Abstract

We propose a simple, efficient, and accurate analytical model for calculating the energy efficiency of a granular double-layer X-ray scintillator with a diffuse reflection layer, based on the first-order approximation of the radiative transfer equation by considering boundary conditions and exponential characteristics. Using the analytical model, we successfully analyze the characteristics of the double-layer X-ray scintillator, such as diffuse reflectance, transmittance, collection efficiency, and energy efficiency. We also suggest a design strategy for the high-energy-efficiency X-ray double-layer scintillator considering high diffuse reflectance and satisfaction of the target spatial resolution. Using the X-ray absorption ratio and the collection efficiency of the double-layer scintillator, the energy efficiency of the double-layer X-ray scintillator is calculated to achieve the best performance in terms of image brightness. Through calculation, we obtain the design of a double-layer X-ray scintillator with an energy efficiency of 8.7% with a computation time of less than a second.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual-energy micro-CT with a dual-layer, dual-color, single-crystal scintillator

Daniel Simon Maier, Jonathan Schock, and Franz Pfeiffer
Opt. Express 25(6) 6924-6935 (2017)

High-energy x-ray response of photographic films: models and measurement

B. L. Henke, J. Y. Uejio, G. F. Stone, C. H. Dittmore, and F. G. Fujiwara
J. Opt. Soc. Am. B 3(11) 1540-1550 (1986)

References

  • View by:
  • |
  • |
  • |

  1. M. Nikl, “Scintillation detectors for x-rays,” Meas. Sci. Technol. 17(4), R37–R54 (2006).
    [Crossref]
  2. J. Yorkston, “Recent developments in digital radiography detectors,” Nucl. Instrum. Methods Phys. Res. A 580(2), 974–985 (2007).
    [Crossref]
  3. S. M. Gruner, M. W. Tate, and E. F. Eikenberry, “Charge-coupled device area X-ray detectors,” Rev. Sci. Instrum. 73(8), 2815–2842 (2002).
    [Crossref]
  4. P. G. Jung, C. H. Lee, K. M. Bae, J. M. Lee, S. M. Lee, C. H. Lim, S. Yun, H. K. Kim, and J. S. Ko, “Microdome-gooved Gd2O2S:Tb scintillator for flexible and high resolution digital radiography,” Opt. Express 18(14), 14850–14858 (2010).
    [Crossref] [PubMed]
  5. P. F. Liaparinos, I. S. Kandarakis, D. A. Cavouras, H. B. Delis, and G. S. Panayiotakis, “Modeling granular phosphor screens by Monte Carlo methods,” Med. Phys. 33(12), 4502–4514 (2006).
    [Crossref] [PubMed]
  6. I. D. Jung, M. K. Cho, M. L. Sang, K. M. Bae, P. G. Jung, and C. H. Lee, “Flexible Gd2O2S:Tb scintillators pixilated with polyethylene microstructures for digital x-ray image sensors,” J. Micromech. Microeng. 19(1), 015014 (2008).
    [Crossref]
  7. C. Kausch, B. Schreiber, F. Kreuder, R. Schmidt, and O. Dössel, “Monte Carlo simulations of the imaging performance of metal plate/phosphor screens used in radiotherapy,” Med. Phys. 26(10), 2113–2124 (1999).
    [Crossref] [PubMed]
  8. D. P. McElroy, S.-C. Huang, and E. J. Hoffman, “The use of retro-reflective tape for improving spatial resolution of scintillation detectors,” IEEE Trans. Nucl. Sci. 49(1), 165–171 (2002).
    [Crossref]
  9. J.-G. Kim, C.-H. Hsieh, H. J. Choi, J. Gardener, B. Singh, A. Knapitsch, P. Lecoq, and G. Barbastathis, “Conical photonic crystals for enhancing light extraction efficiency from high refractive index materials,” Opt. Express 23(17), 22730–22739 (2015).
    [Crossref] [PubMed]
  10. B. K. Cha, J. Y. Kim, T. J. Kim, C. Sim, and G. Cho, “Fabrication and imaging characterization of high sensitive CsI(Tl) and Gd2O2S(Tb) scintillator screens for X-ray imaging detectors,” Radiat. Meas. 45(3–6), 742–745 (2010).
  11. L. V. Wang, “Rapid modeling of diffuse reflectance of light in turbid slabs,” J. Opt. Soc. Am. A 15(4), 936–944 (1998).
    [Crossref] [PubMed]
  12. E. Roncali, M. A. Mosleh-Shirazi, and A. Badano, “Modelling the transport of optical photons in scintillation detectors for diagnostic and radiotherapy imaging,” Phys. Med. Biol. 62(20), R207–R235 (2017).
    [Crossref] [PubMed]
  13. L. V. Wang and W. Hsin, Biomedical Optics: Principles and Imaging (John Wiley & Sons, 2012).
  14. H. B. Shim, J. Song, and J. W. Hahn, “Analytic solution of the radiative transfer equation for the analysis of the efficiency and spatial resolution of a granular X-ray scintillator,” Opt. Express 25(26), 32686–32696 (2017).
    [Crossref]
  15. P. Hanrahan and W. Krueger, “Reflection from Layered Surfaces Due to Subsurface Scattering.” Proc. 20th Annu. Conf. Comput. Graph. Interact. Tech. 165–174 (1993).
    [Crossref]
  16. J. Lindström and G. A. Carlsson, “A simple model for estimating the particle size dependence of absolute efficiency of fluorescent screens,” Phys. Med. Biol. 44(5), 1353–1367 (1999).
    [Crossref] [PubMed]
  17. C.-C. Sun, W.-T. Chien, I. Moreno, C.-T. Hsieh, M.-C. Lin, S.-L. Hsiao, and X.-H. Lee, “Calculating model of light transmission efficiency of diffusers attached to a lighting cavity,” Opt. Express 18(6), 6137–6148 (2010).
    [Crossref] [PubMed]
  18. P. F. Liaparinos and I. S. Kandarakis, “The imaging performance of compact Lu­2O3:Eu powdered phosphor screens: Monte Carlo simulation for applications in mammography,” Med. Phys. 36(6), 1985–1997 (2009).
    [Crossref] [PubMed]
  19. E.-J. Popovici, L. Muresan, A. Hristea-Simoc, E. Indrea, M. Vasilescu, M. Nazarov, and D. Y. Jeon, “Synthesis and characterisation of rare earth oxysulphide phosphors. I. Studies on the preparation of Gd2O2S: Tb phosphor by the flux method,” Opt. Mater. 27(3), 559–565 (2004).
    [Crossref]
  20. G. G. Poludniowski and P. M. Evans, “Optical photon transport in powdered-phosphor scintillators. Part II. Calculation of single-scattering transport parameters,” Med. Phys. 40(4), 041904 (2013).
    [Crossref] [PubMed]
  21. P. F. Liaparinos, “Optical diffusion performance of nanophosphor-based materials for use in medical imaging,” J. Biomed. Opt. 17(12), 126013 (2012).
    [Crossref] [PubMed]
  22. Th. Kraft, M. Geßner, H. Meißner, M. Cramer, M. Gerke, and H. J. Przybilla, “Evaluation of a Metric Camera System Tailored for High Precision UAV Applications,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 41(B1), 901–907 (2016).
    [Crossref]
  23. L. Lança and A. Silva, “Digital radiography detectors–A technical overview: Part 2,” Radiography 15(2), 134–138 (2009).
    [Crossref]
  24. K.-P. Hermann, S. Obenauer, M. Funke, and E. H. Grabbe, “Magnification mammography: a comparison of full-field digital mammography and screen-film mammography for the detection of simulated small masses and microcalcifications,” Eur. Radiol. 12(9), 2188–2191 (2002).
    [Crossref] [PubMed]
  25. J. D. Jackson, Classical Electrodynamics (Wiley, 1962), p.111.

