Abstract

Using band structure analysis and reflectance spectrum simulations, we show that dielectric helices exhibit strong circular dichroism and have polarization stop gaps for light propagating perpendicular to the helices, despite the lack of helical symmetry along this direction. We apply perturbation theory to quantitatively explain these effects. We also demonstrate that even for a single layer of dielectric helices similar phenomena exist. As a result, the helix array can operate as a dielectric chiral mirror. This dielectric chiral mirror can completely reflect normally incident light with one circular polarization (right- or left-handed as determined by the handedness of the helices) without changing the polarization’s handedness while allowing light with the opposite circular polarization to be entirely transmitted.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual circular polarization gaps in helix photonic metamaterials

Tzu-Hung Kao, Lung-Yu Chang Chien, and Yu-Chueh Hung
Opt. Express 23(19) 24416-24425 (2015)

All-dielectric planar chiral metasurface with gradient geometric phase

Zhijie Ma, Yi Li, Yang Li, Yandong Gong, Stefan A. Maier, and Minghui Hong
Opt. Express 26(5) 6067-6078 (2018)

Origin and manipulation of band gaps in three-dimensional dielectric helix structures

Ho-Ting Tung, Yu-Kai Chen, Pei-Lun Jheng, and Yu-Chueh Hung
Opt. Express 25(15) 17627-17638 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
    [Crossref] [PubMed]
  2. S. L. Prosvirnin and N. I. Zheludev, “Polarization effects in the diffraction of light by a planar chiral structure,” Phys. Rev. E 71, 037603 (2005).
    [Crossref]
  3. M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).
    [Crossref]
  4. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
    [Crossref]
  5. Y. Zhao, M. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
    [Crossref] [PubMed]
  6. Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt. 15, 023001 (2013).
    [Crossref]
  7. Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27, 412001 (2016).
    [Crossref] [PubMed]
  8. C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105, 247401 (2010).
    [Crossref]
  9. C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
    [Crossref] [PubMed]
  10. J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7, 41893 (2017).
    [Crossref] [PubMed]
  11. A. Chutinan and S. Noda, “Spiral three-dimensional photonic-band-gap structure,” Phys. Rev. B 57, 2006 (1998).
    [Crossref]
  12. O. Toader and S. John, “Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals,” Science 292, 1133–1135 (2001).
    [Crossref] [PubMed]
  13. S. Erten, A. Lakhtakia, and G. D. Barber, “Experimental investigation of circular Bragg phenomenon for oblique incidence,” J. Opt. Soc. Am. A 32, 764–770 (2015).
    [Crossref]
  14. J. C. W. Lee and C. T. Chan, “Polarization gaps in spiral photonic crystals,” Opt. Express 13, 8083–8088 (2005).
    [Crossref] [PubMed]
  15. T.-H. Kao, L.-Y. C. Chien, and Y.-C. Hung, “Dual circular polarization gaps in helix photonic metamaterials,” Opt. Express 23, 24416–24425 (2015).
    [Crossref] [PubMed]
  16. H.-T. Tung, Y.-K. Chen, P.-L. Jheng, and Y.-C. Hung, “Origin and manipulation of band gaps in three-dimensional dielectric helix structures,” Opt. Express 25, 17627–17638 (2017).
    [Crossref] [PubMed]
  17. Y. Liu, Z. Yan, Q. Lin, X. Guo, M. Han, K. Nan, K.-C. Hwang, Y. Huang, Y. Zhang, and J. A. Rogers, “Guided formation of 3D helical mesostructures by mechanical buckling: Analytical modeling and experimental validation,” Adv. Funct. Mater. 26, 2909–2918 (2016).
    [Crossref] [PubMed]
  18. S. Lee, B. Kang, H. Keum, N. Ahmed, J. A. Rogers, P. M. Ferreira, S. Kim, and B. Min, “Heterogeneously assembled metamaterials and metadevices via 3D modular transfer printing,” Sci. Rep. 6, 27621 (2016).
    [Crossref] [PubMed]
  19. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [Crossref] [PubMed]
  20. S. Sandhu and S. Fan, “FDTD Plus,” http://stanford.wikia.com/wiki/FDTD_Plus . Accessed: 2018-01-10.
  21. M. Skorobogatiy and J. Yang, Fundamentals of Photonic Crystal Guiding (Cambridge University, 2009).
  22. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
    [Crossref]
  23. E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106, 221901 (2015).
    [Crossref]
  24. L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K.-T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17, 7102–7109 (2017).
    [Crossref] [PubMed]
  25. Y. Guo, M. Xiao, and S. Fan, “Topologically protected complete polarization conversion,” Phys. Rev. Lett. 119, 167401 (2017).
    [Crossref] [PubMed]

