, “Visualization of low-frequency liquid surface acoustic waves by means of optical diffraction,” Appl. Phys. Lett. 80(17), 3033–3035 (2002).
[Crossref]

Young, L.

Yuan, J.

Zhang, B.

Z. Li, J. Zhu, T. Li, and B. Zhang, “An absolute instrument for determination of the speed of sound in water,” Rev. Sci. Instrum. 87(5), 055107 (2016).
[Crossref] [PubMed]

Zhang, C.

Zhang, F.

Zhang, X.

C. Zhang, H. Wang, Z. Zhang, J. Yuan, L. Shi, Z. Sheng, and X. Zhang, “Non-radio-frequency signal tuned acousto-optic tunable filter,” Opt. Express 26(2), 1049–1054 (2018).
[Crossref] [PubMed]

C. Weng and X. Zhang, “Fluctuations of optical phase of diffracted light for Raman–Nath diffraction in acousto–optic effect,” Chin. Phys. B 24(1), 293–297 (2015).
[Crossref]

Zhang, Z.

Zhao, S.

J. Chen, S. Zhao, Z. Huang, and C. Qiao, “Acoustic velocity measurement in seawater based on phase difference of signal,” in Proceedings of IEEE Conference on Electronic Measurement & Instruments (IEEE, 2011), pp. 181–184.
[Crossref]

Zhu, F.

L. He, F. Zhu, Y. Chen, K. Duan, X. Lin, Y. Pan, and J. Tao, “Ultrasonic power measurement system based on acousto-optic interaction,” Rev. Sci. Instrum. 87(5), 054903 (2016).
[Crossref] [PubMed]

Zhu, J.

Z. Li, J. Zhu, T. Li, and B. Zhang, “An absolute instrument for determination of the speed of sound in water,” Rev. Sci. Instrum. 87(5), 055107 (2016).
[Crossref] [PubMed]

R. Miao, Z. Yang, J. Zhu, and C. Shen, “Visualization of low-frequency liquid surface acoustic waves by means of optical diffraction,” Appl. Phys. Lett. 80(17), 3033–3035 (2002).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

R. Miao, Z. Yang, J. Zhu, and C. Shen, “Visualization of low-frequency liquid surface acoustic waves by means of optical diffraction,” Appl. Phys. Lett. 80(17), 3033–3035 (2002).
[Crossref]

M. Maldovan and E. L. Thomas, “Simultaneous localization of photons and phonons in two-dimensional periodic structures,” Appl. Phys. Lett. 88(25), 251907 (2006).
[Crossref]

Chin. Phys. B (1)

C. Weng and X. Zhang, “Fluctuations of optical phase of diffracted light for Raman–Nath diffraction in acousto–optic effect,” Chin. Phys. B 24(1), 293–297 (2015).
[Crossref]

Chin. Phys. Lett. (1)

Y. Miao and S. Wang, “Nonlinear Acoustic-Optical Effect and Extraordinary Diffraction Distribution in Liquid Surface,” Chin. Phys. Lett. 30(12), 124304 (2013).
[Crossref]

Flow Meas. Instrum. (1)

K. Siddiqui and M. Nabavi, “Measurement of the acoustic velocity characteristics in a standing-wave tube using out of phase PIV,” Flow Meas. Instrum. 19(6), 364–369 (2008).
[Crossref]

J. Acoust. Soc. Am. (9)

Y. Shibagaki, M. Kawabe, S. Takayanagi, K. Mori, T. Yanagitani, and M. Matsukawa, “Rapid wave velocity measurement by Brillouin scattering using artificially induced phonon,” J. Acoust. Soc. Am. 140(4), 3204 (2016).
[Crossref]

S. E. Dosso and J. Dettmer, “Studying the sea with sound,” J. Acoust. Soc. Am. 133(5), 3223 (2013).
[Crossref]

C. von Rohden, F. Fehres, and S. Rudtsch, “Capability of pure water calibrated time-of-flight sensors for the determination of speed of sound in seawater,” J. Acoust. Soc. Am. 138(2), 651–662 (2015).
[Crossref] [PubMed]

W. D. Wilson, “Speed of Sound in Distilled Water as a Function of Temperature and Pressure,” J. Acoust. Soc. Am. 31(8), 1067–1072 (1959).
[Crossref]

W. D. Wilson, “Speed of Sound in Sea Water as a Function of Temperature, Pressure, and Salinity,” J. Acoust. Soc. Am. 32(6), 641–644 (1960).
[Crossref]

V. A. D. Grosso and C. W. Mader, “Speed of Sound in Pure Water,” J. Acoust. Soc. Am. 52(5B), 1442–1446 (1972).
[Crossref]

