Abstract

In this study, we propose a novel silicon-core optical fiber with a bowtie-shaped slot core structure for ultrasmall light-spot transmission. Our simulations show that this dielectric structure creates a nanosized optical spot with the high intensity and transmits it with the low loss. As an example, we obtained an optical spot with the full width at half maximum of 5 nm × 5 nm and a peak power density 167 times higher than that of the surrounding areas. The optical loss because of the scattering in the waveguides and the material absorption was estimated to be 0.58 dB/cm, which is a thousand times less than the optical losses in typical plasmonic waveguides. We believe our proposed structure will contribute to research studies in the field of near-field sensing systems. It also has application potential in nanolithography with high-power lasers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A near-field light probe with an optical slot-waveguide structure

Makoto Tsubokawa and Deqing Kong
Opt. Express 23(3) 1981-1991 (2015)

Efficient fiber coupler for vertical silicon slot waveguides

Haishan Sun, Antao Chen, Attila Szep, and Larry R. Dalton
Opt. Express 17(25) 22571-22577 (2009)

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20(9), 970–972 (1995).
    [Crossref] [PubMed]
  2. S. Sun and G. J. Leggett, “Matching the resolution of electron beam lithography by scanning near-field photolithography,” Nano Lett. 4(8), 1381–1384 (2004).
    [Crossref]
  3. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
    [Crossref] [PubMed]
  4. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [Crossref] [PubMed]
  5. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  6. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [Crossref] [PubMed]
  7. S. T. Lim, C. E. Png, and A. J. Danner, “Embedded air core optical nano-waveguides,” J. Opt. Soc. Am. B 27(10), 1937–1941 (2010).
    [Crossref]
  8. Y. Ruan, S. Afshar, and T. M. Monro, “Light enhancement within nanoholes in high index contrast nanowires,” IEEE Photonics J. 3(1), 130–139 (2011).
    [Crossref]
  9. R. Yang, M. A. Abushagur, and Z. Lu, “Efficiently squeezing near infrared light into a 21 nm-by-24 nm nanospot,” Opt. Express 16(24), 20142–20148 (2008).
    [Crossref] [PubMed]
  10. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  11. L. Novotny, D. W. Pohl, and B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy 61(1–4), 1–9 (1995).
    [Crossref]
  12. E. Betzig and J. K. Trautman, “Near-Field Optics: Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit,” Science 257(5067), 189–195 (1992).
    [Crossref] [PubMed]
  13. H. Nakamura, T. Sato, H. Kambe, K. Sawada, and T. Saiki, “Design and optimization of tapered structure of near-field fiber probe based on finite-difference time-domain simulation,” J. Microsc. 202(1), 50–52 (2001).
    [Crossref] [PubMed]
  14. J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
    [Crossref] [PubMed]
  15. L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11(2), 355–360 (2011).
    [Crossref] [PubMed]
  16. T. Yatsui, M. Kourogi, and M. Ohtsu, “Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure,” Appl. Phys. Lett. 73(15), 2090–2092 (1998).
    [Crossref]
  17. S. Hu and S. M. Weiss, “Design of Photonic Crystal Cavities for Extreme Light Concentration,” ACS Photonics 3(9), 1647–1653 (2016).
    [Crossref]
  18. FullWAVE, http://optics.synopsys.com/rsoft/
  19. X. Li, X. Feng, K. Cui, F. Liu, and Y. Huang, “Designing low transmission loss silicon slot waveguide at wavelength band of high material absorption,” Opt. Commun. 306, 131–134 (2013).
    [Crossref]
  20. K. R. Hiremath, “Analytical modal analysis of bent slot waveguides,” J. Opt. Soc. Am. A 26(11), 2321–2326 (2009).
    [Crossref] [PubMed]

2016 (1)

S. Hu and S. M. Weiss, “Design of Photonic Crystal Cavities for Extreme Light Concentration,” ACS Photonics 3(9), 1647–1653 (2016).
[Crossref]

2015 (1)

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref] [PubMed]

