Abstract

We designed a photon-counting receiver system for long-distance underwater wireless laser communication at different code rate Reed-Solomon (RS) and low-density parity check (LDPC) codes. The symbol error rate (SER) performance of the LDPC and RS codes with different signal-to-noise ratios was analyzed. The effects of the background noise, pulse stretching, and frame synchronization were considered in our receiver system. A water tank experiment confirmed that the 1/2-code-rate RS (255,127) is an excellent coding strategy for communication distances in the range of 90–130 m in Jerlov II water. We constructed a communication link with a SER of 6.31 × 10−4 in a distance of 120-m distance in Jerlov II water for RS (255,127) with 256-pulse-position modulation (PPM) at bandwidth of 13.7 MHz. The maximum link loss was −136.8 dB at λ = 532 nm. The attenuation lengths Natt were 35.88, which were equal at link distances up to 249.2 m in clear ocean water (Jerlov IB water type). The photon counting receiver system can achieve a receiving performance of 3.32 bits/photon. To the best of our knowledge, this is the longest communication attenuation length ever reported under 1 mJ single pulse energy for a narrow field-of-view photon-counting receiver system.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Received response based heuristic LDPC code for short-range non-line-of-sight ultraviolet communication

Heng Qin, Yong Zuo, Dong Zhang, Yinghui Li, and Jian Wu
Opt. Express 25(5) 5018-5030 (2017)

Underwater wireless optical communication using an arrayed transmitter/receiver and optical superimposition-based PAM-4 signal

Meiwei Kong, Yifei Chen, Rohail Sarwar, Bin Sun, Zhiwei Xu, Jun Han, Jiawang Chen, Huawei Qin, and Jing Xu
Opt. Express 26(3) 3087-3097 (2018)

