Abstract

A novel optical fiber liquid level sensor based on a hollow core Bragg fiber (HCBF) was proposed and demonstrated. The HCBF was first designed and successfully fabricated with periodic transmission band in the spectrum and a transmission loss of ~3.48 dB/cm. An inline optical fiber liquid-level sensor was fabricated by simply sandwiching a piece of HCBF between two single mode fibers. The sensing performance was experimentally tested. A linear liquid-level sensitivity of ~1.1 dB/mm, and fast response time less than 3s was obtained by the intensity demodulation measurement. The temperature and refractive index cross-sensitivities were also investigated. The experimental results indicate that our proposed structure has tiny temperature and RI dependence, which makes it a promising liquid level sensing platform for different liquids.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Reflective liquid level sensor based on modes conversion in thin-core fiber incorporating tilted fiber Bragg grating

Bobo Gu, Wenliang Qi, Yanyan Zhou, Zhifang Wu, Perry Ping Shum, and Feng Luan
Opt. Express 22(10) 11834-11839 (2014)

Optimization of hollow-core photonic Bragg fibers towards practical sensing implementations

Jingwen Li and Kathirvel Nallappan
Opt. Mater. Express 9(4) 1640-1653 (2019)

Squeezed hollow-core photonic Bragg fiber for surface sensing applications

Jingwen Li, Hang Qu, and Maksim Skorobogatiy
Opt. Express 24(14) 15687-15701 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. W. Northway, N. H. Hancock, and T. Tran-Cong, “Liquid level sensors using thin walled cylinders vibrating in circumferential modes,” Meas. Sci. Technol. 6(1), 85–93 (1995).
    [Crossref]
  2. F. N. Toch, G. C. M. Meijer, and M. Van-der-Lee, “A new capacitive precision liquid-level sensor,” Proceedings of the conference on Precision Electromagnetic Measurements, (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996) pp.356–357.
  3. S. Khaliq, S. W. James, and R. P. Tatam, “Fiber-optic liquid-level sensor using a long-period grating,” Opt. Lett. 26(16), 1224–1226 (2001).
    [Crossref] [PubMed]
  4. H. Y. Fu, X. W. Shu, A. P. Zhang, W. S. Liu, L. Zhang, S. L. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach-Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
    [Crossref]
  5. A. F. Obaton, G. Laffont, C. Wang, A. Allard, and P. Ferdinand, “Tilted fibre Bragg gratings and phase sensitive-optical low coherence interferometry for refractometry and liquid level sensing,” Sensor Actuat. A 189, 451–458 (2013).
    [Crossref]
  6. B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photonics Technol. Lett. 19(21), 1747–1749 (2007).
    [Crossref]
  7. L. Li, L. Xia, Z. Xie, and D. Liu, “All-fiber Mach-Zehnder interferometers for sensing applications,” Opt. Express 20(10), 11109–11120 (2012).
    [Crossref] [PubMed]
  8. Y. Dong, S. Xiao, H. Xiao, H. Xiao, J. Liu, C. Sun, and S. Jian, “An Optical Liquid-Level Sensor Based on D-Shape Fiber Modal Interferometer,” IEEE Photonics Technol. Lett. 29(13), 1067–1070 (2017).
    [Crossref]
  9. J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, P. LiKamWa, and D. A. May-Arrioja, “Fiber-optic sensor for liquid level measurement,” Opt. Lett. 36(17), 3425–3427 (2011).
    [Crossref] [PubMed]
  10. A. M. Zheltikov, “Ray-optic analysis of the (bio)sensing ability of ring-cladding hollow waveguides,” Appl. Opt. 47(3), 474–479 (2008).
    [Crossref] [PubMed]
  11. B. You, J. Y. Lu, J. H. Liou, C. P. Yu, H. Z. Chen, T. A. Liu, and J. L. Peng, “Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides,” Opt. Express 18(18), 19353–19360 (2010).
    [Crossref] [PubMed]
  12. B. You, J. Y. Lu, C. P. Yu, T. A. Liu, and J. L. Peng, “Terahertz refractive index sensors using dielectric pipe waveguides,” Opt. Express 20(6), 5858–5866 (2012).
    [Crossref] [PubMed]
  13. J. Li, H. Qu, and M. Skorobogatiy, “Simultaneous monitoring the real and imaginary parts of the analyte refractive index using liquid-core photonic bandgap Bragg fibers,” Opt. Express 23(18), 22963–22976 (2015).
    [Crossref] [PubMed]
  14. S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
    [Crossref] [PubMed]
  15. L. Yang, J. Li, Y. Wu, and C. Xiao, “Mode classification and loss mechanism in air-core Bragg fibers,” Opt. Commun. 285(13-14), 3066–3074 (2012).
    [Crossref]
  16. H. Y. Yao, J. Y. Jiang, Y. S. Cheng, Z. Y. Chen, T. H. Her, and T. H. Chang, “Modal analysis and efficient coupling of TE01 mode in small-core THz Bragg fibers,” Opt. Express 23(21), 27266–27281 (2015).
    [Crossref] [PubMed]
  17. K. J. Rowland, S. V. Afshar, and T. M. Monro, “Novel Low-Loss Bandgaps in All-Silica Bragg Fibers,” J. Lightwave Technol. 26(1), 43–51 (2008).
    [Crossref]
  18. S. Liu, Y. Wang, M. Hou, J. Guo, Z. Li, and P. Lu, “Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications,” Opt. Express 21(25), 31690–31697 (2013).
    [Crossref] [PubMed]
  19. S. Liu, J. Tian, N. Liu, J. Xia, and P. Lu, “Temperature Insensitive Liquid Level Sensor Based on Antiresonant Reflecting Guidance in Silica Tube,” J. Lightwave Technol. 34(22), 5239–5243 (2016).
    [Crossref]