2017 (4)

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7, 41893 (2017).
[Crossref] [PubMed]

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K.-T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17, 7102–7109 (2017).
[Crossref] [PubMed]

Y. Guo, M. Xiao, and S. Fan, “Topologically protected complete polarization conversion,” Phys. Rev. Lett. 119, 167401 (2017).
[Crossref] [PubMed]

H.-T. Tung, Y.-K. Chen, P.-L. Jheng, and Y.-C. Hung, “Origin and manipulation of band gaps in three-dimensional dielectric helix structures,” Opt. Express 25, 17627–17638 (2017).
[Crossref] [PubMed]

2016 (3)

Y. Liu, Z. Yan, Q. Lin, X. Guo, M. Han, K. Nan, K.-C. Hwang, Y. Huang, Y. Zhang, and J. A. Rogers, “Guided formation of 3D helical mesostructures by mechanical buckling: Analytical modeling and experimental validation,” Adv. Funct. Mater. 26, 2909–2918 (2016).
[Crossref] [PubMed]

S. Lee, B. Kang, H. Keum, N. Ahmed, J. A. Rogers, P. M. Ferreira, S. Kim, and B. Min, “Heterogeneously assembled metamaterials and metadevices via 3D modular transfer printing,” Sci. Rep. 6, 27621 (2016).
[Crossref] [PubMed]

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27, 412001 (2016).
[Crossref] [PubMed]

2015 (3)

2013 (1)

Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt. 15, 023001 (2013).
[Crossref]

2012 (1)

Y. Zhao, M. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

2011 (1)

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[Crossref] [PubMed]

2010 (1)

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105, 247401 (2010).
[Crossref]

2007 (2)

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).
[Crossref]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[Crossref]

2005 (2)

S. L. Prosvirnin and N. I. Zheludev, “Polarization effects in the diffraction of light by a planar chiral structure,” Phys. Rev. E 71, 037603 (2005).
[Crossref]

J. C. W. Lee and C. T. Chan, “Polarization gaps in spiral photonic crystals,” Opt. Express 13, 8083–8088 (2005).
[Crossref] [PubMed]

2004 (1)

J. B. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
[Crossref] [PubMed]

2002 (1)

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

2001 (2)

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref] [PubMed]

O. Toader and S. John, “Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals,” Science 292, 1133–1135 (2001).
[Crossref] [PubMed]

1998 (1)

A. Chutinan and S. Noda, “Spiral three-dimensional photonic-band-gap structure,” Phys. Rev. B 57, 2006 (1998).
[Crossref]

Ahmed, N.

S. Lee, B. Kang, H. Keum, N. Ahmed, J. A. Rogers, P. M. Ferreira, S. Kim, and B. Min, “Heterogeneously assembled metamaterials and metadevices via 3D modular transfer printing,” Sci. Rep. 6, 27621 (2016).
[Crossref] [PubMed]

Alù, A.

Y. Zhao, M. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Barber, G. D.

Belkin, M.

Y. Zhao, M. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Cai, W.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K.-T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17, 7102–7109 (2017).
[Crossref] [PubMed]

Cao, B.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7, 41893 (2017).
[Crossref] [PubMed]

Chan, C. T.

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[Crossref] [PubMed]

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105, 247401 (2010).
[Crossref]

J. C. W. Lee and C. T. Chan, “Polarization gaps in spiral photonic crystals,” Opt. Express 13, 8083–8088 (2005).
[Crossref] [PubMed]

Chen, H.

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[Crossref] [PubMed]

Chen, Y.-K.

Cheng, F.

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27, 412001 (2016).
[Crossref] [PubMed]

Chien, L.-Y. C.

Chutinan, A.

A. Chutinan and S. Noda, “Spiral three-dimensional photonic-band-gap structure,” Phys. Rev. B 57, 2006 (1998).
[Crossref]

Decker, M.

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).
[Crossref]

Deubel, M.

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).
[Crossref]

Erten, S.

Fan, S.

Y. Guo, M. Xiao, and S. Fan, “Topologically protected complete polarization conversion,” Phys. Rev. Lett. 119, 167401 (2017).
[Crossref] [PubMed]

Ferreira, P. M.