2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode

Hassan Makine Oubei, Changping Li, Ki-Hong Park, Tien Khee Ng, Mohamed-Slim Alouini, and Boon S. Ooi
Opt. Express 23(16) 20743-20748 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. O. Caplan, B. S. Robinson, R. J. Murphy, and M. L. Stevens, “Demonstration of 2.5 gslot/s optically-preamplified m-ppm with 4 photons/bit receiver sensitivity,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, (Optical Society of America, 2005), p. PDP32.
  2. X. Hu, S. Hu, T. Zhou, Y. He, X. Zhu, and W. Chen, “Rapid estimation of the maximum communication distance for an underwater laser communication system,” Chin. J. Lasers 42, 0805007 (2015).
    [Crossref]
  3. N. Farr, A. Chave, L. Freitag, and J. Preisig, “Optical modem technology for seafloor observatories,” in Proceedings of IEEE-Oceans (2006), pp. 1–6.
  4. M. Lanzagorta, Underwater Communications (Morgan & Claypool, 2012).
  5. L. J. Johnson, R. J. Green, and M. S. Leeson, “Underwater optical wireless communications: depth dependent variations in attenuation,” Appl. Opt. 52, 7867–7873 (2013).
    [Crossref]
  6. N. Farr, A. Bowen, J. Ware, C. Pontbriand, and M. Tivey, “An integrated, underwater optical/acoustic communications system,” in Proceedings of IEEE-Oceans (2010), pp. 1–6.
  7. S. Arnon and D. Kedar, “Non-line-of-sight underwater optical wireless communication network,” J. Opt. Soc. Am. A Opt. Image Sci. & Vis. 26, 530 (2009).
    [Crossref]
  8. P. A. Hiskett and R. Lamb, “A photon-counting optical communication system for underwater data transfer,” in Electro-Optical Remote Sensing, Photonic Technologies, and Applications VI (2012), p. 14.
  9. H. G. Rao, A. S. Fletcher, S. A. Hamilton, N. D. Hardy, J. D. Moores, and T. M. Yarnall, “A burst-mode photon counting receiver with automatic channel estimation and bit rate detection,” in SPIE Conference LASE (2016), p. 97390H.
  10. D. M. Boroson, C. C. Chen, and B. Edwards, “Overview of the mars laser communications demonstration project,” in LEOS Summer Topical Meetings, 2005 Digest of the,(2003), pp. 5–7.
  11. A. J. Phillips, R. A. Cryan, and J. M. Senior, “An optically preamplified intersatellite ppm receiver employing maximum likelihood detection,” IEEE Photon. Technol. Lett. 8, 691–693 (1996).
    [Crossref]
  12. X. Liu, S. Yi, X. Zhou, Z. Fang, Z. J. Qiu, L. Hu, C. Cong, L. Zheng, R. Liu, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 gbps data rate based on a green laser diode with nrz-ook modulation,” Opt. Express 25, 27937–27947 (2017).
    [Crossref] [PubMed]
  13. T. Sawa, “Study of adaptive underwater optical wireless communication with photomultiplier tube,” http://www.godac.jamstec.go.jp/catalog/data/doc_catalog/media/KR17-11_leg2_all.pdf .
  14. J. Pierce, “Optical channels: Practical limits with photon counting,” IEEE Trans. Commun. 26, 1819–1821 (1978).
    [Crossref]
  15. J. Milanovic, M. Herceg, M. Vranjes, and J. Job, “Method for bandwidth efficiency increasing of m-ary ppm transmitted-reference uwb communication systems,” Wirel. Pers. Commun. 83, 1–18 (2015).
    [Crossref]
  16. C. Gabriel, M. A. Khalighi, P. Leon, S. Bourennane, and V. Rigaud, “Monte-carlo-based channel characterization for underwater optical communication systems,” IEEE/OSA J. Opt. Commun. Netw. 5, 1–12 (2013).
    [Crossref]
  17. D. J. Bogucki, J. Piskozub, M. E. Carr, and G. D. Spiers, “Monte carlo simulation of propagation of a short light beam through turbulent oceanic flow,” Opt. Express 15, 13988–96 (2007).
    [Crossref] [PubMed]
  18. K. Yu and T. Iwai, “Hybrid mie-mcml monte carlo simulation of light propagation in skin layers,” in International Conference on Optical Particle Characterization, (2014), p. 923206.
  19. S. Hu, L. Mi, T. Zhou, and W. Chen, “Viterbi equalization for long-distance, high-speed underwater laser communication,” Opt. Eng. 56, 076101 (2017).
    [Crossref]
  20. X. Yi, Z. Li, and Z. Liu, “Underwater optical communication performance for laser beam propagation through weak oceanic turbulence,” Appl. Opt. 54, 1273–1278 (2015).
    [Crossref] [PubMed]
  21. C. E. Lindstrom, “Underwater propagation of high-data-rate laser communications pulses,” Proc. SPIE1750, 419–428 (1992).
  22. N. Nasri, L. Andrieux, A. Kachouri, and M. Samet, “Efficient encoding and decoding schemes for wireless underwater communication systems,” in International Multi-Conference on Systems Signals and Devices, (2010), pp. 1–6.

2017 (2)

2015 (3)

X. Yi, Z. Li, and Z. Liu, “Underwater optical communication performance for laser beam propagation through weak oceanic turbulence,” Appl. Opt. 54, 1273–1278 (2015).
[Crossref] [PubMed]

J. Milanovic, M. Herceg, M. Vranjes, and J. Job, “Method for bandwidth efficiency increasing of m-ary ppm transmitted-reference uwb communication systems,” Wirel. Pers. Commun. 83, 1–18 (2015).
[Crossref]

X. Hu, S. Hu, T. Zhou, Y. He, X. Zhu, and W. Chen, “Rapid estimation of the maximum communication distance for an underwater laser communication system,” Chin. J. Lasers 42, 0805007 (2015).
[Crossref]

2013 (2)

L. J. Johnson, R. J. Green, and M. S. Leeson, “Underwater optical wireless communications: depth dependent variations in attenuation,” Appl. Opt. 52, 7867–7873 (2013).
[Crossref]

C. Gabriel, M. A. Khalighi, P. Leon, S. Bourennane, and V. Rigaud, “Monte-carlo-based channel characterization for underwater optical communication systems,” IEEE/OSA J. Opt. Commun. Netw. 5, 1–12 (2013).
[Crossref]

2009 (1)

S. Arnon and D. Kedar, “Non-line-of-sight underwater optical wireless communication network,” J. Opt. Soc. Am. A Opt. Image Sci. & Vis. 26, 530 (2009).
[Crossref]

2007 (1)

1996 (1)

A. J. Phillips, R. A. Cryan, and J. M. Senior, “An optically preamplified intersatellite ppm receiver employing maximum likelihood detection,” IEEE Photon. Technol. Lett. 8, 691–693 (1996).
[Crossref]

1978 (1)

J. Pierce, “Optical channels: Practical limits with photon counting,” IEEE Trans. Commun. 26, 1819–1821 (1978).
[Crossref]

Andrieux, L.

