Abstract

The highly enhanced local electromagnetic field occurring through nanometer gap between the plamonic nanostructures provides the dominant contribution in surface enhancement Raman scattering (SERS) enhancement. Thence, we designed the remarkable SERS platform (AuNPs/WS2@AuNPs hybrids) by introducing bilayer WS2 film as the precise nanospacer. Bilayer WS2 film can realize the facile and tight combination with AuNPs via the thermal decomposition approach. Dense three-dimension (3D) hot spots provided by this hybrid plasmonic nanostructures are responsible for the extremely satisfying SERS performances. Using rhodamine 6G (R6G) as the probe molecules, the AuNPs/WS2@AuNPs hybrids perform the excellent sensitivity with the minimum detectable concentration as low as 10−11 M. Uniform and reproducible SERS signals illustrate that the synthesized SERS hybrids perform the splendid spot-to-spot reproducibility (RSD~5.4%) and substrate-to-substrate reproducibility (RSD~5.7%). The stability of AuNPs and the protection of WS2 film endow this hybrid plasmonic nanostructures with the brilliant anti-oxidation stability. Moreover, the enhanced electric field distribution simulated with the COMSOL software proves the remarkable SERS performance in theory. Therefore, AuNPs/WS2@AuNPs substrate not only widens the SERS research filed of WS2, but also shows vast potential as excellent SERS sensor for practical applicability.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure

Jihua Xu, Chonghui Li, Haipeng Si, Xiaofei Zhao, Lin Wang, Shouzhen Jiang, Dongmei Wei, Jing Yu, Xianwu Xiu, and Chao Zhang
Opt. Express 26(17) 21546-21557 (2018)

Heterogeneous and cross-distributed metal structure hybridized with MoS2 as high-performance flexible SERS substrate

Xiaofei Zhao, Jing Yu, Zijing Zhang, Chonghui Li, Zhen Li, Shouzhen Jiang, Jie Pan, Aihua Liu, Chao Zhang, and Baoyuan Man
Opt. Express 26(18) 23831-23843 (2018)

Toward the highly sensitive SERS detection of bio-molecules: the formation of a 3D self-assembled structure with a uniform GO mesh between Ag nanoparticles and Au nanoparticles