2013 (1)

X. Li, X. Feng, K. Cui, F. Liu, and Y. Huang, “Designing low transmission loss silicon slot waveguide at wavelength band of high material absorption,” Opt. Commun. 306, 131–134 (2013).
[Crossref]

2011 (2)

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11(2), 355–360 (2011).
[Crossref] [PubMed]

Y. Ruan, S. Afshar, and T. M. Monro, “Light enhancement within nanoholes in high index contrast nanowires,” IEEE Photonics J. 3(1), 130–139 (2011).
[Crossref]

2010 (3)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

S. T. Lim, C. E. Png, and A. J. Danner, “Embedded air core optical nano-waveguides,” J. Opt. Soc. Am. B 27(10), 1937–1941 (2010).
[Crossref]

2009 (2)

K. R. Hiremath, “Analytical modal analysis of bent slot waveguides,” J. Opt. Soc. Am. A 26(11), 2321–2326 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

2008 (2)

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

R. Yang, M. A. Abushagur, and Z. Lu, “Efficiently squeezing near infrared light into a 21 nm-by-24 nm nanospot,” Opt. Express 16(24), 20142–20148 (2008).
[Crossref] [PubMed]

2004 (2)

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
[Crossref] [PubMed]

S. Sun and G. J. Leggett, “Matching the resolution of electron beam lithography by scanning near-field photolithography,” Nano Lett. 4(8), 1381–1384 (2004).
[Crossref]

2001 (1)

H. Nakamura, T. Sato, H. Kambe, K. Sawada, and T. Saiki, “Design and optimization of tapered structure of near-field fiber probe based on finite-difference time-domain simulation,” J. Microsc. 202(1), 50–52 (2001).
[Crossref] [PubMed]

1998 (1)

T. Yatsui, M. Kourogi, and M. Ohtsu, “Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure,” Appl. Phys. Lett. 73(15), 2090–2092 (1998).
[Crossref]

1995 (2)

L. Novotny, D. W. Pohl, and B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy 61(1–4), 1–9 (1995).
[Crossref]

L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20(9), 970–972 (1995).
[Crossref] [PubMed]

1992 (1)

E. Betzig and J. K. Trautman, “Near-Field Optics: Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit,” Science 257(5067), 189–195 (1992).
[Crossref] [PubMed]

Abushagur, M. A.

Afshar, S.

Y. Ruan, S. Afshar, and T. M. Monro, “Light enhancement within nanoholes in high index contrast nanowires,” IEEE Photonics J. 3(1), 130–139 (2011).
[Crossref]

Almeida, V. R.

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Barrios, C. A.

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Betzig, E.

E. Betzig and J. K. Trautman, “Near-Field Optics: Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit,” Science 257(5067), 189–195 (1992).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Cui, K.

X. Li, X. Feng, K. Cui, F. Liu, and Y. Huang, “Designing low transmission loss silicon slot waveguide at wavelength band of high material absorption,” Opt. Commun. 306, 131–134 (2013).
[Crossref]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Danner, A. J.

Feng, X.

X. Li, X. Feng, K. Cui, F. Liu, and Y. Huang, “Designing low transmission loss silicon slot waveguide at wavelength band of high material absorption,” Opt. Commun. 306, 131–134 (2013).
[Crossref]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Gordon, R.

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11(2), 355–360 (2011).
[Crossref] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Hecht, B.

L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20(9), 970–972 (1995).
[Crossref] [PubMed]

L. Novotny, D. W. Pohl, and B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy 61(1–4), 1–9 (1995).
[Crossref]

Hiremath, K. R.

Houyou, A.

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11(2), 355–360 (2011).
[Crossref] [PubMed]

Hu, S.

S. Hu and S. M. Weiss, “Design of Photonic Crystal Cavities for Extreme Light Concentration,” ACS Photonics 3(9), 1647–1653 (2016).
[Crossref]

Huang, Y.