N. Nasri, L. Andrieux, A. Kachouri, and M. Samet, “Efficient encoding and decoding schemes for wireless underwater communication systems,” in International Multi-Conference on Systems Signals and Devices, (2010), pp. 1–6.

Arnon, S.

S. Arnon and D. Kedar, “Non-line-of-sight underwater optical wireless communication network,” J. Opt. Soc. Am. A Opt. Image Sci. & Vis. 26, 530 (2009).
[Crossref]

Bogucki, D. J.

Boroson, D. M.

D. M. Boroson, C. C. Chen, and B. Edwards, “Overview of the mars laser communications demonstration project,” in LEOS Summer Topical Meetings, 2005 Digest of the,(2003), pp. 5–7.

Bourennane, S.

C. Gabriel, M. A. Khalighi, P. Leon, S. Bourennane, and V. Rigaud, “Monte-carlo-based channel characterization for underwater optical communication systems,” IEEE/OSA J. Opt. Commun. Netw. 5, 1–12 (2013).
[Crossref]

Bowen, A.

N. Farr, A. Bowen, J. Ware, C. Pontbriand, and M. Tivey, “An integrated, underwater optical/acoustic communications system,” in Proceedings of IEEE-Oceans (2010), pp. 1–6.

Caplan, D. O.

D. O. Caplan, B. S. Robinson, R. J. Murphy, and M. L. Stevens, “Demonstration of 2.5 gslot/s optically-preamplified m-ppm with 4 photons/bit receiver sensitivity,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, (Optical Society of America, 2005), p. PDP32.

Carr, M. E.

Chave, A.

N. Farr, A. Chave, L. Freitag, and J. Preisig, “Optical modem technology for seafloor observatories,” in Proceedings of IEEE-Oceans (2006), pp. 1–6.

Chen, C. C.

D. M. Boroson, C. C. Chen, and B. Edwards, “Overview of the mars laser communications demonstration project,” in LEOS Summer Topical Meetings, 2005 Digest of the,(2003), pp. 5–7.

Chen, W.

S. Hu, L. Mi, T. Zhou, and W. Chen, “Viterbi equalization for long-distance, high-speed underwater laser communication,” Opt. Eng. 56, 076101 (2017).
[Crossref]

X. Hu, S. Hu, T. Zhou, Y. He, X. Zhu, and W. Chen, “Rapid estimation of the maximum communication distance for an underwater laser communication system,” Chin. J. Lasers 42, 0805007 (2015).
[Crossref]

Cong, C.

Cryan, R. A.

A. J. Phillips, R. A. Cryan, and J. M. Senior, “An optically preamplified intersatellite ppm receiver employing maximum likelihood detection,” IEEE Photon. Technol. Lett. 8, 691–693 (1996).
[Crossref]

Edwards, B.

D. M. Boroson, C. C. Chen, and B. Edwards, “Overview of the mars laser communications demonstration project,” in LEOS Summer Topical Meetings, 2005 Digest of the,(2003), pp. 5–7.

Fang, Z.

Farr, N.

N. Farr, A. Bowen, J. Ware, C. Pontbriand, and M. Tivey, “An integrated, underwater optical/acoustic communications system,” in Proceedings of IEEE-Oceans (2010), pp. 1–6.

N. Farr, A. Chave, L. Freitag, and J. Preisig, “Optical modem technology for seafloor observatories,” in Proceedings of IEEE-Oceans (2006), pp. 1–6.

Fletcher, A. S.

H. G. Rao, A. S. Fletcher, S. A. Hamilton, N. D. Hardy, J. D. Moores, and T. M. Yarnall, “A burst-mode photon counting receiver with automatic channel estimation and bit rate detection,” in SPIE Conference LASE (2016), p. 97390H.

Freitag, L.