V. A. D. Grosso, “New equation for the speed of sound in natural waters (with comparisons to other equations),” J. Acoust. Soc. Am. 56(4), 1084–1091 (1974).
[Crossref]

F. J. Millero and T. Kubinski, “Speed of sound in seawater as a function of temperature and salinity at one atmosphere,” J. Acoust. Soc. Am. 57(2), 312–319 (1975).
[Crossref]

C. Chen and F. J. Millero, “Speed of sound in seawater at high pressures,” J. Acoust. Soc. Am. 62(5), 1129–1135 (1977).
[Crossref]

J. Chem. Phys. (1)

C. W. Lin and J. P. M. Trusler, “The speed of sound and derived thermodynamic properties of pure water at temperatures between (253 and 473) K and at pressures up to 400 MPa,” J. Chem. Phys. 136(9), 094511 (2012).
[Crossref] [PubMed]

Nat. Commun. (2)

S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5(1), 5402 (2014).
[Crossref] [PubMed]

M. Lejman, G. Vaudel, I. C. Infante, I. Chaban, T. Pezeril, M. Edely, G. F. Nataf, M. Guennou, J. Kreisel, V. E. Gusev, B. Dkhil, and P. Ruello, “Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics,” Nat. Commun. 7, 12345 (2016).
[Crossref] [PubMed]

Nat. Photonics (2)

N. Savage, “Acousto-optic devices,” Nat. Photonics 4(10), 728–729 (2010).
[Crossref]

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
[Crossref]

Opt. Commun. (1)

D. Liu, J. Xu, R. Li, R. Dai, and W. Gong, “Measurements of sound speed in the water by Brillouin scattering using pulsed Nd:YAG laser,” Opt. Commun. 203(3–6), 335–340 (2002).
[Crossref]

Opt. Express (10)

C. Zhang, H. Wang, Z. Zhang, J. Yuan, L. Shi, Z. Sheng, and X. Zhang, “Non-radio-frequency signal tuned acousto-optic tunable filter,” Opt. Express 26(2), 1049–1054 (2018).
[Crossref] [PubMed]

G. J. Evans, P. A. Kirkby, K. M. Naga Srinivas Nadella, B. Marin, and R. Angus Silver, “Development and application of a ray-based model of light propagation through a spherical acousto-optic lens,” Opt. Express 23(18), 23493–23510 (2015).
[Crossref] [PubMed]

Q. Rolland, S. Dupont, J. Gazalet, J. C. Kastelik, Y. Pennec, B. Djafari-Rouhani, and V. Laude, “Simultaneous bandgaps in LiNbO3 phoxonic crystal slab,” Opt. Express 22(13), 16288–16297 (2014).
[Crossref] [PubMed]

T. X. Ma, Y. S. Wang, Y. F. Wang, and X. X. Su, “Three-dimensional dielectric phoxonic crystals with network topology,” Opt. Express 21(3), 2727–2732 (2013).
[Crossref] [PubMed]

C. C. Chiu, W. M. Chen, K. W. Sung, and F. L. Hsiao, “High-efficiency acousto-optic coupling in phoxonic resonator based on silicon fishbone nanobeam cavity,” Opt. Express 25(6), 6076–6091 (2017).
[Crossref] [PubMed]

J. C. Hsu, T. Y. Lu, and T. R. Lin, “Acousto-optic coupling in phoxonic crystal nanobeam cavities with plasmonic behavior,” Opt. Express 23(20), 25814–25826 (2015).
[Crossref] [PubMed]

S. G. Resink, E. Hondebrink, and W. Steenbergen, “Towards acousto-optic tissue imaging with nanosecond laser pulses,” Opt. Express 22(3), 3564–3571 (2014).
[Crossref] [PubMed]

J. B. Laudereau, A. A. Grabar, M. Tanter, J. L. Gennisson, and F. Ramaz, “Ultrafast acousto-optic imaging with ultrasonic plane waves,” Opt. Express 24(4), 3774–3789 (2016).
[Crossref] [PubMed]

J. C. Hsu, T. Y. Lu, and T. R. Lin, “Acousto-optic coupling in phoxonic crystal nanobeam cavities with plasmonic behavior,” Opt. Express 23(20), 25814–25826 (2015).
[Crossref] [PubMed]

H. Wu, F. Zhang, S. Cao, S. Xing, and X. Qu, “Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser,” Opt. Express 22(9), 10380–10397 (2014).
[Crossref] [PubMed]

Phys. Rev. B (1)

I. E. Psarobas, N. Papanikolaou, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity,” Phys. Rev. B 82(17), 174303 (2010).
[Crossref]