2017 (2)

E. Roncali, M. A. Mosleh-Shirazi, and A. Badano, “Modelling the transport of optical photons in scintillation detectors for diagnostic and radiotherapy imaging,” Phys. Med. Biol. 62(20), R207–R235 (2017).
[Crossref] [PubMed]

H. B. Shim, J. Song, and J. W. Hahn, “Analytic solution of the radiative transfer equation for the analysis of the efficiency and spatial resolution of a granular X-ray scintillator,” Opt. Express 25(26), 32686–32696 (2017).
[Crossref]

2016 (1)

Th. Kraft, M. Geßner, H. Meißner, M. Cramer, M. Gerke, and H. J. Przybilla, “Evaluation of a Metric Camera System Tailored for High Precision UAV Applications,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 41(B1), 901–907 (2016).
[Crossref]

2015 (1)

2013 (1)

G. G. Poludniowski and P. M. Evans, “Optical photon transport in powdered-phosphor scintillators. Part II. Calculation of single-scattering transport parameters,” Med. Phys. 40(4), 041904 (2013).
[Crossref] [PubMed]

2012 (1)

P. F. Liaparinos, “Optical diffusion performance of nanophosphor-based materials for use in medical imaging,” J. Biomed. Opt. 17(12), 126013 (2012).
[Crossref] [PubMed]

2010 (3)

2009 (2)

P. F. Liaparinos and I. S. Kandarakis, “The imaging performance of compact Lu­2O3:Eu powdered phosphor screens: Monte Carlo simulation for applications in mammography,” Med. Phys. 36(6), 1985–1997 (2009).
[Crossref] [PubMed]

L. Lança and A. Silva, “Digital radiography detectors–A technical overview: Part 2,” Radiography 15(2), 134–138 (2009).
[Crossref]

2008 (1)

I. D. Jung, M. K. Cho, M. L. Sang, K. M. Bae, P. G. Jung, and C. H. Lee, “Flexible Gd2O2S:Tb scintillators pixilated with polyethylene microstructures for digital x-ray image sensors,” J. Micromech. Microeng. 19(1), 015014 (2008).
[Crossref]

2007 (1)

J. Yorkston, “Recent developments in digital radiography detectors,” Nucl. Instrum. Methods Phys. Res. A 580(2), 974–985 (2007).
[Crossref]

2006 (2)

P. F. Liaparinos, I. S. Kandarakis, D. A. Cavouras, H. B. Delis, and G. S. Panayiotakis, “Modeling granular phosphor screens by Monte Carlo methods,” Med. Phys. 33(12), 4502–4514 (2006).
[Crossref] [PubMed]