N. Farr, A. Chave, L. Freitag, and J. Preisig, “Optical modem technology for seafloor observatories,” in Proceedings of IEEE-Oceans (2006), pp. 1–6.

Gabriel, C.

C. Gabriel, M. A. Khalighi, P. Leon, S. Bourennane, and V. Rigaud, “Monte-carlo-based channel characterization for underwater optical communication systems,” IEEE/OSA J. Opt. Commun. Netw. 5, 1–12 (2013).
[Crossref]

Green, R. J.

Hamilton, S. A.

H. G. Rao, A. S. Fletcher, S. A. Hamilton, N. D. Hardy, J. D. Moores, and T. M. Yarnall, “A burst-mode photon counting receiver with automatic channel estimation and bit rate detection,” in SPIE Conference LASE (2016), p. 97390H.

Hardy, N. D.

H. G. Rao, A. S. Fletcher, S. A. Hamilton, N. D. Hardy, J. D. Moores, and T. M. Yarnall, “A burst-mode photon counting receiver with automatic channel estimation and bit rate detection,” in SPIE Conference LASE (2016), p. 97390H.

He, Y.

X. Hu, S. Hu, T. Zhou, Y. He, X. Zhu, and W. Chen, “Rapid estimation of the maximum communication distance for an underwater laser communication system,” Chin. J. Lasers 42, 0805007 (2015).
[Crossref]

Herceg, M.

J. Milanovic, M. Herceg, M. Vranjes, and J. Job, “Method for bandwidth efficiency increasing of m-ary ppm transmitted-reference uwb communication systems,” Wirel. Pers. Commun. 83, 1–18 (2015).
[Crossref]

Hiskett, P. A.

P. A. Hiskett and R. Lamb, “A photon-counting optical communication system for underwater data transfer,” in Electro-Optical Remote Sensing, Photonic Technologies, and Applications VI (2012), p. 14.

Hu, L.

Hu, S.

S. Hu, L. Mi, T. Zhou, and W. Chen, “Viterbi equalization for long-distance, high-speed underwater laser communication,” Opt. Eng. 56, 076101 (2017).
[Crossref]

X. Hu, S. Hu, T. Zhou, Y. He, X. Zhu, and W. Chen, “Rapid estimation of the maximum communication distance for an underwater laser communication system,” Chin. J. Lasers 42, 0805007 (2015).
[Crossref]

Hu, X.

X. Hu, S. Hu, T. Zhou, Y. He, X. Zhu, and W. Chen, “Rapid estimation of the maximum communication distance for an underwater laser communication system,” Chin. J. Lasers 42, 0805007 (2015).
[Crossref]

Iwai, T.

K. Yu and T. Iwai, “Hybrid mie-mcml monte carlo simulation of light propagation in skin layers,” in International Conference on Optical Particle Characterization, (2014), p. 923206.

Job, J.

J. Milanovic, M. Herceg, M. Vranjes, and J. Job, “Method for bandwidth efficiency increasing of m-ary ppm transmitted-reference uwb communication systems,” Wirel. Pers. Commun. 83, 1–18 (2015).
[Crossref]

Johnson, L. J.

Kachouri, A.

N. Nasri, L. Andrieux, A. Kachouri, and M. Samet, “Efficient encoding and decoding schemes for wireless underwater communication systems,” in International Multi-Conference on Systems Signals and Devices, (2010), pp. 1–6.

Kedar, D.

S. Arnon and D. Kedar, “Non-line-of-sight underwater optical wireless communication network,” J. Opt. Soc. Am. A Opt. Image Sci. & Vis. 26, 530 (2009).
[Crossref]

Khalighi, M. A.

C. Gabriel, M. A. Khalighi, P. Leon, S. Bourennane, and V. Rigaud, “Monte-carlo-based channel characterization for underwater optical communication systems,” IEEE/OSA J. Opt. Commun. Netw. 5, 1–12 (2013).
[Crossref]

Lamb, R.

P. A. Hiskett and R. Lamb, “A photon-counting optical communication system for underwater data transfer,” in Electro-Optical Remote Sensing, Photonic Technologies, and Applications VI (2012), p. 14.

Lanzagorta, M.

M. Lanzagorta, Underwater Communications (Morgan & Claypool, 2012).

Leeson, M. S.

Leon, P.