Rev. Sci. Instrum. (3)

L. He, F. Zhu, Y. Chen, K. Duan, X. Lin, Y. Pan, and J. Tao, “Ultrasonic power measurement system based on acousto-optic interaction,” Rev. Sci. Instrum. 87(5), 054903 (2016).
[Crossref] [PubMed]

K. Meier and S. Kabelac, “Speed of sound instrument for fluids with pressures up to 100 MPa,” Rev. Sci. Instrum. 77(12), 1 (2006).
[Crossref]

Z. Li, J. Zhu, T. Li, and B. Zhang, “An absolute instrument for determination of the speed of sound in water,” Rev. Sci. Instrum. 87(5), 055107 (2016).
[Crossref] [PubMed]

Other (1)

J. Chen, S. Zhao, Z. Huang, and C. Qiao, “Acoustic velocity measurement in seawater based on phase difference of signal,” in Proceedings of IEEE Conference on Electronic Measurement & Instruments (IEEE, 2011), pp. 181–184.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Experimental schematic diagram. FC: Frequency Comb, BS1: Beam Splitter 1, BS2: Beam Splitter 2, M1: Mirror 1, UP: Ultrasound Probe, RP: Reference Path, MP: Measurement Path, M2: Mirror 2, PD: Photodetector.
Fig. 2
Fig. 2 (a) Light intensity without the ultrasonic wave in water. In this case, no diffraction occurs, and the intensity keeps constant. (b) Light intensity with the ultrasonic wave in water. Since the diffraction, we can observe a series of different orders of light. When the ultrasonic wave is pulsed, the intensity of the zero-order light will change with a certain period.
Fig. 3
Fig. 3 Light intensity mutation of the reference light and measured light caused by pulsed acousto-optic effect.
Fig. 4
Fig. 4 Experimental setup. FC: Frequency Comb, BS1: Beam Splitter 1, BS2: Beam Splitter 2 M1: Mirror 1, UP: Ultrasound Probe, RP: Reference Path, MP: Measurement Path, M2: Mirror 2, BS4: Beam Splitter 4, M3: Mirror 3, BS5: Beam Splitter 5, PH: Pinhole, PD1: Photodetector 1, BS3: Beam Splitter 3, M4: Mirror 4, M6: Mirror 6, M5: Mirror 5, M7: Mirror 7, PDP: Precision Displacement Platform, OSCP: Oscilloscope, BS6: Beam Splitter 6, PD2: Photodetector 2, SVP: Mini Sound Velocity Profiler.
Fig. 5
Fig. 5 Output signal of the HeNe interferometer.
Fig. 6
Fig. 6 (a) Femtosecond laser interference fringes caused by movement of a precision displacement stage to an equal optical path. (b) Mutation of light intensity due to impulse acousto-optic effect.
Fig. 7
Fig. 7 (a) Pure water flight distance measurement results. (b) Pure water flight time measurement results.
Fig. 8
Fig. 8 (a) Pure water experimental results. (b) Difference between our method and SVP.
Fig. 9
Fig. 9 (a) Sea water flight distance measurement results. (b) Seawater flight time measurement results.
Fig. 10
Fig. 10 (a) Seawater experimental results. (b) Difference between our method and SVP.

Tables (1)

Tables Icon

Table 1 Uncertainty analysis.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

v = S p
u i ( z ) = A exp ( j ( ω o t k o z + φ ) )
k o = 2 π λ
Y = B sin ( ω a t k a x )
k a = 2 π / Λ
Φ ( x ) = 2 π λ ( 2 B sin ( ω a t k a x ) )
u i ( x , t ) = A exp ( j ( ω o t k o z + φ ) ) e x p ( j 4 π B λ sin ( ω a t k a x ) )
e j υ sin θ = + J m ( υ ) e j m θ
u i ( x , t ) = A e j ( ω o t k o z + φ ) m = + J m ( 4 π B λ ) e j m ( ω a t k a x ) = A e j ( ω o t k o z + φ ) m = + J m ( 4 π B λ ) e j m k a x e j m ω a t
I m = I i J m 2 ( υ )
I 0 = I i 2 I i m = 1 + J m 2 ( υ )
I 0 = I i ( 2 I i m = 1 + J m 2 ( υ ) ) r = δ ( t ( r T ) )
S = ( M + Δ m ) λ α 2 n
v = S p = ( M + Δ m ) λ α 2 n p
u v = ( v λ a u λ a ) 2 + ( v n u n ) 2 + ( v p u p ) 2 = ( ( M + Δ m ) 2 n p u λ a ) 2 + ( v n u n ) 2 + ( v p u p ) 2

Metrics