M. Nikl, “Scintillation detectors for x-rays,” Meas. Sci. Technol. 17(4), R37–R54 (2006).
[Crossref]

2004 (1)

E.-J. Popovici, L. Muresan, A. Hristea-Simoc, E. Indrea, M. Vasilescu, M. Nazarov, and D. Y. Jeon, “Synthesis and characterisation of rare earth oxysulphide phosphors. I. Studies on the preparation of Gd2O2S: Tb phosphor by the flux method,” Opt. Mater. 27(3), 559–565 (2004).
[Crossref]

2002 (3)

D. P. McElroy, S.-C. Huang, and E. J. Hoffman, “The use of retro-reflective tape for improving spatial resolution of scintillation detectors,” IEEE Trans. Nucl. Sci. 49(1), 165–171 (2002).
[Crossref]

S. M. Gruner, M. W. Tate, and E. F. Eikenberry, “Charge-coupled device area X-ray detectors,” Rev. Sci. Instrum. 73(8), 2815–2842 (2002).
[Crossref]

K.-P. Hermann, S. Obenauer, M. Funke, and E. H. Grabbe, “Magnification mammography: a comparison of full-field digital mammography and screen-film mammography for the detection of simulated small masses and microcalcifications,” Eur. Radiol. 12(9), 2188–2191 (2002).
[Crossref] [PubMed]

1999 (2)

C. Kausch, B. Schreiber, F. Kreuder, R. Schmidt, and O. Dössel, “Monte Carlo simulations of the imaging performance of metal plate/phosphor screens used in radiotherapy,” Med. Phys. 26(10), 2113–2124 (1999).
[Crossref] [PubMed]

J. Lindström and G. A. Carlsson, “A simple model for estimating the particle size dependence of absolute efficiency of fluorescent screens,” Phys. Med. Biol. 44(5), 1353–1367 (1999).
[Crossref] [PubMed]

1998 (1)

Badano, A.

E. Roncali, M. A. Mosleh-Shirazi, and A. Badano, “Modelling the transport of optical photons in scintillation detectors for diagnostic and radiotherapy imaging,” Phys. Med. Biol. 62(20), R207–R235 (2017).
[Crossref] [PubMed]

Bae, K. M.

P. G. Jung, C. H. Lee, K. M. Bae, J. M. Lee, S. M. Lee, C. H. Lim, S. Yun, H. K. Kim, and J. S. Ko, “Microdome-gooved Gd2O2S:Tb scintillator for flexible and high resolution digital radiography,” Opt. Express 18(14), 14850–14858 (2010).
[Crossref] [PubMed]

I. D. Jung, M. K. Cho, M. L. Sang, K. M. Bae, P. G. Jung, and C. H. Lee, “Flexible Gd2O2S:Tb scintillators pixilated with polyethylene microstructures for digital x-ray image sensors,” J. Micromech. Microeng. 19(1), 015014 (2008).
[Crossref]

Barbastathis, G.

Carlsson, G. A.

J. Lindström and G. A. Carlsson, “A simple model for estimating the particle size dependence of absolute efficiency of fluorescent screens,” Phys. Med. Biol. 44(5), 1353–1367 (1999).
[Crossref] [PubMed]

Cavouras, D. A.

P. F. Liaparinos, I. S. Kandarakis, D. A. Cavouras, H. B. Delis, and G. S. Panayiotakis, “Modeling granular phosphor screens by Monte Carlo methods,” Med. Phys. 33(12), 4502–4514 (2006).
[Crossref] [PubMed]

Cha, B. K.

B. K. Cha, J. Y. Kim, T. J. Kim, C. Sim, and G. Cho, “Fabrication and imaging characterization of high sensitive CsI(Tl) and Gd2O2S(Tb) scintillator screens for X-ray imaging detectors,” Radiat. Meas. 45(3–6), 742–745 (2010).

Chien, W.-T.

Cho, G.

B. K. Cha, J. Y. Kim, T. J. Kim, C. Sim, and G. Cho, “Fabrication and imaging characterization of high sensitive CsI(Tl) and Gd2O2S(Tb) scintillator screens for X-ray imaging detectors,” Radiat. Meas. 45(3–6), 742–745 (2010).

Cho, M. K.

I. D. Jung, M. K. Cho, M. L. Sang, K. M. Bae, P. G. Jung, and C. H. Lee, “Flexible Gd2O2S:Tb scintillators pixilated with polyethylene microstructures for digital x-ray image sensors,” J. Micromech. Microeng. 19(1), 015014 (2008).
[Crossref]

Choi, H. J.

Cramer, M.

Th. Kraft, M. Geßner, H. Meißner, M. Cramer, M. Gerke, and H. J. Przybilla, “Evaluation of a Metric Camera System Tailored for High Precision UAV Applications,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 41(B1), 901–907 (2016).
[Crossref]

Delis, H. B.

P. F. Liaparinos, I. S. Kandarakis, D. A. Cavouras, H. B. Delis, and G. S. Panayiotakis, “Modeling granular phosphor screens by Monte Carlo methods,” Med. Phys. 33(12), 4502–4514 (2006).
[Crossref] [PubMed]

Dössel, O.