C. Gabriel, M. A. Khalighi, P. Leon, S. Bourennane, and V. Rigaud, “Monte-carlo-based channel characterization for underwater optical communication systems,” IEEE/OSA J. Opt. Commun. Netw. 5, 1–12 (2013).
[Crossref]

Li, Z.

Lindstrom, C. E.

C. E. Lindstrom, “Underwater propagation of high-data-rate laser communications pulses,” Proc. SPIE1750, 419–428 (1992).

Liu, R.

Liu, X.

Liu, Z.

Mi, L.

S. Hu, L. Mi, T. Zhou, and W. Chen, “Viterbi equalization for long-distance, high-speed underwater laser communication,” Opt. Eng. 56, 076101 (2017).
[Crossref]

Milanovic, J.

J. Milanovic, M. Herceg, M. Vranjes, and J. Job, “Method for bandwidth efficiency increasing of m-ary ppm transmitted-reference uwb communication systems,” Wirel. Pers. Commun. 83, 1–18 (2015).
[Crossref]

Moores, J. D.

H. G. Rao, A. S. Fletcher, S. A. Hamilton, N. D. Hardy, J. D. Moores, and T. M. Yarnall, “A burst-mode photon counting receiver with automatic channel estimation and bit rate detection,” in SPIE Conference LASE (2016), p. 97390H.

Murphy, R. J.

D. O. Caplan, B. S. Robinson, R. J. Murphy, and M. L. Stevens, “Demonstration of 2.5 gslot/s optically-preamplified m-ppm with 4 photons/bit receiver sensitivity,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, (Optical Society of America, 2005), p. PDP32.

Nasri, N.

N. Nasri, L. Andrieux, A. Kachouri, and M. Samet, “Efficient encoding and decoding schemes for wireless underwater communication systems,” in International Multi-Conference on Systems Signals and Devices, (2010), pp. 1–6.

Phillips, A. J.

A. J. Phillips, R. A. Cryan, and J. M. Senior, “An optically preamplified intersatellite ppm receiver employing maximum likelihood detection,” IEEE Photon. Technol. Lett. 8, 691–693 (1996).
[Crossref]

Pierce, J.

J. Pierce, “Optical channels: Practical limits with photon counting,” IEEE Trans. Commun. 26, 1819–1821 (1978).
[Crossref]

Piskozub, J.

Pontbriand, C.

N. Farr, A. Bowen, J. Ware, C. Pontbriand, and M. Tivey, “An integrated, underwater optical/acoustic communications system,” in Proceedings of IEEE-Oceans (2010), pp. 1–6.

Preisig, J.

N. Farr, A. Chave, L. Freitag, and J. Preisig, “Optical modem technology for seafloor observatories,” in Proceedings of IEEE-Oceans (2006), pp. 1–6.

Qiu, Z. J.

Rao, H. G.

H. G. Rao, A. S. Fletcher, S. A. Hamilton, N. D. Hardy, J. D. Moores, and T. M. Yarnall, “A burst-mode photon counting receiver with automatic channel estimation and bit rate detection,” in SPIE Conference LASE (2016), p. 97390H.

Rigaud, V.

C. Gabriel, M. A. Khalighi, P. Leon, S. Bourennane, and V. Rigaud, “Monte-carlo-based channel characterization for underwater optical communication systems,” IEEE/OSA J. Opt. Commun. Netw. 5, 1–12 (2013).
[Crossref]

Robinson, B. S.

D. O. Caplan, B. S. Robinson, R. J. Murphy, and M. L. Stevens, “Demonstration of 2.5 gslot/s optically-preamplified m-ppm with 4 photons/bit receiver sensitivity,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, (Optical Society of America, 2005), p. PDP32.

Samet, M.

N. Nasri, L. Andrieux, A. Kachouri, and M. Samet, “Efficient encoding and decoding schemes for wireless underwater communication systems,” in International Multi-Conference on Systems Signals and Devices, (2010), pp. 1–6.

Senior, J. M.

A. J. Phillips, R. A. Cryan, and J. M. Senior, “An optically preamplified intersatellite ppm receiver employing maximum likelihood detection,” IEEE Photon. Technol. Lett. 8, 691–693 (1996).
[Crossref]

Spiers, G. D.

Stevens, M. L.