Xu Gao, Hao Zhang, Xiangyu Fan, Chao Zhang, Yang Sun, Chundong Liu, Zhen Li, Shouzhen Jiang, Baoyuan Man, and Cheng Yang
Opt. Express 27(18) 25091-25106 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
    [Crossref] [PubMed]
  2. M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
    [Crossref] [PubMed]
  3. M. Paillet, R. Parret, J. L. Sauvajol, and P. Colomban, “Graphene and related 2D materials: An overview of the Raman studies,” J. Raman Spectrosc. 49(1), 8–12 (2018).
    [Crossref]
  4. X. Ling, W. Fang, Y. H. Lee, P. T. Araujo, X. Zhang, J. F. Rodriguez-Nieva, Y. Lin, J. Zhang, J. Kong, and M. S. Dresselhaus, “Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2.,” Nano Lett. 14(6), 3033–3040 (2014).
    [Crossref] [PubMed]
  5. K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. Park, “High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity,” Nature 520(7549), 656–660 (2015).
    [Crossref] [PubMed]
  6. D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
    [Crossref] [PubMed]
  7. B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2.,” Opt. Express 23(20), 26723–26737 (2015).
    [Crossref] [PubMed]
  8. Y. Xu, C. Yang, P. Ge, J. Liu, S. Jiang, C. Li, and B. Man, “As-grown uniform MoS2/mica saturable absorber for passively Q-switched mode-locked Nd: GdVO4 laser,” Opt. Laser Technol. 82, 139–144 (2016).
    [Crossref]
  9. S. Jiang, Z. Li, C. Zhang, S. Gao, Z. Li, H. Qiu, C. Li, C. Yang, M. Liu, and Y. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
    [Crossref]
  10. C. Cong, J. Shang, Y. Wang, and T. Yu, “Optical Properties of 2D Semiconductor WS2,” Adv. Opt. Mater. 6(1), 1700767 (2018).
    [Crossref]
  11. W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2.,” ACS Nano 7(1), 791–797 (2013).
    [Crossref] [PubMed]
  12. T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(1), 887–891 (2012).
    [Crossref] [PubMed]
  13. K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
    [Crossref] [PubMed]
  14. W. Bao, X. Cai, D. Kim, K. Sridhara, and M. S. Fuhrer, “High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects,” Appl. Phys. Lett. 102(4), 042104 (2013).
    [Crossref]
  15. J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4(1), 1474–1479 (2013).
    [Crossref] [PubMed]
  16. N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes,” Sci. Rep. 4(1), 05209 (2014).
    [Crossref]
  17. M. W. Iqbal, M. Z. Iqbal, M. F. Khan, M. A. Shehzad, Y. Seo, J. H. Park, C. Hwang, and J. Eom, “High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films,” Sci. Rep. 5(1), 10699 (2015).
    [Crossref] [PubMed]
  18. Y. Cui, R. Xin, Z. Yu, Y. Pan, Z. Y. Ong, X. Wei, J. Wang, H. Nan, Z. Ni, Y. Wu, T. Chen, Y. Shi, B. Wang, G. Zhang, Y. W. Zhang, and X. Wang, “High‐performance monolayer WS2 field-effect transistors on high-κ dielectrics,” Adv. Mater. 27(35), 5230–5234 (2015).
    [Crossref] [PubMed]
  19. P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
    [Crossref] [PubMed]
  20. D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
    [Crossref] [PubMed]
  21. Y. Yuan, R. Li, and Z. Liu, “Establishing water-soluble layered WS2 nanosheet as a platform for biosensing,” Anal. Chem. 86(7), 3610–3615 (2014).
    [Crossref] [PubMed]
  22. A. S. Pawbake, R. G. Waykar, D. J. Late, and S. R. Jadkar, “Highly transparent wafer-scale synthesis of crystalline WS2 nanoparticle thin film for photodetector and humidity-sensing applications,” ACS Appl. Mater. Interfaces 8(5), 3359–3365 (2016).
    [Crossref] [PubMed]
  23. L. Cheng, C. Yuan, S. Shen, X. Yi, H. Gong, K. Yang, and Z. Liu, “Bottom-up synthesis of metal-ion-doped WS2 nanoflakes for cancer theranostics,” ACS Nano 9(11), 11090–11101 (2015).
    [Crossref] [PubMed]
  24. J. Duan, S. Chen, B. A. Chambers, G. G. Andersson, and S. Z. Qiao, “3D WS2 nanolayers@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes,” Adv. Mater. 27(28), 4234–4241 (2015).
    [Crossref] [PubMed]
  25. F. M. Pesci, M. S. Sokolikova, C. Grotta, P. C. Sherrell, F. Reale, K. Sharda, and C. Mattevi, “MoS2/WS2 heterojunction for photoelectrochemical water oxidation,” ACS Catal. 7(8), 4990–4998 (2017).
    [Crossref]
  26. L. Cheng, W. Huang, Q. Gong, C. Liu, Z. Liu, Y. Li, and H. Dai, “Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction,” Angew. Chem. Int. Ed. Engl. 53(30), 7860–7863 (2014).
    [Crossref] [PubMed]
  27. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  28. Y. Fang, N. H. Seong, and D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering,” Science 321(5887), 388–392 (2008).
    [Crossref] [PubMed]
  29. Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4(10), e342 (2015).
    [Crossref]
  30. X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Materials Today Energy 5, 72–78 (2017).
    [Crossref]
  31. C. Lumdee, S. Toroghi, and P. G. Kik, “Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas,” ACS Nano 6(7), 6301–6307 (2012).
    [Crossref] [PubMed]
  32. X. Li, W. C. Choy, X. Ren, D. Zhang, and H. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
    [Crossref]
  33. Z. Zhan, L. Liu, W. Wang, Z. Cao, A. Martinelli, E. Wang, and J. Sun, “Ultrahigh Surface-Enhanced Raman Scattering of Graphene from Au/Graphene/Au Sandwiched Structures with Subnanometer Gap,” Adv. Opt. Mater. 4(12), 2021–2027 (2016).
    [Crossref]
  34. C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor Actuat. Biol. Chem. 258, 163–171 (2018).
  35. T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y. J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8(2), 100–103 (2013).
    [Crossref] [PubMed]
  36. L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
    [Crossref] [PubMed]
  37. B. M. Sow, J. Lu, H. Liu, K. E. J. Goh, and C. H. Sow, “Enriched Fluorescence Emission from WS2 Monoflake Empowered by Au Nanoexplorers,” Adv. Opt. Mater. 5(14), 1700156 (2017).
    [Crossref]
  38. D. Zhang, Y. C. Wu, M. Yang, X. Liu, C. Ó. Coileáin, M. Abid, M. Abid, J. J. Wang, I. Shvets, H. Xu, B. S. Chun, H. Liu, and H. C. Wu, “Surface enhanced Raman scattering of monolayer MX2 with metallic nano particles,” Sci. Rep. 6(1), 30320 (2016).
    [Crossref] [PubMed]
  39. Z. Li, S. Jiang, S. Xu, C. Zhang, H. Qiu, P. Chen, and M. Liu, “Facile synthesis of large-area and highly crystalline WS2 film on dielectric surfaces for SERS,” J. Alloys Compd. 666, 412–418 (2016).
    [Crossref]
  40. W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
    [Crossref] [PubMed]
  41. C. M. Orofeo, S. Suzuki, Y. Sekine, and H. Hibino, “Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films,” Appl. Phys. Lett. 105(8), 083112 (2014).
    [Crossref]
  42. K. C. Kwon, C. Kim, Q. V. Le, S. Gim, J. M. Jeon, J. Y. Ham, J. L. Lee, H. W. Jang, and S. Y. Kim, “Synthesis of atomically thin transition metal disulfides for charge transport layers in optoelectronic devices,” ACS Nano 9(4), 4146–4155 (2015).
    [Crossref] [PubMed]
  43. Z. Lu, Y. Liu, M. Wang, C. Zhang, Z. Li, Y. Huo, and S. Jiang, “A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytilus coruscus hybrid system,” Sensor Actuat. Biol. Chem. 261, 1–10 (2018).
  44. H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
    [Crossref] [PubMed]
  45. A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C. I. Chia, and H. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3(1), 1755 (2013).
    [Crossref]
  46. K. Gołasa, M. Grzeszczyk, J. Binder, R. Bożek, A. Wysmołek, and A. Babiński, “The disorder-induced Raman scattering in Au/MoS2 heterostructures,” AIP Adv. 5(7), 077120 (2015).
    [Crossref]
  47. E. J. Liang, X. L. Ye, and W. Kiefer, “Surface-enhanced Raman spectroscopy of crystal violet in the presence of halide and halate ions with near-infrared wavelength excitation,” J. Phys. Chem. A 101(40), 7330–7335 (1997).
    [Crossref]

2018 (4)

C. Cong, J. Shang, Y. Wang, and T. Yu, “Optical Properties of 2D Semiconductor WS2,” Adv. Opt. Mater. 6(1), 1700767 (2018).
[Crossref]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor Actuat. Biol. Chem. 258, 163–171 (2018).

Z. Lu, Y. Liu, M. Wang, C. Zhang, Z. Li, Y. Huo, and S. Jiang, “A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytilus coruscus hybrid system,” Sensor Actuat. Biol. Chem. 261, 1–10 (2018).