C. Kausch, B. Schreiber, F. Kreuder, R. Schmidt, and O. Dössel, “Monte Carlo simulations of the imaging performance of metal plate/phosphor screens used in radiotherapy,” Med. Phys. 26(10), 2113–2124 (1999).
[Crossref] [PubMed]

Eikenberry, E. F.

S. M. Gruner, M. W. Tate, and E. F. Eikenberry, “Charge-coupled device area X-ray detectors,” Rev. Sci. Instrum. 73(8), 2815–2842 (2002).
[Crossref]

Evans, P. M.

G. G. Poludniowski and P. M. Evans, “Optical photon transport in powdered-phosphor scintillators. Part II. Calculation of single-scattering transport parameters,” Med. Phys. 40(4), 041904 (2013).
[Crossref] [PubMed]

Funke, M.

K.-P. Hermann, S. Obenauer, M. Funke, and E. H. Grabbe, “Magnification mammography: a comparison of full-field digital mammography and screen-film mammography for the detection of simulated small masses and microcalcifications,” Eur. Radiol. 12(9), 2188–2191 (2002).
[Crossref] [PubMed]

Gardener, J.

Gerke, M.

Th. Kraft, M. Geßner, H. Meißner, M. Cramer, M. Gerke, and H. J. Przybilla, “Evaluation of a Metric Camera System Tailored for High Precision UAV Applications,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 41(B1), 901–907 (2016).
[Crossref]

Geßner, M.

Th. Kraft, M. Geßner, H. Meißner, M. Cramer, M. Gerke, and H. J. Przybilla, “Evaluation of a Metric Camera System Tailored for High Precision UAV Applications,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 41(B1), 901–907 (2016).
[Crossref]

Grabbe, E. H.

K.-P. Hermann, S. Obenauer, M. Funke, and E. H. Grabbe, “Magnification mammography: a comparison of full-field digital mammography and screen-film mammography for the detection of simulated small masses and microcalcifications,” Eur. Radiol. 12(9), 2188–2191 (2002).
[Crossref] [PubMed]

Gruner, S. M.

S. M. Gruner, M. W. Tate, and E. F. Eikenberry, “Charge-coupled device area X-ray detectors,” Rev. Sci. Instrum. 73(8), 2815–2842 (2002).
[Crossref]

Hahn, J. W.

Hermann, K.-P.

K.-P. Hermann, S. Obenauer, M. Funke, and E. H. Grabbe, “Magnification mammography: a comparison of full-field digital mammography and screen-film mammography for the detection of simulated small masses and microcalcifications,” Eur. Radiol. 12(9), 2188–2191 (2002).
[Crossref] [PubMed]

Hoffman, E. J.

D. P. McElroy, S.-C. Huang, and E. J. Hoffman, “The use of retro-reflective tape for improving spatial resolution of scintillation detectors,” IEEE Trans. Nucl. Sci. 49(1), 165–171 (2002).
[Crossref]

Hristea-Simoc, A.

E.-J. Popovici, L. Muresan, A. Hristea-Simoc, E. Indrea, M. Vasilescu, M. Nazarov, and D. Y. Jeon, “Synthesis and characterisation of rare earth oxysulphide phosphors. I. Studies on the preparation of Gd2O2S: Tb phosphor by the flux method,” Opt. Mater. 27(3), 559–565 (2004).
[Crossref]

Hsiao, S.-L.

Hsieh, C.-H.

Hsieh, C.-T.

Huang, S.-C.

D. P. McElroy, S.-C. Huang, and E. J. Hoffman, “The use of retro-reflective tape for improving spatial resolution of scintillation detectors,” IEEE Trans. Nucl. Sci. 49(1), 165–171 (2002).
[Crossref]

Indrea, E.

E.-J. Popovici, L. Muresan, A. Hristea-Simoc, E. Indrea, M. Vasilescu, M. Nazarov, and D. Y. Jeon, “Synthesis and characterisation of rare earth oxysulphide phosphors. I. Studies on the preparation of Gd2O2S: Tb phosphor by the flux method,” Opt. Mater. 27(3), 559–565 (2004).
[Crossref]

Jeon, D. Y.

E.-J. Popovici, L. Muresan, A. Hristea-Simoc, E. Indrea, M. Vasilescu, M. Nazarov, and D. Y. Jeon, “Synthesis and characterisation of rare earth oxysulphide phosphors. I. Studies on the preparation of Gd2O2S: Tb phosphor by the flux method,” Opt. Mater. 27(3), 559–565 (2004).
[Crossref]

Jung, I. D.

I. D. Jung, M. K. Cho, M. L. Sang, K. M. Bae, P. G. Jung, and C. H. Lee, “Flexible Gd2O2S:Tb scintillators pixilated with polyethylene microstructures for digital x-ray image sensors,” J. Micromech. Microeng. 19(1), 015014 (2008).
[Crossref]

Jung, P. G.