D. O. Caplan, B. S. Robinson, R. J. Murphy, and M. L. Stevens, “Demonstration of 2.5 gslot/s optically-preamplified m-ppm with 4 photons/bit receiver sensitivity,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, (Optical Society of America, 2005), p. PDP32.

Tian, P.

Tivey, M.

N. Farr, A. Bowen, J. Ware, C. Pontbriand, and M. Tivey, “An integrated, underwater optical/acoustic communications system,” in Proceedings of IEEE-Oceans (2010), pp. 1–6.

Vranjes, M.

J. Milanovic, M. Herceg, M. Vranjes, and J. Job, “Method for bandwidth efficiency increasing of m-ary ppm transmitted-reference uwb communication systems,” Wirel. Pers. Commun. 83, 1–18 (2015).
[Crossref]

Ware, J.

N. Farr, A. Bowen, J. Ware, C. Pontbriand, and M. Tivey, “An integrated, underwater optical/acoustic communications system,” in Proceedings of IEEE-Oceans (2010), pp. 1–6.

Yarnall, T. M.

H. G. Rao, A. S. Fletcher, S. A. Hamilton, N. D. Hardy, J. D. Moores, and T. M. Yarnall, “A burst-mode photon counting receiver with automatic channel estimation and bit rate detection,” in SPIE Conference LASE (2016), p. 97390H.

Yi, S.

Yi, X.

Yu, K.

K. Yu and T. Iwai, “Hybrid mie-mcml monte carlo simulation of light propagation in skin layers,” in International Conference on Optical Particle Characterization, (2014), p. 923206.

Zheng, L.

Zhou, T.

S. Hu, L. Mi, T. Zhou, and W. Chen, “Viterbi equalization for long-distance, high-speed underwater laser communication,” Opt. Eng. 56, 076101 (2017).
[Crossref]

X. Hu, S. Hu, T. Zhou, Y. He, X. Zhu, and W. Chen, “Rapid estimation of the maximum communication distance for an underwater laser communication system,” Chin. J. Lasers 42, 0805007 (2015).
[Crossref]

Zhou, X.

Zhu, X.

X. Hu, S. Hu, T. Zhou, Y. He, X. Zhu, and W. Chen, “Rapid estimation of the maximum communication distance for an underwater laser communication system,” Chin. J. Lasers 42, 0805007 (2015).
[Crossref]

Appl. Opt. (2)

Chin. J. Lasers (1)

X. Hu, S. Hu, T. Zhou, Y. He, X. Zhu, and W. Chen, “Rapid estimation of the maximum communication distance for an underwater laser communication system,” Chin. J. Lasers 42, 0805007 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. J. Phillips, R. A. Cryan, and J. M. Senior, “An optically preamplified intersatellite ppm receiver employing maximum likelihood detection,” IEEE Photon. Technol. Lett. 8, 691–693 (1996).
[Crossref]

IEEE Trans. Commun. (1)

J. Pierce, “Optical channels: Practical limits with photon counting,” IEEE Trans. Commun. 26, 1819–1821 (1978).
[Crossref]

IEEE/OSA J. Opt. Commun. Netw. (1)

C. Gabriel, M. A. Khalighi, P. Leon, S. Bourennane, and V. Rigaud, “Monte-carlo-based channel characterization for underwater optical communication systems,” IEEE/OSA J. Opt. Commun. Netw. 5, 1–12 (2013).
[Crossref]

J. Opt. Soc. Am. A Opt. Image Sci. & Vis. (1)

S. Arnon and D. Kedar, “Non-line-of-sight underwater optical wireless communication network,” J. Opt. Soc. Am. A Opt. Image Sci. & Vis. 26, 530 (2009).
[Crossref]

Opt. Eng. (1)

S. Hu, L. Mi, T. Zhou, and W. Chen, “Viterbi equalization for long-distance, high-speed underwater laser communication,” Opt. Eng. 56, 076101 (2017).
[Crossref]

Opt. Express (2)

Wirel. Pers. Commun. (1)

J. Milanovic, M. Herceg, M. Vranjes, and J. Job, “Method for bandwidth efficiency increasing of m-ary ppm transmitted-reference uwb communication systems,” Wirel. Pers. Commun. 83, 1–18 (2015).
[Crossref]

Other (11)

T. Sawa, “Study of adaptive underwater optical wireless communication with photomultiplier tube,” http://www.godac.jamstec.go.jp/catalog/data/doc_catalog/media/KR17-11_leg2_all.pdf .