2017 (1)

Y. Dong, S. Xiao, H. Xiao, H. Xiao, J. Liu, C. Sun, and S. Jian, “An Optical Liquid-Level Sensor Based on D-Shape Fiber Modal Interferometer,” IEEE Photonics Technol. Lett. 29(13), 1067–1070 (2017).
[Crossref]

2016 (1)

2015 (2)

2013 (2)

S. Liu, Y. Wang, M. Hou, J. Guo, Z. Li, and P. Lu, “Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications,” Opt. Express 21(25), 31690–31697 (2013).
[Crossref] [PubMed]

A. F. Obaton, G. Laffont, C. Wang, A. Allard, and P. Ferdinand, “Tilted fibre Bragg gratings and phase sensitive-optical low coherence interferometry for refractometry and liquid level sensing,” Sensor Actuat. A 189, 451–458 (2013).
[Crossref]

2012 (3)

2011 (2)

H. Y. Fu, X. W. Shu, A. P. Zhang, W. S. Liu, L. Zhang, S. L. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach-Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, P. LiKamWa, and D. A. May-Arrioja, “Fiber-optic sensor for liquid level measurement,” Opt. Lett. 36(17), 3425–3427 (2011).
[Crossref] [PubMed]

2010 (1)

2008 (2)

2007 (1)

B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photonics Technol. Lett. 19(21), 1747–1749 (2007).
[Crossref]

2006 (1)

2001 (1)

1995 (1)

B. W. Northway, N. H. Hancock, and T. Tran-Cong, “Liquid level sensors using thin walled cylinders vibrating in circumferential modes,” Meas. Sci. Technol. 6(1), 85–93 (1995).
[Crossref]

Afshar, S. V.

Allard, A.

A. F. Obaton, G. Laffont, C. Wang, A. Allard, and P. Ferdinand, “Tilted fibre Bragg gratings and phase sensitive-optical low coherence interferometry for refractometry and liquid level sensing,” Sensor Actuat. A 189, 451–458 (2013).
[Crossref]

Antonio-Lopez, J. E.

Bennion, I.

H. Y. Fu, X. W. Shu, A. P. Zhang, W. S. Liu, L. Zhang, S. L. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach-Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

Blondy, J.-M.

Bubnov, M. M.

Chang, T. H.

Chen, H. Z.

Chen, N.

B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photonics Technol. Lett. 19(21), 1747–1749 (2007).
[Crossref]

Chen, Z. Y.

Cheng, Y. S.

Cui, Y.

B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photonics Technol. Lett. 19(21), 1747–1749 (2007).
[Crossref]

Dianov, E. M.