P. G. Jung, C. H. Lee, K. M. Bae, J. M. Lee, S. M. Lee, C. H. Lim, S. Yun, H. K. Kim, and J. S. Ko, “Microdome-gooved Gd2O2S:Tb scintillator for flexible and high resolution digital radiography,” Opt. Express 18(14), 14850–14858 (2010).
[Crossref] [PubMed]

I. D. Jung, M. K. Cho, M. L. Sang, K. M. Bae, P. G. Jung, and C. H. Lee, “Flexible Gd2O2S:Tb scintillators pixilated with polyethylene microstructures for digital x-ray image sensors,” J. Micromech. Microeng. 19(1), 015014 (2008).
[Crossref]

Kandarakis, I. S.

P. F. Liaparinos and I. S. Kandarakis, “The imaging performance of compact Lu­2O3:Eu powdered phosphor screens: Monte Carlo simulation for applications in mammography,” Med. Phys. 36(6), 1985–1997 (2009).
[Crossref] [PubMed]

P. F. Liaparinos, I. S. Kandarakis, D. A. Cavouras, H. B. Delis, and G. S. Panayiotakis, “Modeling granular phosphor screens by Monte Carlo methods,” Med. Phys. 33(12), 4502–4514 (2006).
[Crossref] [PubMed]

Kausch, C.

C. Kausch, B. Schreiber, F. Kreuder, R. Schmidt, and O. Dössel, “Monte Carlo simulations of the imaging performance of metal plate/phosphor screens used in radiotherapy,” Med. Phys. 26(10), 2113–2124 (1999).
[Crossref] [PubMed]

Kim, H. K.

Kim, J. Y.

B. K. Cha, J. Y. Kim, T. J. Kim, C. Sim, and G. Cho, “Fabrication and imaging characterization of high sensitive CsI(Tl) and Gd2O2S(Tb) scintillator screens for X-ray imaging detectors,” Radiat. Meas. 45(3–6), 742–745 (2010).

Kim, J.-G.

Kim, T. J.

B. K. Cha, J. Y. Kim, T. J. Kim, C. Sim, and G. Cho, “Fabrication and imaging characterization of high sensitive CsI(Tl) and Gd2O2S(Tb) scintillator screens for X-ray imaging detectors,” Radiat. Meas. 45(3–6), 742–745 (2010).

Knapitsch, A.

Ko, J. S.

Kraft, Th.

Th. Kraft, M. Geßner, H. Meißner, M. Cramer, M. Gerke, and H. J. Przybilla, “Evaluation of a Metric Camera System Tailored for High Precision UAV Applications,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 41(B1), 901–907 (2016).
[Crossref]

Kreuder, F.

C. Kausch, B. Schreiber, F. Kreuder, R. Schmidt, and O. Dössel, “Monte Carlo simulations of the imaging performance of metal plate/phosphor screens used in radiotherapy,” Med. Phys. 26(10), 2113–2124 (1999).
[Crossref] [PubMed]

Lança, L.

L. Lança and A. Silva, “Digital radiography detectors–A technical overview: Part 2,” Radiography 15(2), 134–138 (2009).
[Crossref]

Lecoq, P.

Lee, C. H.

P. G. Jung, C. H. Lee, K. M. Bae, J. M. Lee, S. M. Lee, C. H. Lim, S. Yun, H. K. Kim, and J. S. Ko, “Microdome-gooved Gd2O2S:Tb scintillator for flexible and high resolution digital radiography,” Opt. Express 18(14), 14850–14858 (2010).
[Crossref] [PubMed]

I. D. Jung, M. K. Cho, M. L. Sang, K. M. Bae, P. G. Jung, and C. H. Lee, “Flexible Gd2O2S:Tb scintillators pixilated with polyethylene microstructures for digital x-ray image sensors,” J. Micromech. Microeng. 19(1), 015014 (2008).
[Crossref]

Lee, J. M.

Lee, S. M.

Lee, X.-H.

Liaparinos, P. F.

P. F. Liaparinos, “Optical diffusion performance of nanophosphor-based materials for use in medical imaging,” J. Biomed. Opt. 17(12), 126013 (2012).
[Crossref] [PubMed]

P. F. Liaparinos and I. S. Kandarakis, “The imaging performance of compact Lu­2O3:Eu powdered phosphor screens: Monte Carlo simulation for applications in mammography,” Med. Phys. 36(6), 1985–1997 (2009).
[Crossref] [PubMed]

P. F. Liaparinos, I. S. Kandarakis, D. A. Cavouras, H. B. Delis, and G. S. Panayiotakis, “Modeling granular phosphor screens by Monte Carlo methods,” Med. Phys. 33(12), 4502–4514 (2006).
[Crossref] [PubMed]

Lim, C. H.

Lin, M.-C.

Lindström, J.

J. Lindström and G. A. Carlsson, “A simple model for estimating the particle size dependence of absolute efficiency of fluorescent screens,” Phys. Med. Biol. 44(5), 1353–1367 (1999).
[Crossref] [PubMed]

McElroy, D. P.

D. P. McElroy, S.-C. Huang, and E. J. Hoffman, “The use of retro-reflective tape for improving spatial resolution of scintillation detectors,” IEEE Trans. Nucl. Sci. 49(1), 165–171 (2002).
[Crossref]

Meißner, H.

Th. Kraft, M. Geßner, H. Meißner, M. Cramer, M. Gerke, and H. J. Przybilla, “Evaluation of a Metric Camera System Tailored for High Precision UAV Applications,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 41(B1), 901–907 (2016).
[Crossref]

Moreno, I.