X. Li, X. Feng, K. Cui, F. Liu, and Y. Huang, “Designing low transmission loss silicon slot waveguide at wavelength band of high material absorption,” Opt. Commun. 306, 131–134 (2013).
[Crossref]

Jin, J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Juan, M. L.

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11(2), 355–360 (2011).
[Crossref] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Kambe, H.

H. Nakamura, T. Sato, H. Kambe, K. Sawada, and T. Saiki, “Design and optimization of tapered structure of near-field fiber probe based on finite-difference time-domain simulation,” J. Microsc. 202(1), 50–52 (2001).
[Crossref] [PubMed]

Khurgin, J. B.

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref] [PubMed]

Kim, S.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, S. W.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, Y. J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kourogi, M.

T. Yatsui, M. Kourogi, and M. Ohtsu, “Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure,” Appl. Phys. Lett. 73(15), 2090–2092 (1998).
[Crossref]

Leggett, G. J.

S. Sun and G. J. Leggett, “Matching the resolution of electron beam lithography by scanning near-field photolithography,” Nano Lett. 4(8), 1381–1384 (2004).
[Crossref]

Li, X.

X. Li, X. Feng, K. Cui, F. Liu, and Y. Huang, “Designing low transmission loss silicon slot waveguide at wavelength band of high material absorption,” Opt. Commun. 306, 131–134 (2013).
[Crossref]

Lim, S. T.

Lipson, M.

Liu, F.

X. Li, X. Feng, K. Cui, F. Liu, and Y. Huang, “Designing low transmission loss silicon slot waveguide at wavelength band of high material absorption,” Opt. Commun. 306, 131–134 (2013).
[Crossref]

Lu, Z.

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Monro, T. M.

Y. Ruan, S. Afshar, and T. M. Monro, “Light enhancement within nanoholes in high index contrast nanowires,” IEEE Photonics J. 3(1), 130–139 (2011).
[Crossref]

Nakamura, H.

H. Nakamura, T. Sato, H. Kambe, K. Sawada, and T. Saiki, “Design and optimization of tapered structure of near-field fiber probe based on finite-difference time-domain simulation,” J. Microsc. 202(1), 50–52 (2001).
[Crossref] [PubMed]

Neumann, L.

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11(2), 355–360 (2011).
[Crossref] [PubMed]

Novotny, L.

L. Novotny, D. W. Pohl, and B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy 61(1–4), 1–9 (1995).
[Crossref]

L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20(9), 970–972 (1995).
[Crossref] [PubMed]

Ohtsu, M.

T. Yatsui, M. Kourogi, and M. Ohtsu, “Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure,” Appl. Phys. Lett. 73(15), 2090–2092 (1998).
[Crossref]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Pang, Y.

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11(2), 355–360 (2011).
[Crossref] [PubMed]

Park, I. Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Png, C. E.

Pohl, D. W.

L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20(9), 970–972 (1995).
[Crossref] [PubMed]

L. Novotny, D. W. Pohl, and B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy 61(1–4), 1–9 (1995).
[Crossref]

Ruan, Y.

Y. Ruan, S. Afshar, and T. M. Monro, “Light enhancement within nanoholes in high index contrast nanowires,” IEEE Photonics J. 3(1), 130–139 (2011).
[Crossref]

Saiki, T.

H. Nakamura, T. Sato, H. Kambe, K. Sawada, and T. Saiki, “Design and optimization of tapered structure of near-field fiber probe based on finite-difference time-domain simulation,” J. Microsc. 202(1), 50–52 (2001).
[Crossref] [PubMed]

Sato, T.

H. Nakamura, T. Sato, H. Kambe, K. Sawada, and T. Saiki, “Design and optimization of tapered structure of near-field fiber probe based on finite-difference time-domain simulation,” J. Microsc. 202(1), 50–52 (2001).
[Crossref] [PubMed]

Sawada, K.

H. Nakamura, T. Sato, H. Kambe, K. Sawada, and T. Saiki, “Design and optimization of tapered structure of near-field fiber probe based on finite-difference time-domain simulation,” J. Microsc. 202(1), 50–52 (2001).
[Crossref] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Sun, S.