S. Lee, B. Kang, H. Keum, N. Ahmed, J. A. Rogers, P. M. Ferreira, S. Kim, and B. Min, “Heterogeneously assembled metamaterials and metadevices via 3D modular transfer printing,” Sci. Rep. 6, 27621 (2016).
[Crossref] [PubMed]

Fink, Y.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

Genov, D. A.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[Crossref]

Guo, P.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7, 41893 (2017).
[Crossref] [PubMed]

Guo, X.

Y. Liu, Z. Yan, Q. Lin, X. Guo, M. Han, K. Nan, K.-C. Hwang, Y. Huang, Y. Zhang, and J. A. Rogers, “Guided formation of 3D helical mesostructures by mechanical buckling: Analytical modeling and experimental validation,” Adv. Funct. Mater. 26, 2909–2918 (2016).
[Crossref] [PubMed]

Guo, Y.

Y. Guo, M. Xiao, and S. Fan, “Topologically protected complete polarization conversion,” Phys. Rev. Lett. 119, 167401 (2017).
[Crossref] [PubMed]

Han, M.

Y. Liu, Z. Yan, Q. Lin, X. Guo, M. Han, K. Nan, K.-C. Hwang, Y. Huang, Y. Zhang, and J. A. Rogers, “Guided formation of 3D helical mesostructures by mechanical buckling: Analytical modeling and experimental validation,” Adv. Funct. Mater. 26, 2909–2918 (2016).
[Crossref] [PubMed]

Hu, J.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7, 41893 (2017).
[Crossref] [PubMed]

Huang, Y.

Y. Liu, Z. Yan, Q. Lin, X. Guo, M. Han, K. Nan, K.-C. Hwang, Y. Huang, Y. Zhang, and J. A. Rogers, “Guided formation of 3D helical mesostructures by mechanical buckling: Analytical modeling and experimental validation,” Adv. Funct. Mater. 26, 2909–2918 (2016).
[Crossref] [PubMed]

Hung, Y.-C.

Hwang, K.-C.

Y. Liu, Z. Yan, Q. Lin, X. Guo, M. Han, K. Nan, K.-C. Hwang, Y. Huang, Y. Zhang, and J. A. Rogers, “Guided formation of 3D helical mesostructures by mechanical buckling: Analytical modeling and experimental validation,” Adv. Funct. Mater. 26, 2909–2918 (2016).
[Crossref] [PubMed]

Ibanescu, M.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

Jheng, P.-L.

Joannopoulos, J. D.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref] [PubMed]

John, S.

O. Toader and S. John, “Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals,” Science 292, 1133–1135 (2001).
[Crossref] [PubMed]

Johnson, S. G.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref] [PubMed]

Kang, B.

S. Lee, B. Kang, H. Keum, N. Ahmed, J. A. Rogers, P. M. Ferreira, S. Kim, and B. Min, “Heterogeneously assembled metamaterials and metadevices via 3D modular transfer printing,” Sci. Rep. 6, 27621 (2016).
[Crossref] [PubMed]

Kang, L.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K.-T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17, 7102–7109 (2017).
[Crossref] [PubMed]

Kao, T.-H.

Keum, H.

S. Lee, B. Kang, H. Keum, N. Ahmed, J. A. Rogers, P. M. Ferreira, S. Kim, and B. Min, “Heterogeneously assembled metamaterials and metadevices via 3D modular transfer printing,” Sci. Rep. 6, 27621 (2016).
[Crossref] [PubMed]

Kim, S.

S. Lee, B. Kang, H. Keum, N. Ahmed, J. A. Rogers, P. M. Ferreira, S. Kim, and B. Min, “Heterogeneously assembled metamaterials and metadevices via 3D modular transfer printing,” Sci. Rep. 6, 27621 (2016).
[Crossref] [PubMed]

Lakhtakia, A.

Lan, S.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K.-T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17, 7102–7109 (2017).
[Crossref] [PubMed]

Lee, J. C. W.

Lee, K.-T.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K.-T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17, 7102–7109 (2017).
[Crossref] [PubMed]

Lee, S.

S. Lee, B. Kang, H. Keum, N. Ahmed, J. A. Rogers, P. M. Ferreira, S. Kim, and B. Min, “Heterogeneously assembled metamaterials and metadevices via 3D modular transfer printing,” Sci. Rep. 6, 27621 (2016).
[Crossref] [PubMed]

Li, F.