Mosleh-Shirazi, M. A.

E. Roncali, M. A. Mosleh-Shirazi, and A. Badano, “Modelling the transport of optical photons in scintillation detectors for diagnostic and radiotherapy imaging,” Phys. Med. Biol. 62(20), R207–R235 (2017).
[Crossref] [PubMed]

Muresan, L.

E.-J. Popovici, L. Muresan, A. Hristea-Simoc, E. Indrea, M. Vasilescu, M. Nazarov, and D. Y. Jeon, “Synthesis and characterisation of rare earth oxysulphide phosphors. I. Studies on the preparation of Gd2O2S: Tb phosphor by the flux method,” Opt. Mater. 27(3), 559–565 (2004).
[Crossref]

Nazarov, M.

E.-J. Popovici, L. Muresan, A. Hristea-Simoc, E. Indrea, M. Vasilescu, M. Nazarov, and D. Y. Jeon, “Synthesis and characterisation of rare earth oxysulphide phosphors. I. Studies on the preparation of Gd2O2S: Tb phosphor by the flux method,” Opt. Mater. 27(3), 559–565 (2004).
[Crossref]

Nikl, M.

M. Nikl, “Scintillation detectors for x-rays,” Meas. Sci. Technol. 17(4), R37–R54 (2006).
[Crossref]

Obenauer, S.

K.-P. Hermann, S. Obenauer, M. Funke, and E. H. Grabbe, “Magnification mammography: a comparison of full-field digital mammography and screen-film mammography for the detection of simulated small masses and microcalcifications,” Eur. Radiol. 12(9), 2188–2191 (2002).
[Crossref] [PubMed]

Panayiotakis, G. S.

P. F. Liaparinos, I. S. Kandarakis, D. A. Cavouras, H. B. Delis, and G. S. Panayiotakis, “Modeling granular phosphor screens by Monte Carlo methods,” Med. Phys. 33(12), 4502–4514 (2006).
[Crossref] [PubMed]

Poludniowski, G. G.

G. G. Poludniowski and P. M. Evans, “Optical photon transport in powdered-phosphor scintillators. Part II. Calculation of single-scattering transport parameters,” Med. Phys. 40(4), 041904 (2013).
[Crossref] [PubMed]

Popovici, E.-J.

E.-J. Popovici, L. Muresan, A. Hristea-Simoc, E. Indrea, M. Vasilescu, M. Nazarov, and D. Y. Jeon, “Synthesis and characterisation of rare earth oxysulphide phosphors. I. Studies on the preparation of Gd2O2S: Tb phosphor by the flux method,” Opt. Mater. 27(3), 559–565 (2004).
[Crossref]

Przybilla, H. J.

Th. Kraft, M. Geßner, H. Meißner, M. Cramer, M. Gerke, and H. J. Przybilla, “Evaluation of a Metric Camera System Tailored for High Precision UAV Applications,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 41(B1), 901–907 (2016).
[Crossref]

Roncali, E.

E. Roncali, M. A. Mosleh-Shirazi, and A. Badano, “Modelling the transport of optical photons in scintillation detectors for diagnostic and radiotherapy imaging,” Phys. Med. Biol. 62(20), R207–R235 (2017).
[Crossref] [PubMed]

Sang, M. L.

I. D. Jung, M. K. Cho, M. L. Sang, K. M. Bae, P. G. Jung, and C. H. Lee, “Flexible Gd2O2S:Tb scintillators pixilated with polyethylene microstructures for digital x-ray image sensors,” J. Micromech. Microeng. 19(1), 015014 (2008).
[Crossref]

Schmidt, R.

C. Kausch, B. Schreiber, F. Kreuder, R. Schmidt, and O. Dössel, “Monte Carlo simulations of the imaging performance of metal plate/phosphor screens used in radiotherapy,” Med. Phys. 26(10), 2113–2124 (1999).
[Crossref] [PubMed]

Schreiber, B.

C. Kausch, B. Schreiber, F. Kreuder, R. Schmidt, and O. Dössel, “Monte Carlo simulations of the imaging performance of metal plate/phosphor screens used in radiotherapy,” Med. Phys. 26(10), 2113–2124 (1999).
[Crossref] [PubMed]

Shim, H. B.

Silva, A.

L. Lança and A. Silva, “Digital radiography detectors–A technical overview: Part 2,” Radiography 15(2), 134–138 (2009).
[Crossref]

Sim, C.

B. K. Cha, J. Y. Kim, T. J. Kim, C. Sim, and G. Cho, “Fabrication and imaging characterization of high sensitive CsI(Tl) and Gd2O2S(Tb) scintillator screens for X-ray imaging detectors,” Radiat. Meas. 45(3–6), 742–745 (2010).

Singh, B.

Song, J.

Sun, C.-C.

Tate, M. W.

S. M. Gruner, M. W. Tate, and E. F. Eikenberry, “Charge-coupled device area X-ray detectors,” Rev. Sci. Instrum. 73(8), 2815–2842 (2002).
[Crossref]

Vasilescu, M.