M. Paillet, R. Parret, J. L. Sauvajol, and P. Colomban, “Graphene and related 2D materials: An overview of the Raman studies,” J. Raman Spectrosc. 49(1), 8–12 (2018).
[Crossref]

2017 (4)

B. M. Sow, J. Lu, H. Liu, K. E. J. Goh, and C. H. Sow, “Enriched Fluorescence Emission from WS2 Monoflake Empowered by Au Nanoexplorers,” Adv. Opt. Mater. 5(14), 1700156 (2017).
[Crossref]

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Materials Today Energy 5, 72–78 (2017).
[Crossref]

S. Jiang, Z. Li, C. Zhang, S. Gao, Z. Li, H. Qiu, C. Li, C. Yang, M. Liu, and Y. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

F. M. Pesci, M. S. Sokolikova, C. Grotta, P. C. Sherrell, F. Reale, K. Sharda, and C. Mattevi, “MoS2/WS2 heterojunction for photoelectrochemical water oxidation,” ACS Catal. 7(8), 4990–4998 (2017).
[Crossref]

2016 (5)

A. S. Pawbake, R. G. Waykar, D. J. Late, and S. R. Jadkar, “Highly transparent wafer-scale synthesis of crystalline WS2 nanoparticle thin film for photodetector and humidity-sensing applications,” ACS Appl. Mater. Interfaces 8(5), 3359–3365 (2016).
[Crossref] [PubMed]

Y. Xu, C. Yang, P. Ge, J. Liu, S. Jiang, C. Li, and B. Man, “As-grown uniform MoS2/mica saturable absorber for passively Q-switched mode-locked Nd: GdVO4 laser,” Opt. Laser Technol. 82, 139–144 (2016).
[Crossref]

D. Zhang, Y. C. Wu, M. Yang, X. Liu, C. Ó. Coileáin, M. Abid, M. Abid, J. J. Wang, I. Shvets, H. Xu, B. S. Chun, H. Liu, and H. C. Wu, “Surface enhanced Raman scattering of monolayer MX2 with metallic nano particles,” Sci. Rep. 6(1), 30320 (2016).
[Crossref] [PubMed]

Z. Li, S. Jiang, S. Xu, C. Zhang, H. Qiu, P. Chen, and M. Liu, “Facile synthesis of large-area and highly crystalline WS2 film on dielectric surfaces for SERS,” J. Alloys Compd. 666, 412–418 (2016).
[Crossref]

Z. Zhan, L. Liu, W. Wang, Z. Cao, A. Martinelli, E. Wang, and J. Sun, “Ultrahigh Surface-Enhanced Raman Scattering of Graphene from Au/Graphene/Au Sandwiched Structures with Subnanometer Gap,” Adv. Opt. Mater. 4(12), 2021–2027 (2016).
[Crossref]

2015 (11)

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4(10), e342 (2015).
[Crossref]

L. Cheng, C. Yuan, S. Shen, X. Yi, H. Gong, K. Yang, and Z. Liu, “Bottom-up synthesis of metal-ion-doped WS2 nanoflakes for cancer theranostics,” ACS Nano 9(11), 11090–11101 (2015).
[Crossref] [PubMed]

J. Duan, S. Chen, B. A. Chambers, G. G. Andersson, and S. Z. Qiao, “3D WS2 nanolayers@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes,” Adv. Mater. 27(28), 4234–4241 (2015).
[Crossref] [PubMed]

M. W. Iqbal, M. Z. Iqbal, M. F. Khan, M. A. Shehzad, Y. Seo, J. H. Park, C. Hwang, and J. Eom, “High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films,” Sci. Rep. 5(1), 10699 (2015).
[Crossref] [PubMed]

Y. Cui, R. Xin, Z. Yu, Y. Pan, Z. Y. Ong, X. Wei, J. Wang, H. Nan, Z. Ni, Y. Wu, T. Chen, Y. Shi, B. Wang, G. Zhang, Y. W. Zhang, and X. Wang, “High‐performance monolayer WS2 field-effect transistors on high-κ dielectrics,” Adv. Mater. 27(35), 5230–5234 (2015).
[Crossref] [PubMed]

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref] [PubMed]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. Park, “High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity,” Nature 520(7549), 656–660 (2015).
[Crossref] [PubMed]

K. Gołasa, M. Grzeszczyk, J. Binder, R. Bożek, A. Wysmołek, and A. Babiński, “The disorder-induced Raman scattering in Au/MoS2 heterostructures,” AIP Adv. 5(7), 077120 (2015).
[Crossref]

K. C. Kwon, C. Kim, Q. V. Le, S. Gim, J. M. Jeon, J. Y. Ham, J. L. Lee, H. W. Jang, and S. Y. Kim, “Synthesis of atomically thin transition metal disulfides for charge transport layers in optoelectronic devices,” ACS Nano 9(4), 4146–4155 (2015).
[Crossref] [PubMed]

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2.,” Opt. Express 23(20), 26723–26737 (2015).
[Crossref] [PubMed]

2014 (7)

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
[Crossref] [PubMed]

X. Ling, W. Fang, Y. H. Lee, P. T. Araujo, X. Zhang, J. F. Rodriguez-Nieva, Y. Lin, J. Zhang, J. Kong, and M. S. Dresselhaus, “Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2.,” Nano Lett. 14(6), 3033–3040 (2014).
[Crossref] [PubMed]

Y. Yuan, R. Li, and Z. Liu, “Establishing water-soluble layered WS2 nanosheet as a platform for biosensing,” Anal. Chem. 86(7), 3610–3615 (2014).
[Crossref] [PubMed]

L. Cheng, W. Huang, Q. Gong, C. Liu, Z. Liu, Y. Li, and H. Dai, “Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction,” Angew. Chem. Int. Ed. Engl. 53(30), 7860–7863 (2014).
[Crossref] [PubMed]

X. Li, W. C. Choy, X. Ren, D. Zhang, and H. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes,” Sci. Rep. 4(1), 05209 (2014).
[Crossref]

C. M. Orofeo, S. Suzuki, Y. Sekine, and H. Hibino, “Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films,” Appl. Phys. Lett. 105(8), 083112 (2014).
[Crossref]

2013 (9)

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C. I. Chia, and H. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3(1), 1755 (2013).
[Crossref]

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y. J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8(2), 100–103 (2013).
[Crossref] [PubMed]

W. Bao, X. Cai, D. Kim, K. Sridhara, and M. S. Fuhrer, “High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects,” Appl. Phys. Lett. 102(4), 042104 (2013).
[Crossref]

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4(1), 1474–1479 (2013).
[Crossref] [PubMed]

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2.,” ACS Nano 7(1), 791–797 (2013).
[Crossref] [PubMed]

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

2012 (4)

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(1), 887–891 (2012).
[Crossref] [PubMed]

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

C. Lumdee, S. Toroghi, and P. G. Kik, “Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas,” ACS Nano 6(7), 6301–6307 (2012).
[Crossref] [PubMed]

2008 (1)

Y. Fang, N. H. Seong, and D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering,” Science 321(5887), 388–392 (2008).
[Crossref] [PubMed]

1997 (2)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

E. J. Liang, X. L. Ye, and W. Kiefer, “Surface-enhanced Raman spectroscopy of crystal violet in the presence of halide and halate ions with near-infrared wavelength excitation,” J. Phys. Chem. A 101(40), 7330–7335 (1997).
[Crossref]

Abid, M.