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[Crossref] [PubMed]

Li, H.

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[Crossref] [PubMed]

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105, 247401 (2010).
[Crossref]

Li, Z.

Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt. 15, 023001 (2013).
[Crossref]

Lin, Q.

Y. Liu, Z. Yan, Q. Lin, X. Guo, M. Han, K. Nan, K.-C. Hwang, Y. Huang, Y. Zhang, and J. A. Rogers, “Guided formation of 3D helical mesostructures by mechanical buckling: Analytical modeling and experimental validation,” Adv. Funct. Mater. 26, 2909–2918 (2016).
[Crossref] [PubMed]

Lin, Y.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7, 41893 (2017).
[Crossref] [PubMed]

Linden, S.

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).
[Crossref]

Liu, H.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[Crossref]

Liu, Y.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K.-T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17, 7102–7109 (2017).
[Crossref] [PubMed]

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27, 412001 (2016).
[Crossref] [PubMed]

Y. Liu, Z. Yan, Q. Lin, X. Guo, M. Han, K. Nan, K.-C. Hwang, Y. Huang, Y. Zhang, and J. A. Rogers, “Guided formation of 3D helical mesostructures by mechanical buckling: Analytical modeling and experimental validation,” Adv. Funct. Mater. 26, 2909–2918 (2016).
[Crossref] [PubMed]

Liu, Y. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[Crossref]

Liu, Z. W.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[Crossref]

Min, B.

S. Lee, B. Kang, H. Keum, N. Ahmed, J. A. Rogers, P. M. Ferreira, S. Kim, and B. Min, “Heterogeneously assembled metamaterials and metadevices via 3D modular transfer printing,” Sci. Rep. 6, 27621 (2016).
[Crossref] [PubMed]

Mutlu, M.

Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt. 15, 023001 (2013).
[Crossref]

Nan, K.

Y. Liu, Z. Yan, Q. Lin, X. Guo, M. Han, K. Nan, K.-C. Hwang, Y. Huang, Y. Zhang, and J. A. Rogers, “Guided formation of 3D helical mesostructures by mechanical buckling: Analytical modeling and experimental validation,” Adv. Funct. Mater. 26, 2909–2918 (2016).
[Crossref] [PubMed]

Noda, S.

A. Chutinan and S. Noda, “Spiral three-dimensional photonic-band-gap structure,” Phys. Rev. B 57, 2006 (1998).
[Crossref]

Ozbay, E.

Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt. 15, 023001 (2013).
[Crossref]

Pendry, J. B.

J. B. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
[Crossref] [PubMed]

Plum, E.

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106, 221901 (2015).
[Crossref]

Prosvirnin, S. L.

S. L. Prosvirnin and N. I. Zheludev, “Polarization effects in the diffraction of light by a planar chiral structure,” Phys. Rev. E 71, 037603 (2005).
[Crossref]

Rodrigues, S. P.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K.-T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17, 7102–7109 (2017).
[Crossref] [PubMed]

Rogers, J. A.

Y. Liu, Z. Yan, Q. Lin, X. Guo, M. Han, K. Nan, K.-C. Hwang, Y. Huang, Y. Zhang, and J. A. Rogers, “Guided formation of 3D helical mesostructures by mechanical buckling: Analytical modeling and experimental validation,” Adv. Funct. Mater. 26, 2909–2918 (2016).
[Crossref] [PubMed]

S. Lee, B. Kang, H. Keum, N. Ahmed, J. A. Rogers, P. M. Ferreira, S. Kim, and B. Min, “Heterogeneously assembled metamaterials and metadevices via 3D modular transfer printing,” Sci. Rep. 6, 27621 (2016).
[Crossref] [PubMed]

Skorobogatiy, M.

M. Skorobogatiy and J. Yang, Fundamentals of Photonic Crystal Guiding (Cambridge University, 2009).

Skorobogatiy, M. A.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

Sun, C.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[Crossref]

Taghinejad, M.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K.-T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17, 7102–7109 (2017).
[Crossref] [PubMed]

Thiel, M.

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).
[Crossref]

Toader, O.

O. Toader and S. John, “Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals,” Science 292, 1133–1135 (2001).
[Crossref] [PubMed]

Tung, H.-T.

Urbas, A.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K.-T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17, 7102–7109 (2017).
[Crossref] [PubMed]

von Freymann, G.