E.-J. Popovici, L. Muresan, A. Hristea-Simoc, E. Indrea, M. Vasilescu, M. Nazarov, and D. Y. Jeon, “Synthesis and characterisation of rare earth oxysulphide phosphors. I. Studies on the preparation of Gd2O2S: Tb phosphor by the flux method,” Opt. Mater. 27(3), 559–565 (2004).
[Crossref]

Wang, L. V.

Yorkston, J.

J. Yorkston, “Recent developments in digital radiography detectors,” Nucl. Instrum. Methods Phys. Res. A 580(2), 974–985 (2007).
[Crossref]

Yun, S.

Eur. Radiol. (1)

K.-P. Hermann, S. Obenauer, M. Funke, and E. H. Grabbe, “Magnification mammography: a comparison of full-field digital mammography and screen-film mammography for the detection of simulated small masses and microcalcifications,” Eur. Radiol. 12(9), 2188–2191 (2002).
[Crossref] [PubMed]

IEEE Trans. Nucl. Sci. (1)

D. P. McElroy, S.-C. Huang, and E. J. Hoffman, “The use of retro-reflective tape for improving spatial resolution of scintillation detectors,” IEEE Trans. Nucl. Sci. 49(1), 165–171 (2002).
[Crossref]

Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci (1)

Th. Kraft, M. Geßner, H. Meißner, M. Cramer, M. Gerke, and H. J. Przybilla, “Evaluation of a Metric Camera System Tailored for High Precision UAV Applications,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 41(B1), 901–907 (2016).
[Crossref]

J. Biomed. Opt. (1)

P. F. Liaparinos, “Optical diffusion performance of nanophosphor-based materials for use in medical imaging,” J. Biomed. Opt. 17(12), 126013 (2012).
[Crossref] [PubMed]

J. Micromech. Microeng. (1)

I. D. Jung, M. K. Cho, M. L. Sang, K. M. Bae, P. G. Jung, and C. H. Lee, “Flexible Gd2O2S:Tb scintillators pixilated with polyethylene microstructures for digital x-ray image sensors,” J. Micromech. Microeng. 19(1), 015014 (2008).
[Crossref]

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (1)

M. Nikl, “Scintillation detectors for x-rays,” Meas. Sci. Technol. 17(4), R37–R54 (2006).
[Crossref]

Med. Phys. (4)

C. Kausch, B. Schreiber, F. Kreuder, R. Schmidt, and O. Dössel, “Monte Carlo simulations of the imaging performance of metal plate/phosphor screens used in radiotherapy,” Med. Phys. 26(10), 2113–2124 (1999).
[Crossref] [PubMed]

P. F. Liaparinos and I. S. Kandarakis, “The imaging performance of compact Lu­2O3:Eu powdered phosphor screens: Monte Carlo simulation for applications in mammography,” Med. Phys. 36(6), 1985–1997 (2009).
[Crossref] [PubMed]

P. F. Liaparinos, I. S. Kandarakis, D. A. Cavouras, H. B. Delis, and G. S. Panayiotakis, “Modeling granular phosphor screens by Monte Carlo methods,” Med. Phys. 33(12), 4502–4514 (2006).
[Crossref] [PubMed]

G. G. Poludniowski and P. M. Evans, “Optical photon transport in powdered-phosphor scintillators. Part II. Calculation of single-scattering transport parameters,” Med. Phys. 40(4), 041904 (2013).
[Crossref] [PubMed]

Nucl. Instrum. Methods Phys. Res. A (1)

J. Yorkston, “Recent developments in digital radiography detectors,” Nucl. Instrum. Methods Phys. Res. A 580(2), 974–985 (2007).
[Crossref]

Opt. Express (4)

Opt. Mater. (1)

E.-J. Popovici, L. Muresan, A. Hristea-Simoc, E. Indrea, M. Vasilescu, M. Nazarov, and D. Y. Jeon, “Synthesis and characterisation of rare earth oxysulphide phosphors. I. Studies on the preparation of Gd2O2S: Tb phosphor by the flux method,” Opt. Mater. 27(3), 559–565 (2004).
[Crossref]

Phys. Med. Biol. (2)

E. Roncali, M. A. Mosleh-Shirazi, and A. Badano, “Modelling the transport of optical photons in scintillation detectors for diagnostic and radiotherapy imaging,” Phys. Med. Biol. 62(20), R207–R235 (2017).
[Crossref] [PubMed]

J. Lindström and G. A. Carlsson, “A simple model for estimating the particle size dependence of absolute efficiency of fluorescent screens,” Phys. Med. Biol. 44(5), 1353–1367 (1999).
[Crossref] [PubMed]

Radiat. Meas. (1)

B. K. Cha, J. Y. Kim, T. J. Kim, C. Sim, and G. Cho, “Fabrication and imaging characterization of high sensitive CsI(Tl) and Gd2O2S(Tb) scintillator screens for X-ray imaging detectors,” Radiat. Meas. 45(3–6), 742–745 (2010).