D. Zhang, Y. C. Wu, M. Yang, X. Liu, C. Ó. Coileáin, M. Abid, M. Abid, J. J. Wang, I. Shvets, H. Xu, B. S. Chun, H. Liu, and H. C. Wu, “Surface enhanced Raman scattering of monolayer MX2 with metallic nano particles,” Sci. Rep. 6(1), 30320 (2016).
[Crossref] [PubMed]

D. Zhang, Y. C. Wu, M. Yang, X. Liu, C. Ó. Coileáin, M. Abid, M. Abid, J. J. Wang, I. Shvets, H. Xu, B. S. Chun, H. Liu, and H. C. Wu, “Surface enhanced Raman scattering of monolayer MX2 with metallic nano particles,” Sci. Rep. 6(1), 30320 (2016).
[Crossref] [PubMed]

Aivazian, G.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4(1), 1474–1479 (2013).
[Crossref] [PubMed]

Amara, K. K.

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

Andersson, G. G.

J. Duan, S. Chen, B. A. Chambers, G. G. Andersson, and S. Z. Qiao, “3D WS2 nanolayers@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes,” Adv. Mater. 27(28), 4234–4241 (2015).
[Crossref] [PubMed]

Araujo, P. T.

X. Ling, W. Fang, Y. H. Lee, P. T. Araujo, X. Zhang, J. F. Rodriguez-Nieva, Y. Lin, J. Zhang, J. Kong, and M. S. Dresselhaus, “Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2.,” Nano Lett. 14(6), 3033–3040 (2014).
[Crossref] [PubMed]

Babinski, A.

K. Gołasa, M. Grzeszczyk, J. Binder, R. Bożek, A. Wysmołek, and A. Babiński, “The disorder-induced Raman scattering in Au/MoS2 heterostructures,” AIP Adv. 5(7), 077120 (2015).
[Crossref]

Bao, W.

W. Bao, X. Cai, D. Kim, K. Sridhara, and M. S. Fuhrer, “High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects,” Appl. Phys. Lett. 102(4), 042104 (2013).
[Crossref]

Belle, B. D.

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y. J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8(2), 100–103 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Berkdemir, A.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C. I. Chia, and H. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3(1), 1755 (2013).
[Crossref]

Binder, J.

K. Gołasa, M. Grzeszczyk, J. Binder, R. Bożek, A. Wysmołek, and A. Babiński, “The disorder-induced Raman scattering in Au/MoS2 heterostructures,” AIP Adv. 5(7), 077120 (2015).
[Crossref]

Botello-Méndez, A. R.

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C. I. Chia, and H. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3(1), 1755 (2013).
[Crossref]

Bozek, R.

K. Gołasa, M. Grzeszczyk, J. Binder, R. Bożek, A. Wysmołek, and A. Babiński, “The disorder-induced Raman scattering in Au/MoS2 heterostructures,” AIP Adv. 5(7), 077120 (2015).
[Crossref]

Britnell, L.

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y. J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8(2), 100–103 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Cai, X.

W. Bao, X. Cai, D. Kim, K. Sridhara, and M. S. Fuhrer, “High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects,” Appl. Phys. Lett. 102(4), 042104 (2013).
[Crossref]

Cao, T.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(1), 887–891 (2012).
[Crossref] [PubMed]

Cao, Z.

Z. Zhan, L. Liu, W. Wang, Z. Cao, A. Martinelli, E. Wang, and J. Sun, “Ultrahigh Surface-Enhanced Raman Scattering of Graphene from Au/Graphene/Au Sandwiched Structures with Subnanometer Gap,” Adv. Opt. Mater. 4(12), 2021–2027 (2016).
[Crossref]

Chambers, B. A.

J. Duan, S. Chen, B. A. Chambers, G. G. Andersson, and S. Z. Qiao, “3D WS2 nanolayers@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes,” Adv. Mater. 27(28), 4234–4241 (2015).
[Crossref] [PubMed]

Chen, B.

Chen, H.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref] [PubMed]

Chen, J.

Chen, P.

Z. Li, S. Jiang, S. Xu, C. Zhang, H. Qiu, P. Chen, and M. Liu, “Facile synthesis of large-area and highly crystalline WS2 film on dielectric surfaces for SERS,” J. Alloys Compd. 666, 412–418 (2016).
[Crossref]

Chen, S.

J. Duan, S. Chen, B. A. Chambers, G. G. Andersson, and S. Z. Qiao, “3D WS2 nanolayers@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes,” Adv. Mater. 27(28), 4234–4241 (2015).
[Crossref] [PubMed]

Chen, T.

Y. Cui, R. Xin, Z. Yu, Y. Pan, Z. Y. Ong, X. Wei, J. Wang, H. Nan, Z. Ni, Y. Wu, T. Chen, Y. Shi, B. Wang, G. Zhang, Y. W. Zhang, and X. Wang, “High‐performance monolayer WS2 field-effect transistors on high-κ dielectrics,” Adv. Mater. 27(35), 5230–5234 (2015).
[Crossref] [PubMed]

Chen, Y.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref] [PubMed]

Cheng, L.

L. Cheng, C. Yuan, S. Shen, X. Yi, H. Gong, K. Yang, and Z. Liu, “Bottom-up synthesis of metal-ion-doped WS2 nanoflakes for cancer theranostics,” ACS Nano 9(11), 11090–11101 (2015).
[Crossref] [PubMed]

L. Cheng, W. Huang, Q. Gong, C. Liu, Z. Liu, Y. Li, and H. Dai, “Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction,” Angew. Chem. Int. Ed. Engl. 53(30), 7860–7863 (2014).
[Crossref] [PubMed]

Chhowalla, M.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Chia, C. I.