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).
[Crossref]

Wang, C.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7, 41893 (2017).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27, 412001 (2016).
[Crossref] [PubMed]

Wegener, M.

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).
[Crossref]

Wei, Z.

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105, 247401 (2010).
[Crossref]

Weisberg, O.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

Werner, D. H.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K.-T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17, 7102–7109 (2017).
[Crossref] [PubMed]

Winsor, T.

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27, 412001 (2016).
[Crossref] [PubMed]

Wu, C.

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[Crossref] [PubMed]

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105, 247401 (2010).
[Crossref]

Wu, D. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[Crossref]

Xiao, M.

Y. Guo, M. Xiao, and S. Fan, “Topologically protected complete polarization conversion,” Phys. Rev. Lett. 119, 167401 (2017).
[Crossref] [PubMed]

Yan, Z.

Y. Liu, Z. Yan, Q. Lin, X. Guo, M. Han, K. Nan, K.-C. Hwang, Y. Huang, Y. Zhang, and J. A. Rogers, “Guided formation of 3D helical mesostructures by mechanical buckling: Analytical modeling and experimental validation,” Adv. Funct. Mater. 26, 2909–2918 (2016).
[Crossref] [PubMed]

Yang, J.

M. Skorobogatiy and J. Yang, Fundamentals of Photonic Crystal Guiding (Cambridge University, 2009).

Yu, X.

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[Crossref] [PubMed]

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105, 247401 (2010).
[Crossref]

Zhang, X.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[Crossref]

Zhang, Y.

Y. Liu, Z. Yan, Q. Lin, X. Guo, M. Han, K. Nan, K.-C. Hwang, Y. Huang, Y. Zhang, and J. A. Rogers, “Guided formation of 3D helical mesostructures by mechanical buckling: Analytical modeling and experimental validation,” Adv. Funct. Mater. 26, 2909–2918 (2016).
[Crossref] [PubMed]

Zhao, X.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7, 41893 (2017).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao, M. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Zheludev, N. I.

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106, 221901 (2015).
[Crossref]

S. L. Prosvirnin and N. I. Zheludev, “Polarization effects in the diffraction of light by a planar chiral structure,” Phys. Rev. E 71, 037603 (2005).
[Crossref]

Zhu, A.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7, 41893 (2017).
[Crossref] [PubMed]

Zhu, S. N.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[Crossref]

Zhu, X.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7, 41893 (2017).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

Y. Liu, Z. Yan, Q. Lin, X. Guo, M. Han, K. Nan, K.-C. Hwang, Y. Huang, Y. Zhang, and J. A. Rogers, “Guided formation of 3D helical mesostructures by mechanical buckling: Analytical modeling and experimental validation,” Adv. Funct. Mater. 26, 2909–2918 (2016).
[Crossref] [PubMed]

Adv. Mater. (1)

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).
[Crossref]

Appl. Phys. Lett. (1)

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106, 221901 (2015).
[Crossref]

J. Opt. (1)

Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt. 15, 023001 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

Nano Lett. (1)

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K.-T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17, 7102–7109 (2017).
[Crossref] [PubMed]

Nanotechnology (1)

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27, 412001 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. Zhao, M. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Opt. Express (4)

Phys. Rev. B (2)

A. Chutinan and S. Noda, “Spiral three-dimensional photonic-band-gap structure,” Phys. Rev. B 57, 2006 (1998).
[Crossref]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[Crossref]

Phys. Rev. E (2)

S. L. Prosvirnin and N. I. Zheludev, “Polarization effects in the diffraction of light by a planar chiral structure,” Phys. Rev. E 71, 037603 (2005).
[Crossref]

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

Phys. Rev. Lett. (3)

Y. Guo, M. Xiao, and S. Fan, “Topologically protected complete polarization conversion,” Phys. Rev. Lett. 119, 167401 (2017).
[Crossref] [PubMed]

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105, 247401 (2010).
[Crossref]

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[Crossref] [PubMed]

Sci. Rep. (2)

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7, 41893 (2017).
[Crossref] [PubMed]

S. Lee, B. Kang, H. Keum, N. Ahmed, J. A. Rogers, P. M. Ferreira, S. Kim, and B. Min, “Heterogeneously assembled metamaterials and metadevices via 3D modular transfer printing,” Sci. Rep. 6, 27621 (2016).
[Crossref] [PubMed]

Science (2)

O. Toader and S. John, “Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals,” Science 292, 1133–1135 (2001).
[Crossref] [PubMed]