C. E. Lindstrom, “Underwater propagation of high-data-rate laser communications pulses,” Proc. SPIE1750, 419–428 (1992).

N. Nasri, L. Andrieux, A. Kachouri, and M. Samet, “Efficient encoding and decoding schemes for wireless underwater communication systems,” in International Multi-Conference on Systems Signals and Devices, (2010), pp. 1–6.

K. Yu and T. Iwai, “Hybrid mie-mcml monte carlo simulation of light propagation in skin layers,” in International Conference on Optical Particle Characterization, (2014), p. 923206.

P. A. Hiskett and R. Lamb, “A photon-counting optical communication system for underwater data transfer,” in Electro-Optical Remote Sensing, Photonic Technologies, and Applications VI (2012), p. 14.

H. G. Rao, A. S. Fletcher, S. A. Hamilton, N. D. Hardy, J. D. Moores, and T. M. Yarnall, “A burst-mode photon counting receiver with automatic channel estimation and bit rate detection,” in SPIE Conference LASE (2016), p. 97390H.

D. M. Boroson, C. C. Chen, and B. Edwards, “Overview of the mars laser communications demonstration project,” in LEOS Summer Topical Meetings, 2005 Digest of the,(2003), pp. 5–7.

N. Farr, A. Chave, L. Freitag, and J. Preisig, “Optical modem technology for seafloor observatories,” in Proceedings of IEEE-Oceans (2006), pp. 1–6.

M. Lanzagorta, Underwater Communications (Morgan & Claypool, 2012).

N. Farr, A. Bowen, J. Ware, C. Pontbriand, and M. Tivey, “An integrated, underwater optical/acoustic communications system,” in Proceedings of IEEE-Oceans (2010), pp. 1–6.

D. O. Caplan, B. S. Robinson, R. J. Murphy, and M. L. Stevens, “Demonstration of 2.5 gslot/s optically-preamplified m-ppm with 4 photons/bit receiver sensitivity,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, (Optical Society of America, 2005), p. PDP32.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Pulse stretching for Jerlov IB, II, and III water channels.
Fig. 2
Fig. 2 256-PPM timing sequence.
Fig. 3
Fig. 3 Frame structure.
Fig. 4
Fig. 4 Diagram of the underwater laser communication system.
Fig. 5
Fig. 5 FPGA function diagram.
Fig. 6
Fig. 6 Equalizer function diagram.
Fig. 7
Fig. 7 Diagram of the water tank experiment.
Fig. 8
Fig. 8 Received photon counts per symbol in different communication distances.
Fig. 9
Fig. 9 Values of n0, n1, and nth in different communication distances.
Fig. 10
Fig. 10 SER performance with different code rate RS codes for 256-PPM.
Fig. 11
Fig. 11 SER performance with different code rate LDPC codes for 256-PPM.
Fig. 12
Fig. 12 SER performances of the RS codes in different communication distances.
Fig. 13
Fig. 13 SER performances of the LDPC codes in different communication distances.

Tables (5)

Tables Icon

Table 1 Jerlov IB, II, and III water channel parameters.

Tables Icon

Table 2 Transmitter parameters.

Tables Icon

Table 3 Receiver parameters.

Tables Icon

Table 4 Simulated received photon number and link loss.

Tables Icon

Table 5 Communication performance of the 1/2 RS codes.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S E R = 1 ( i = 0 n t n 0 i i ! e n 0 ) M 1 ( i = n t n 1 i i ! e n 1 )
S N R = n s n b = n 1 n 0 n 0 ,
L L R = l n p ( 1 | n ) p ( 0 | n ) = l n p ( n | 1 ) p ( n | 0 ) = l n e n 1 n 1 n e n 0 n 0 n = n 0 n 1 + n ( l n ( n 1 ) l n ( n 0 ) ) .
n t h = n 1 n 0 l n ( n 1 ) l n ( n 0 ) .
R = k n .
I ( z ) = I ( 0 ) e c z = I ( 0 ) e ( a + b ) z ,

Metrics