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C. I. Chia, and H. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3(1), 1755 (2013).
[Crossref]

Choy, W. C.

X. Li, W. C. Choy, X. Ren, D. Zhang, and H. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Chu, L.

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2.,” ACS Nano 7(1), 791–797 (2013).
[Crossref] [PubMed]

Chun, B. S.

D. Zhang, Y. C. Wu, M. Yang, X. Liu, C. Ó. Coileáin, M. Abid, M. Abid, J. J. Wang, I. Shvets, H. Xu, B. S. Chun, H. Liu, and H. C. Wu, “Surface enhanced Raman scattering of monolayer MX2 with metallic nano particles,” Sci. Rep. 6(1), 30320 (2016).
[Crossref] [PubMed]

Coileáin, C. Ó.

D. Zhang, Y. C. Wu, M. Yang, X. Liu, C. Ó. Coileáin, M. Abid, M. Abid, J. J. Wang, I. Shvets, H. Xu, B. S. Chun, H. Liu, and H. C. Wu, “Surface enhanced Raman scattering of monolayer MX2 with metallic nano particles,” Sci. Rep. 6(1), 30320 (2016).
[Crossref] [PubMed]

Colomban, P.

M. Paillet, R. Parret, J. L. Sauvajol, and P. Colomban, “Graphene and related 2D materials: An overview of the Raman studies,” J. Raman Spectrosc. 49(1), 8–12 (2018).
[Crossref]

Cong, C.

C. Cong, J. Shang, Y. Wang, and T. Yu, “Optical Properties of 2D Semiconductor WS2,” Adv. Opt. Mater. 6(1), 1700767 (2018).
[Crossref]

Crespi, V. H.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Cui, Y.

Y. Cui, R. Xin, Z. Yu, Y. Pan, Z. Y. Ong, X. Wei, J. Wang, H. Nan, Z. Ni, Y. Wu, T. Chen, Y. Shi, B. Wang, G. Zhang, Y. W. Zhang, and X. Wang, “High‐performance monolayer WS2 field-effect transistors on high-κ dielectrics,” Adv. Mater. 27(35), 5230–5234 (2015).
[Crossref] [PubMed]

Dai, H.

L. Cheng, W. Huang, Q. Gong, C. Liu, Z. Liu, Y. Li, and H. Dai, “Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction,” Angew. Chem. Int. Ed. Engl. 53(30), 7860–7863 (2014).
[Crossref] [PubMed]

Dai, Z. G.

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4(10), e342 (2015).
[Crossref]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Ding, J.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref] [PubMed]

Ding, Q.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Materials Today Energy 5, 72–78 (2017).
[Crossref]

Dlott, D. D.

Y. Fang, N. H. Seong, and D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering,” Science 321(5887), 388–392 (2008).
[Crossref] [PubMed]

Dresselhaus, M. S.

X. Ling, W. Fang, Y. H. Lee, P. T. Araujo, X. Zhang, J. F. Rodriguez-Nieva, Y. Lin, J. Zhang, J. Kong, and M. S. Dresselhaus, “Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2.,” Nano Lett. 14(6), 3033–3040 (2014).
[Crossref] [PubMed]

Duan, J.

J. Duan, S. Chen, B. A. Chambers, G. G. Andersson, and S. Z. Qiao, “3D WS2 nanolayers@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes,” Adv. Mater. 27(28), 4234–4241 (2015).
[Crossref] [PubMed]

Eaves, L.

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y. J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8(2), 100–103 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Eda, G.

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2.,” ACS Nano 7(1), 791–797 (2013).
[Crossref] [PubMed]

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Elías, A. L.

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C. I. Chia, and H. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3(1), 1755 (2013).
[Crossref]

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Eom, J.

M. W. Iqbal, M. Z. Iqbal, M. F. Khan, M. A. Shehzad, Y. Seo, J. H. Park, C. Hwang, and J. Eom, “High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films,” Sci. Rep. 5(1), 10699 (2015).
[Crossref] [PubMed]

Fang, W.

X. Ling, W. Fang, Y. H. Lee, P. T. Araujo, X. Zhang, J. F. Rodriguez-Nieva, Y. Lin, J. Zhang, J. Kong, and M. S. Dresselhaus, “Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2.,” Nano Lett. 14(6), 3033–3040 (2014).
[Crossref] [PubMed]

Fang, Y.

Y. Fang, N. H. Seong, and D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering,” Science 321(5887), 388–392 (2008).
[Crossref] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Feng, J.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(1), 887–891 (2012).
[Crossref] [PubMed]

Fuhrer, M. S.

W. Bao, X. Cai, D. Kim, K. Sridhara, and M. S. Fuhrer, “High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects,” Appl. Phys. Lett. 102(4), 042104 (2013).
[Crossref]

Gan, X.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Gao, S.

S. Jiang, Z. Li, C. Zhang, S. Gao, Z. Li, H. Qiu, C. Li, C. Yang, M. Liu, and Y. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

Ge, P.

Y. Xu, C. Yang, P. Ge, J. Liu, S. Jiang, C. Li, and B. Man, “As-grown uniform MoS2/mica saturable absorber for passively Q-switched mode-locked Nd: GdVO4 laser,” Opt. Laser Technol. 82, 139–144 (2016).
[Crossref]

Geim, A. K.

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y. J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8(2), 100–103 (2013).
[Crossref] [PubMed]

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Georgiou, T.

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y. J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8(2), 100–103 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Ghimire, N. J.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4(1), 1474–1479 (2013).
[Crossref] [PubMed]

Gholinia, A.

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y. J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8(2), 100–103 (2013).
[Crossref] [PubMed]

Ghorannevis, Z.

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2.,” ACS Nano 7(1), 791–797 (2013).
[Crossref] [PubMed]

Gim, S.