S. Sun and G. J. Leggett, “Matching the resolution of electron beam lithography by scanning near-field photolithography,” Nano Lett. 4(8), 1381–1384 (2004).
[Crossref]

Trautman, J. K.

E. Betzig and J. K. Trautman, “Near-Field Optics: Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit,” Science 257(5067), 189–195 (1992).
[Crossref] [PubMed]

van Hulst, N. F.

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11(2), 355–360 (2011).
[Crossref] [PubMed]

Weiss, S. M.

S. Hu and S. M. Weiss, “Design of Photonic Crystal Cavities for Extreme Light Concentration,” ACS Photonics 3(9), 1647–1653 (2016).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Xu, Q.

Yang, R.

Yatsui, T.

T. Yatsui, M. Kourogi, and M. Ohtsu, “Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure,” Appl. Phys. Lett. 73(15), 2090–2092 (1998).
[Crossref]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

ACS Photonics (1)

S. Hu and S. M. Weiss, “Design of Photonic Crystal Cavities for Extreme Light Concentration,” ACS Photonics 3(9), 1647–1653 (2016).
[Crossref]

Appl. Phys. Lett. (1)

T. Yatsui, M. Kourogi, and M. Ohtsu, “Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure,” Appl. Phys. Lett. 73(15), 2090–2092 (1998).
[Crossref]

IEEE Photonics J. (1)

Y. Ruan, S. Afshar, and T. M. Monro, “Light enhancement within nanoholes in high index contrast nanowires,” IEEE Photonics J. 3(1), 130–139 (2011).
[Crossref]

J. Microsc. (1)

H. Nakamura, T. Sato, H. Kambe, K. Sawada, and T. Saiki, “Design and optimization of tapered structure of near-field fiber probe based on finite-difference time-domain simulation,” J. Microsc. 202(1), 50–52 (2001).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nano Lett. (2)

S. Sun and G. J. Leggett, “Matching the resolution of electron beam lithography by scanning near-field photolithography,” Nano Lett. 4(8), 1381–1384 (2004).
[Crossref]

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11(2), 355–360 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Nature (2)

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Opt. Commun. (1)

X. Li, X. Feng, K. Cui, F. Liu, and Y. Huang, “Designing low transmission loss silicon slot waveguide at wavelength band of high material absorption,” Opt. Commun. 306, 131–134 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Science (1)

E. Betzig and J. K. Trautman, “Near-Field Optics: Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit,” Science 257(5067), 189–195 (1992).
[Crossref] [PubMed]

Ultramicroscopy (1)

L. Novotny, D. W. Pohl, and B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy 61(1–4), 1–9 (1995).
[Crossref]

Other (1)

FullWAVE, http://optics.synopsys.com/rsoft/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Illustration of the bowtie-shaped slot core structure. (b) Tip of bowtie angle with a hyperbola-shaped profile.
Fig. 2
Fig. 2 (a) Contour map of E-field energy density. (b) 3D surface plot of E-field energy density.
Fig. 3
Fig. 3 (a) Illustration of the conventional slot structure. (b) 3D surface plot of E-field energy density normalized to the maximum E-field energy density in Fig. 2.
Fig. 4
Fig. 4 The profile of E-field energy density at z = 0 in Fig. 2(b) for the bowtie-shaped slot core structure.
Fig. 5
Fig. 5 (a) Optical spot size. (b) Energy density contrast ratio. (c) The bowtie core changes with the variation of θ. (d) Optical loss for θ from 60° to 120° with a step of 15°.
Fig. 6
Fig. 6 (a) Spot size and the energy density contrast ratio. (b) The schematic diagram of the tip profile changing with the gap width dgap. The yellow circle roughly represents the optical spot; a darker color indicates a higher intensity. (c) Optical loss over different dgap.
Fig. 7
Fig. 7 Wavelength dependence of (a) the spot size, (b) the energy density contrast ratio and the optical loss.

Metrics