Dong, Y.

Y. Dong, S. Xiao, H. Xiao, H. Xiao, J. Liu, C. Sun, and S. Jian, “An Optical Liquid-Level Sensor Based on D-Shape Fiber Modal Interferometer,” IEEE Photonics Technol. Lett. 29(13), 1067–1070 (2017).
[Crossref]

Ferdinand, P.

A. F. Obaton, G. Laffont, C. Wang, A. Allard, and P. Ferdinand, “Tilted fibre Bragg gratings and phase sensitive-optical low coherence interferometry for refractometry and liquid level sensing,” Sensor Actuat. A 189, 451–458 (2013).
[Crossref]

Février, S.

Fu, H. Y.

H. Y. Fu, X. W. Shu, A. P. Zhang, W. S. Liu, L. Zhang, S. L. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach-Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

Guo, J.

Guryanov, A. N.

Hancock, N. H.

B. W. Northway, N. H. Hancock, and T. Tran-Cong, “Liquid level sensors using thin walled cylinders vibrating in circumferential modes,” Meas. Sci. Technol. 6(1), 85–93 (1995).
[Crossref]

He, S. L.

H. Y. Fu, X. W. Shu, A. P. Zhang, W. S. Liu, L. Zhang, S. L. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach-Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

Her, T. H.

Hou, M.

James, S. W.

Jamier, R.

Jian, S.

Y. Dong, S. Xiao, H. Xiao, H. Xiao, J. Liu, C. Sun, and S. Jian, “An Optical Liquid-Level Sensor Based on D-Shape Fiber Modal Interferometer,” IEEE Photonics Technol. Lett. 29(13), 1067–1070 (2017).
[Crossref]

Jiang, J. Y.

Khaliq, S.

Khopin, V. F.

Laffont, G.

A. F. Obaton, G. Laffont, C. Wang, A. Allard, and P. Ferdinand, “Tilted fibre Bragg gratings and phase sensitive-optical low coherence interferometry for refractometry and liquid level sensing,” Sensor Actuat. A 189, 451–458 (2013).
[Crossref]

Li, J.

Li, L.

Li, Z.

LiKamWa, P.

Likhachev, M. E.

Liou, J. H.

Liu, D.

Liu, J.

Y. Dong, S. Xiao, H. Xiao, H. Xiao, J. Liu, C. Sun, and S. Jian, “An Optical Liquid-Level Sensor Based on D-Shape Fiber Modal Interferometer,” IEEE Photonics Technol. Lett. 29(13), 1067–1070 (2017).
[Crossref]

Liu, N.

Liu, S.

Liu, T. A.

Liu, W. S.

H. Y. Fu, X. W. Shu, A. P. Zhang, W. S. Liu, L. Zhang, S. L. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach-Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

Lu, J. Y.

Lu, P.

May-Arrioja, D. A.

Meijer, G. C. M.

F. N. Toch, G. C. M. Meijer, and M. Van-der-Lee, “A new capacitive precision liquid-level sensor,” Proceedings of the conference on Precision Electromagnetic Measurements, (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996) pp.356–357.

Monro, T. M.

Northway, B. W.

B. W. Northway, N. H. Hancock, and T. Tran-Cong, “Liquid level sensors using thin walled cylinders vibrating in circumferential modes,” Meas. Sci. Technol. 6(1), 85–93 (1995).
[Crossref]

Obaton, A. F.

A. F. Obaton, G. Laffont, C. Wang, A. Allard, and P. Ferdinand, “Tilted fibre Bragg gratings and phase sensitive-optical low coherence interferometry for refractometry and liquid level sensing,” Sensor Actuat. A 189, 451–458 (2013).
[Crossref]

Peng, J. L.

Qu, H.

Rowland, K. J.

Salganskii, M. Y.

Sanchez-Mondragon, J. J.

Semjonov, S. L.

Shu, X. W.

H. Y. Fu, X. W. Shu, A. P. Zhang, W. S. Liu, L. Zhang, S. L. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach-Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

Skorobogatiy, M.

Sun, C.

Y. Dong, S. Xiao, H. Xiao, H. Xiao, J. Liu, C. Sun, and S. Jian, “An Optical Liquid-Level Sensor Based on D-Shape Fiber Modal Interferometer,” IEEE Photonics Technol. Lett. 29(13), 1067–1070 (2017).
[Crossref]

Tatam, R. P.