K. C. Kwon, C. Kim, Q. V. Le, S. Gim, J. M. Jeon, J. Y. Ham, J. L. Lee, H. W. Jang, and S. Y. Kim, “Synthesis of atomically thin transition metal disulfides for charge transport layers in optoelectronic devices,” ACS Nano 9(4), 4146–4155 (2015).
[Crossref] [PubMed]

Goh, K. E. J.

B. M. Sow, J. Lu, H. Liu, K. E. J. Goh, and C. H. Sow, “Enriched Fluorescence Emission from WS2 Monoflake Empowered by Au Nanoexplorers,” Adv. Opt. Mater. 5(14), 1700156 (2017).
[Crossref]

Golasa, K.

K. Gołasa, M. Grzeszczyk, J. Binder, R. Bożek, A. Wysmołek, and A. Babiński, “The disorder-induced Raman scattering in Au/MoS2 heterostructures,” AIP Adv. 5(7), 077120 (2015).
[Crossref]

Gong, H.

L. Cheng, C. Yuan, S. Shen, X. Yi, H. Gong, K. Yang, and Z. Liu, “Bottom-up synthesis of metal-ion-doped WS2 nanoflakes for cancer theranostics,” ACS Nano 9(11), 11090–11101 (2015).
[Crossref] [PubMed]

Gong, Q.

L. Cheng, W. Huang, Q. Gong, C. Liu, Z. Liu, Y. Li, and H. Dai, “Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction,” Angew. Chem. Int. Ed. Engl. 53(30), 7860–7863 (2014).
[Crossref] [PubMed]

Gorbachev, R. V.

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y. J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8(2), 100–103 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Grigorieva, I. V.

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

Grotta, C.

F. M. Pesci, M. S. Sokolikova, C. Grotta, P. C. Sherrell, F. Reale, K. Sharda, and C. Mattevi, “MoS2/WS2 heterojunction for photoelectrochemical water oxidation,” ACS Catal. 7(8), 4990–4998 (2017).
[Crossref]

Grzeszczyk, M.

K. Gołasa, M. Grzeszczyk, J. Binder, R. Bożek, A. Wysmołek, and A. Babiński, “The disorder-induced Raman scattering in Au/MoS2 heterostructures,” AIP Adv. 5(7), 077120 (2015).
[Crossref]

Guo, S. S.

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4(10), e342 (2015).
[Crossref]

Guo, X.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Materials Today Energy 5, 72–78 (2017).
[Crossref]

Gutiérrez, H. R.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C. I. Chia, and H. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3(1), 1755 (2013).
[Crossref]

Haigh, S. J.

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y. J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8(2), 100–103 (2013).
[Crossref] [PubMed]

Ham, J. Y.

K. C. Kwon, C. Kim, Q. V. Le, S. Gim, J. M. Jeon, J. Y. Ham, J. L. Lee, H. W. Jang, and S. Y. Kim, “Synthesis of atomically thin transition metal disulfides for charge transport layers in optoelectronic devices,” ACS Nano 9(4), 4146–4155 (2015).
[Crossref] [PubMed]

Han, L.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Han, W.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(1), 887–891 (2012).
[Crossref] [PubMed]

Han, Y.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. Park, “High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity,” Nature 520(7549), 656–660 (2015).
[Crossref] [PubMed]

He, K.

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
[Crossref] [PubMed]

Heinz, T. F.

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
[Crossref] [PubMed]

Hersam, M. C.

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
[Crossref] [PubMed]

Hibino, H.

C. M. Orofeo, S. Suzuki, Y. Sekine, and H. Hibino, “Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films,” Appl. Phys. Lett. 105(8), 083112 (2014).
[Crossref]

Hua, S.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Huang, L.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. Park, “High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity,” Nature 520(7549), 656–660 (2015).
[Crossref] [PubMed]

Huang, P. Y.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. Park, “High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity,” Nature 520(7549), 656–660 (2015).
[Crossref] [PubMed]

Huang, W.

L. Cheng, W. Huang, Q. Gong, C. Liu, Z. Liu, Y. Li, and H. Dai, “Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction,” Angew. Chem. Int. Ed. Engl. 53(30), 7860–7863 (2014).
[Crossref] [PubMed]

Huo, N.

N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes,” Sci. Rep. 4(1), 05209 (2014).
[Crossref]

Huo, Y.

Z. Lu, Y. Liu, M. Wang, C. Zhang, Z. Li, Y. Huo, and S. Jiang, “A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytilus coruscus hybrid system,” Sensor Actuat. Biol. Chem. 261, 1–10 (2018).

Hwang, C.

M. W. Iqbal, M. Z. Iqbal, M. F. Khan, M. A. Shehzad, Y. Seo, J. H. Park, C. Hwang, and J. Eom, “High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films,” Sci. Rep. 5(1), 10699 (2015).
[Crossref] [PubMed]

Iqbal, M. W.

M. W. Iqbal, M. Z. Iqbal, M. F. Khan, M. A. Shehzad, Y. Seo, J. H. Park, C. Hwang, and J. Eom, “High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films,” Sci. Rep. 5(1), 10699 (2015).
[Crossref] [PubMed]

Iqbal, M. Z.

M. W. Iqbal, M. Z. Iqbal, M. F. Khan, M. A. Shehzad, Y. Seo, J. H. Park, C. Hwang, and J. Eom, “High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films,” Sci. Rep. 5(1), 10699 (2015).
[Crossref] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Jadkar, S. R.

A. S. Pawbake, R. G. Waykar, D. J. Late, and S. R. Jadkar, “Highly transparent wafer-scale synthesis of crystalline WS2 nanoparticle thin film for photodetector and humidity-sensing applications,” ACS Appl. Mater. Interfaces 8(5), 3359–3365 (2016).
[Crossref] [PubMed]

Jalil, R.

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y. J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8(2), 100–103 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Jang, H. W.

K. C. Kwon, C. Kim, Q. V. Le, S. Gim, J. M. Jeon, J. Y. Ham, J. L. Lee, H. W. Jang, and S. Y. Kim, “Synthesis of atomically thin transition metal disulfides for charge transport layers in optoelectronic devices,” ACS Nano 9(4), 4146–4155 (2015).
[Crossref] [PubMed]

Jariwala, D.