J. B. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
[Crossref] [PubMed]

Other (2)

S. Sandhu and S. Fan, “FDTD Plus,” http://stanford.wikia.com/wiki/FDTD_Plus . Accessed: 2018-01-10.

M. Skorobogatiy and J. Yang, Fundamentals of Photonic Crystal Guiding (Cambridge University, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) is a schematic diagram of a helix array which is parameterized by the lattice constant a, pitch length p, wire radius r and helix radius R. We specifically worked with right-handed helices that have p = 1.29a, r = 0.13a and R = 0.29a. Helices are made of silicon (εhelix = 11.7) and the host medium is air (εhost = 1). We consider N number of helices for reflectance calculations for the direction of propagation perpendicular to the helices (the ΓX direction). A metasurface has N = 1 and a helix array has N = ∞. (b) shows the points of interest in the first Brillouin zone. (c) and (d) are, respectively, the views along the helix axis and along the x axis.
Fig. 2
Fig. 2 (a) The intensity reflectance spectrum for incident light parallel to the helix axis (z axis). There are 4 turns of helices in this direction and the structure is periodic in x and y directions. (b) The band structure along the ΓZ direction and (c) along the ΓX direction of the helix array illustrated in Fig. 1. The markers on bands characterize the eigenmodes whose CD indices are denoted by the color and coupling indices are represented by the size of the markers. (d) and (e) are the reflectance spectra for propagation along the ΓX direction for the helix stacks of N = 4 layers and N = 1 layer, respectively. The helices are periodic in the z direction in (d) and (e). In (a), (d), and (e), red and blue lines represent the reflectance spectra when the incident light are of RCP or LCP, respectively.
Fig. 3
Fig. 3 (a) Cross sections are taken along the direction of propagation given by x0 (i, ii, iii, iv, v). (b) The magnetic field intensities of the first four bands’ eigenmodes for the wave vector k⃗ = (0.3, 0, 0)2π/a. The length and the direction of the white arrow on each cross section show the average magnetic field’s intensity and direction, respectively. Tracing the arrows one can see that the fields rotate either in the clockwise (for left-handed elliptically polarized) or counter-clockwise (for right-handed elliptically polarized) direction. Bands 1 and 4 are predominately right-handed elliptically polarized while bands 2 and 3 are predominately left-handed elliptically polarized as predicted by the eigenmode analysis shown in Fig. 2(c).
Fig. 4
Fig. 4 The band structures of the rod array (a) and the helix arrays with (b) R = 0.07a and (c) R = 0.14a. As R increases, the chirality increases. The eigenmodes, as a result, become more elliptically polarized. In (b) and (c), the CD indices and the coupling indices of the eigenmodes are denoted by the markers’ color and size, respectively.
Fig. 5
Fig. 5 Comparison of the perturbation theory solution (solid dots) and the direct numerical calculation (lines) of the average CD indices of the first four bands along the ΓX direction for a helix array with r = 0.13a, (a) p = 1.29a and varying R, (b) R = 0.1a and varying p, (c) p = 1.29a, R = 0.1a and varying ã.
Fig. 6
Fig. 6 The absolute value of the average CD index as a function of p and R for the first four bands for the structure in Fig. 1 along the ΓX direction.
Fig. 7
Fig. 7 The intensity reflectance ((d) and (f)), and transmittance ((e) and (g)) spectra for the incident wave with circular polarization ((d) and (e)) and linear polarization ((f) and (g)). (a), (b) and (c) illustrate how circularly polarized incident waves interact with an ordinary mirror and a helix metasurface. (h), (i) and (j) illustrate how linearly polarized incident waves interact with an ordinary mirror and a helix metasurface.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

CD = sgn ( k k ω ) η RCP η LCP η RCP + η LCP
η RCP ( LCP ) | [ 1 2 ( y ^ i z ^ ) ] H ( x , y , z ) d x d y d z | 2 V | H ( x , y , z ) | 2 d x d y d z ,
κ = η RCP + η LCP .
x ( t ) = R cos ( t ) , y ( t ) = R sin ( t ) , z ( t ) = p 2 π t ,
| E i = | E i 0 + j i E j 0 | Δ ε | E i 0 ω 0 , i 2 ω 0 , j 2 | E j 0 ,
E j 0 | Δ ε | E i 0 = d A d h d R [ ε ( E j 0 * E i 0 ) ε 1 ( D j 0 * D i 0 ) ] ,

Metrics