Radiography (1)

L. Lança and A. Silva, “Digital radiography detectors–A technical overview: Part 2,” Radiography 15(2), 134–138 (2009).
[Crossref]

Rev. Sci. Instrum. (1)

S. M. Gruner, M. W. Tate, and E. F. Eikenberry, “Charge-coupled device area X-ray detectors,” Rev. Sci. Instrum. 73(8), 2815–2842 (2002).
[Crossref]

Other (3)

J. D. Jackson, Classical Electrodynamics (Wiley, 1962), p.111.

L. V. Wang and W. Hsin, Biomedical Optics: Principles and Imaging (John Wiley & Sons, 2012).

P. Hanrahan and W. Krueger, “Reflection from Layered Surfaces Due to Subsurface Scattering.” Proc. 20th Annu. Conf. Comput. Graph. Interact. Tech. 165–174 (1993).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the three parameters describing the scintillated visible light propagation in scattering layer; diffuse reflectance, R(t), transmittance, T(t), and absorptance, A(t) according to the scattering layer thickness t. (b) Schematic of the calculation model of X-ray absorption by scintillator particles in single-layer X-ray scintillator, of layer thickness L; incident X-ray energy is attenuated by sequentially arranged n identical scintillator particles of size d. The absorbed X-ray energy by the k th particle is denoted by e X-ray,abs,k . (c) Schematic for the calculation model of the energy collection of the scintillated k th particle at the back-end and front-end planes, denoted by e k,b and e k,f ,respectively. The light energy emitted from the k th scintillator particle, e k , undergoes multiple reflections at two layers of thicknesses t b and t f , located at the back and front of the k th scintillator particle, respectively. Considering all the sequentially arranged n scintillated particles, the energy collection of single-layer scintillator at each end-plane can be calculated. (d) Schematic for the calculation model of energy collection of double-layer X-ray scintillator at the detection plane, denoted by e col .Three energy collections are considered; the light energy collected at the front-end plane of layer 1, e 1,j,f , with multiple reflections between the layers; the light energy collected at the back-end plane of layer 2, e 2,k,b ,with multiple reflections between the layers; the light energy collected at the front-end plane of layer 2, e 2,k,f , without multiple reflections between the layers. Multiple reflections between layer 1 and layer 2 are denoted by the operator M.
Fig. 2
Fig. 2 Visible light propagation properties according to scattering layer thickness, for (a) diffuse reflectance, R and (b) diffuse transmittance, T. To obtain the coefficients in the analytical model, the results of the MC simulation data (symbols) are fitted with the analytical model (solid lines) for different particle sizes.
Fig. 3
Fig. 3 Collection efficiency performance of the single-layer scintillator with variation of single layer thickness at the (a) back-end plane and (b) front-end plane, calculated using analytical model (solid lines) and MC simulation data (symbols) for different particle sizes.
Fig. 4
Fig. 4 (a) Total thickness of X-ray scintillator according to the various scintillator particle sizes based on the previous analytical calculation model [14], with the target spatial resolution of 5 lp/mm. (b) Analytical calculation of Eq. (6) for the collection efficiency of the double-layer scintillator with various ratios of thickness of the first layer to the total layer thickness, which is calculated from Figure (a). The analytical model (solid lines) and MC simulation data (symbols) are compared for various particle sizes.
Fig. 5
Fig. 5 (a) X-ray absorption ratio (blue triangles with dash-dotted line) and collection efficiency (black squares with solid line) of the double-layer X-ray scintillator with the particular particle sizes of the second layer. Product of the two performances is expressed in (b) as the energy efficiency according to the particle size of the second layer and the optimum particle size of the layer is determined. The calculated particle sizes are 1 μm, 2 μm, 5 μm, 10 μm, and 20 μm.
Fig. 6
Fig. 6 Schematic for the calculation model of the energy collection of the scintillated k th particle at the back-end and front-end planes. Multiple reflection concept is applied within the two divided back and front layers, with thicknesses of t b and t f , respectively. The light emission direction is divided into (a) backward and (b) forward directions, with visible light energy of e k /2.

Tables (1)

Tables Icon

Table 1 Coefficients in Eqs. (1) and (2)

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

R(t)=(1 A )(1δexp(βt)(1δ)exp(γt)),
T(t)=1RA=1R A (1exp(αt)).
e X-ray,abs,k = e X-ray η X-ray,abs (d){ 1 η X-ray,abs ((k1)d) }
e k = e X-ray,abs,k η conv ,
η f = k=1 n { e k ( T f ( 1 R f R b ) + R b T f ( 1 R f R b ) )/2 } k=1 n e X-ray,abs,k ,
η col ={ j=1 n 1 e 1,j,f M 1,2Det + k=1 n 2 e 2,k,b M 2,1Det + k=1 n 2 e 2,k,f }/ k=n 1 +1 n 1 + n 2 j=1 n 1 e Xray,abs,jk ,
E efficiency = μ X-ray,abs η col ,
e k,f =( e k /2)( T f + T f ( R f R b )+ T f ( R f 2 R b 2 )+)+ ( e k /2)( R b T f + R b ( R f R b ) T f + R b ( R f 2 R b 2 ) T f +)
e k,f =( e k /2){ ( T f / 1 R f R b )+( R b T f / 1 R f R b ) }
η b = k=1 n { e k ( T b ( 1 R f R b ) + R f T b ( 1 R f R b ) )/2 } k=1 n e k
j=1 n 1 e 1,j,f T 2 1 R 1 R 2
k=1 n 2 e 2,k,b R 1 T 2 1 R 1 R 2
k=1 n 2 e 2,k,f

Metrics