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
[Crossref] [PubMed]

Jeon, J. M.

K. C. Kwon, C. Kim, Q. V. Le, S. Gim, J. M. Jeon, J. Y. Ham, J. L. Lee, H. W. Jang, and S. Y. Kim, “Synthesis of atomically thin transition metal disulfides for charge transport layers in optoelectronic devices,” ACS Nano 9(4), 4146–4155 (2015).
[Crossref] [PubMed]

Jiang, B.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Jiang, C. Z.

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4(10), e342 (2015).
[Crossref]

Jiang, S.

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor Actuat. Biol. Chem. 258, 163–171 (2018).

Z. Lu, Y. Liu, M. Wang, C. Zhang, Z. Li, Y. Huo, and S. Jiang, “A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytilus coruscus hybrid system,” Sensor Actuat. Biol. Chem. 261, 1–10 (2018).

S. Jiang, Z. Li, C. Zhang, S. Gao, Z. Li, H. Qiu, C. Li, C. Yang, M. Liu, and Y. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

Y. Xu, C. Yang, P. Ge, J. Liu, S. Jiang, C. Li, and B. Man, “As-grown uniform MoS2/mica saturable absorber for passively Q-switched mode-locked Nd: GdVO4 laser,” Opt. Laser Technol. 82, 139–144 (2016).
[Crossref]

Z. Li, S. Jiang, S. Xu, C. Zhang, H. Qiu, P. Chen, and M. Liu, “Facile synthesis of large-area and highly crystalline WS2 film on dielectric surfaces for SERS,” J. Alloys Compd. 666, 412–418 (2016).
[Crossref]

Jones, A. M.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4(1), 1474–1479 (2013).
[Crossref] [PubMed]

Kang, K.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. Park, “High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity,” Nature 520(7549), 656–660 (2015).
[Crossref] [PubMed]

Katsnelson, M. I.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Khan, M. F.

M. W. Iqbal, M. Z. Iqbal, M. F. Khan, M. A. Shehzad, Y. Seo, J. H. Park, C. Hwang, and J. Eom, “High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films,” Sci. Rep. 5(1), 10699 (2015).
[Crossref] [PubMed]

Kiefer, W.

E. J. Liang, X. L. Ye, and W. Kiefer, “Surface-enhanced Raman spectroscopy of crystal violet in the presence of halide and halate ions with near-infrared wavelength excitation,” J. Phys. Chem. A 101(40), 7330–7335 (1997).
[Crossref]

Kik, P. G.

C. Lumdee, S. Toroghi, and P. G. Kik, “Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas,” ACS Nano 6(7), 6301–6307 (2012).
[Crossref] [PubMed]

Kim, C.

K. C. Kwon, C. Kim, Q. V. Le, S. Gim, J. M. Jeon, J. Y. Ham, J. L. Lee, H. W. Jang, and S. Y. Kim, “Synthesis of atomically thin transition metal disulfides for charge transport layers in optoelectronic devices,” ACS Nano 9(4), 4146–4155 (2015).
[Crossref] [PubMed]

Kim, C. J.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. Park, “High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity,” Nature 520(7549), 656–660 (2015).
[Crossref] [PubMed]

Kim, D.

W. Bao, X. Cai, D. Kim, K. Sridhara, and M. S. Fuhrer, “High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects,” Appl. Phys. Lett. 102(4), 042104 (2013).
[Crossref]

Kim, S. Y.

K. C. Kwon, C. Kim, Q. V. Le, S. Gim, J. M. Jeon, J. Y. Ham, J. L. Lee, H. W. Jang, and S. Y. Kim, “Synthesis of atomically thin transition metal disulfides for charge transport layers in optoelectronic devices,” ACS Nano 9(4), 4146–4155 (2015).
[Crossref] [PubMed]

Kim, Y. J.

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y. J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8(2), 100–103 (2013).
[Crossref] [PubMed]

Kloc, C.

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2.,” ACS Nano 7(1), 791–797 (2013).
[Crossref] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kong, J.

X. Ling, W. Fang, Y. H. Lee, P. T. Araujo, X. Zhang, J. F. Rodriguez-Nieva, Y. Lin, J. Zhang, J. Kong, and M. S. Dresselhaus, “Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2.,” Nano Lett. 14(6), 3033–3040 (2014).
[Crossref] [PubMed]

Kwon, K. C.

K. C. Kwon, C. Kim, Q. V. Le, S. Gim, J. M. Jeon, J. Y. Ham, J. L. Lee, H. W. Jang, and S. Y. Kim, “Synthesis of atomically thin transition metal disulfides for charge transport layers in optoelectronic devices,” ACS Nano 9(4), 4146–4155 (2015).
[Crossref] [PubMed]

Late, D. J.

A. S. Pawbake, R. G. Waykar, D. J. Late, and S. R. Jadkar, “Highly transparent wafer-scale synthesis of crystalline WS2 nanoparticle thin film for photodetector and humidity-sensing applications,” ACS Appl. Mater. Interfaces 8(5), 3359–3365 (2016).
[Crossref] [PubMed]

Lauhon, L. J.

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
[Crossref] [PubMed]

Le, Q. V.

K. C. Kwon, C. Kim, Q. V. Le, S. Gim, J. M. Jeon, J. Y. Ham, J. L. Lee, H. W. Jang, and S. Y. Kim, “Synthesis of atomically thin transition metal disulfides for charge transport layers in optoelectronic devices,” ACS Nano 9(4), 4146–4155 (2015).
[Crossref] [PubMed]

Lee, J. L.

K. C. Kwon, C. Kim, Q. V. Le, S. Gim, J. M. Jeon, J. Y. Ham, J. L. Lee, H. W. Jang, and S. Y. Kim, “Synthesis of atomically thin transition metal disulfides for charge transport layers in optoelectronic devices,” ACS Nano 9(4), 4146–4155 (2015).
[Crossref] [PubMed]

Lee, Y. H.

X. Ling, W. Fang, Y. H. Lee, P. T. Araujo, X. Zhang, J. F. Rodriguez-Nieva, Y. Lin, J. Zhang, J. Kong, and M. S. Dresselhaus, “Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2.,” Nano Lett. 14(6), 3033–3040 (2014).
[Crossref] [PubMed]

Leist, J.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Li, C.