Tian, J.

Toch, F. N.

F. N. Toch, G. C. M. Meijer, and M. Van-der-Lee, “A new capacitive precision liquid-level sensor,” Proceedings of the conference on Precision Electromagnetic Measurements, (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996) pp.356–357.

Tran-Cong, T.

B. W. Northway, N. H. Hancock, and T. Tran-Cong, “Liquid level sensors using thin walled cylinders vibrating in circumferential modes,” Meas. Sci. Technol. 6(1), 85–93 (1995).
[Crossref]

Van-der-Lee, M.

F. N. Toch, G. C. M. Meijer, and M. Van-der-Lee, “A new capacitive precision liquid-level sensor,” Proceedings of the conference on Precision Electromagnetic Measurements, (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996) pp.356–357.

Wang, C.

A. F. Obaton, G. Laffont, C. Wang, A. Allard, and P. Ferdinand, “Tilted fibre Bragg gratings and phase sensitive-optical low coherence interferometry for refractometry and liquid level sensing,” Sensor Actuat. A 189, 451–458 (2013).
[Crossref]

Wang, Y.

Wu, Y.

L. Yang, J. Li, Y. Wu, and C. Xiao, “Mode classification and loss mechanism in air-core Bragg fibers,” Opt. Commun. 285(13-14), 3066–3074 (2012).
[Crossref]

Xia, J.

Xia, L.

Xiao, C.

L. Yang, J. Li, Y. Wu, and C. Xiao, “Mode classification and loss mechanism in air-core Bragg fibers,” Opt. Commun. 285(13-14), 3066–3074 (2012).
[Crossref]

Xiao, H.

Y. Dong, S. Xiao, H. Xiao, H. Xiao, J. Liu, C. Sun, and S. Jian, “An Optical Liquid-Level Sensor Based on D-Shape Fiber Modal Interferometer,” IEEE Photonics Technol. Lett. 29(13), 1067–1070 (2017).
[Crossref]

Y. Dong, S. Xiao, H. Xiao, H. Xiao, J. Liu, C. Sun, and S. Jian, “An Optical Liquid-Level Sensor Based on D-Shape Fiber Modal Interferometer,” IEEE Photonics Technol. Lett. 29(13), 1067–1070 (2017).
[Crossref]

Xiao, S.

Y. Dong, S. Xiao, H. Xiao, H. Xiao, J. Liu, C. Sun, and S. Jian, “An Optical Liquid-Level Sensor Based on D-Shape Fiber Modal Interferometer,” IEEE Photonics Technol. Lett. 29(13), 1067–1070 (2017).
[Crossref]

Xie, Z.

Yang, L.

L. Yang, J. Li, Y. Wu, and C. Xiao, “Mode classification and loss mechanism in air-core Bragg fibers,” Opt. Commun. 285(13-14), 3066–3074 (2012).
[Crossref]

Yao, H. Y.

You, B.

Yu, C. P.

Yun, B.

B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photonics Technol. Lett. 19(21), 1747–1749 (2007).
[Crossref]

Zhang, A. P.

H. Y. Fu, X. W. Shu, A. P. Zhang, W. S. Liu, L. Zhang, S. L. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach-Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

Zhang, L.

H. Y. Fu, X. W. Shu, A. P. Zhang, W. S. Liu, L. Zhang, S. L. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach-Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

Zheltikov, A. M.

Appl. Opt. (1)

IEEE Photonics Technol. Lett. (2)

B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photonics Technol. Lett. 19(21), 1747–1749 (2007).
[Crossref]

Y. Dong, S. Xiao, H. Xiao, H. Xiao, J. Liu, C. Sun, and S. Jian, “An Optical Liquid-Level Sensor Based on D-Shape Fiber Modal Interferometer,” IEEE Photonics Technol. Lett. 29(13), 1067–1070 (2017).
[Crossref]

IEEE Sens. J. (1)

H. Y. Fu, X. W. Shu, A. P. Zhang, W. S. Liu, L. Zhang, S. L. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach-Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

J. Lightwave Technol. (2)

Meas. Sci. Technol. (1)

B. W. Northway, N. H. Hancock, and T. Tran-Cong, “Liquid level sensors using thin walled cylinders vibrating in circumferential modes,” Meas. Sci. Technol. 6(1), 85–93 (1995).
[Crossref]

Opt. Commun. (1)

L. Yang, J. Li, Y. Wu, and C. Xiao, “Mode classification and loss mechanism in air-core Bragg fibers,” Opt. Commun. 285(13-14), 3066–3074 (2012).
[Crossref]

Opt. Express (7)

H. Y. Yao, J. Y. Jiang, Y. S. Cheng, Z. Y. Chen, T. H. Her, and T. H. Chang, “Modal analysis and efficient coupling of TE01 mode in small-core THz Bragg fibers,” Opt. Express 23(21), 27266–27281 (2015).
[Crossref] [PubMed]

S. Liu, Y. Wang, M. Hou, J. Guo, Z. Li, and P. Lu, “Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications,” Opt. Express 21(25), 31690–31697 (2013).
[Crossref] [PubMed]

B. You, J. Y. Lu, J. H. Liou, C. P. Yu, H. Z. Chen, T. A. Liu, and J. L. Peng, “Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides,” Opt. Express 18(18), 19353–19360 (2010).
[Crossref] [PubMed]

B. You, J. Y. Lu, C. P. Yu, T. A. Liu, and J. L. Peng, “Terahertz refractive index sensors using dielectric pipe waveguides,” Opt. Express 20(6), 5858–5866 (2012).
[Crossref] [PubMed]

J. Li, H. Qu, and M. Skorobogatiy, “Simultaneous monitoring the real and imaginary parts of the analyte refractive index using liquid-core photonic bandgap Bragg fibers,” Opt. Express 23(18), 22963–22976 (2015).
[Crossref] [PubMed]

S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
[Crossref] [PubMed]

L. Li, L. Xia, Z. Xie, and D. Liu, “All-fiber Mach-Zehnder interferometers for sensing applications,” Opt. Express 20(10), 11109–11120 (2012).
[Crossref] [PubMed]

Opt. Lett. (2)

Sensor Actuat. A (1)

A. F. Obaton, G. Laffont, C. Wang, A. Allard, and P. Ferdinand, “Tilted fibre Bragg gratings and phase sensitive-optical low coherence interferometry for refractometry and liquid level sensing,” Sensor Actuat. A 189, 451–458 (2013).
[Crossref]

Other (1)

F. N. Toch, G. C. M. Meijer, and M. Van-der-Lee, “A new capacitive precision liquid-level sensor,” Proceedings of the conference on Precision Electromagnetic Measurements, (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996) pp.356–357.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic illustration of the physical structure and (b) Refractive index profile of the proposed HCBF.
Fig. 2
Fig. 2 Simulated transmission loss spectrum (a) in air and (b) in water, respectively. The insert is the corresponding modal distribution of the light at wavelength of 1510 nm and 1521 nm, respectively.
Fig. 3
Fig. 3 (a) Schematic illustration of the proposed structure. (b) Microscopy image of the cross section view of the fabricated HCBF. (c) Microscopy image of the splicing joint between the HCBF(left) and the SMF(right).
Fig. 4
Fig. 4 (a) Transmission spectra of the HCBF with different lengths. (b) Normalized transmission loss as a function of HCBF lengths at wavelength of 1538.57 nm.
Fig. 5
Fig. 5 Schematic diagram of the setup for sensing performance test.
Fig. 6
Fig. 6 (a) Spectral revolution of the sensor with the rise of the liquid level when deionized water was used. (b) Normalized transmission loss as a function of liquid-level in deionized water (black) and sucrose solution (red), respectively.
Fig. 7
Fig. 7 (a) Dynamic response for different liquid levels. The inset is the enlarged part of the response curve as liquid level changed from 8 mm to 10 mm. (b) Normalized transmission loss as a function of the immersed sensor length in water.
Fig. 8
Fig. 8 (a) Spectral revolution of the fabricated sensor as the temperature rose from 30 °C to 70 °C. (b) Center wavelength of the transmission band (red line and squares) and the corresponding transmission loss (black line and squares) as a function of temperature.

Metrics