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor Actuat. Biol. Chem. 258, 163–171 (2018).

S. Jiang, Z. Li, C. Zhang, S. Gao, Z. Li, H. Qiu, C. Li, C. Yang, M. Liu, and Y. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

Y. Xu, C. Yang, P. Ge, J. Liu, S. Jiang, C. Li, and B. Man, “As-grown uniform MoS2/mica saturable absorber for passively Q-switched mode-locked Nd: GdVO4 laser,” Opt. Laser Technol. 82, 139–144 (2016).
[Crossref]

Li, J.

N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes,” Sci. Rep. 4(1), 05209 (2014).
[Crossref]

Li, L. J.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Li, R.

Y. Yuan, R. Li, and Z. Liu, “Establishing water-soluble layered WS2 nanosheet as a platform for biosensing,” Anal. Chem. 86(7), 3610–3615 (2014).
[Crossref] [PubMed]

Li, S. S.

N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes,” Sci. Rep. 4(1), 05209 (2014).
[Crossref]

Li, X.

X. Li, W. C. Choy, X. Ren, D. Zhang, and H. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Li, Y.

L. Cheng, W. Huang, Q. Gong, C. Liu, Z. Liu, Y. Li, and H. Dai, “Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction,” Angew. Chem. Int. Ed. Engl. 53(30), 7860–7863 (2014).
[Crossref] [PubMed]

Li, Z.

Z. Lu, Y. Liu, M. Wang, C. Zhang, Z. Li, Y. Huo, and S. Jiang, “A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytilus coruscus hybrid system,” Sensor Actuat. Biol. Chem. 261, 1–10 (2018).

S. Jiang, Z. Li, C. Zhang, S. Gao, Z. Li, H. Qiu, C. Li, C. Yang, M. Liu, and Y. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

S. Jiang, Z. Li, C. Zhang, S. Gao, Z. Li, H. Qiu, C. Li, C. Yang, M. Liu, and Y. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

Z. Li, S. Jiang, S. Xu, C. Zhang, H. Qiu, P. Chen, and M. Liu, “Facile synthesis of large-area and highly crystalline WS2 film on dielectric surfaces for SERS,” J. Alloys Compd. 666, 412–418 (2016).
[Crossref]

Liang, E. J.

E. J. Liang, X. L. Ye, and W. Kiefer, “Surface-enhanced Raman spectroscopy of crystal violet in the presence of halide and halate ions with near-infrared wavelength excitation,” J. Phys. Chem. A 101(40), 7330–7335 (1997).
[Crossref]

Liao, L.

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4(10), e342 (2015).
[Crossref]

Lin, Y.

X. Ling, W. Fang, Y. H. Lee, P. T. Araujo, X. Zhang, J. F. Rodriguez-Nieva, Y. Lin, J. Zhang, J. Kong, and M. S. Dresselhaus, “Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2.,” Nano Lett. 14(6), 3033–3040 (2014).
[Crossref] [PubMed]

Ling, X.

X. Ling, W. Fang, Y. H. Lee, P. T. Araujo, X. Zhang, J. F. Rodriguez-Nieva, Y. Lin, J. Zhang, J. Kong, and M. S. Dresselhaus, “Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2.,” Nano Lett. 14(6), 3033–3040 (2014).
[Crossref] [PubMed]

Liu, A.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref] [PubMed]

Liu, B.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(1), 887–891 (2012).
[Crossref] [PubMed]

Liu, C.

L. Cheng, W. Huang, Q. Gong, C. Liu, Z. Liu, Y. Li, and H. Dai, “Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction,” Angew. Chem. Int. Ed. Engl. 53(30), 7860–7863 (2014).
[Crossref] [PubMed]

Liu, H.

B. M. Sow, J. Lu, H. Liu, K. E. J. Goh, and C. H. Sow, “Enriched Fluorescence Emission from WS2 Monoflake Empowered by Au Nanoexplorers,” Adv. Opt. Mater. 5(14), 1700156 (2017).
[Crossref]

D. Zhang, Y. C. Wu, M. Yang, X. Liu, C. Ó. Coileáin, M. Abid, M. Abid, J. J. Wang, I. Shvets, H. Xu, B. S. Chun, H. Liu, and H. C. Wu, “Surface enhanced Raman scattering of monolayer MX2 with metallic nano particles,” Sci. Rep. 6(1), 30320 (2016).
[Crossref] [PubMed]

Liu, J.

Y. Xu, C. Yang, P. Ge, J. Liu, S. Jiang, C. Li, and B. Man, “As-grown uniform MoS2/mica saturable absorber for passively Q-switched mode-locked Nd: GdVO4 laser,” Opt. Laser Technol. 82, 139–144 (2016).
[Crossref]

Liu, L.

Z. Zhan, L. Liu, W. Wang, Z. Cao, A. Martinelli, E. Wang, and J. Sun, “Ultrahigh Surface-Enhanced Raman Scattering of Graphene from Au/Graphene/Au Sandwiched Structures with Subnanometer Gap,” Adv. Opt. Mater. 4(12), 2021–2027 (2016).
[Crossref]

Liu, M.

S. Jiang, Z. Li, C. Zhang, S. Gao, Z. Li, H. Qiu, C. Li, C. Yang, M. Liu, and Y. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

Z. Li, S. Jiang, S. Xu, C. Zhang, H. Qiu, P. Chen, and M. Liu, “Facile synthesis of large-area and highly crystalline WS2 film on dielectric surfaces for SERS,” J. Alloys Compd. 666, 412–418 (2016).
[Crossref]

Liu, X.

D. Zhang, Y. C. Wu, M. Yang, X. Liu, C. Ó. Coileáin, M. Abid, M. Abid, J. J. Wang, I. Shvets, H. Xu, B. S. Chun, H. Liu, and H. C. Wu, “Surface enhanced Raman scattering of monolayer MX2 with metallic nano particles,” Sci. Rep. 6(1), 30320 (2016).
[Crossref] [PubMed]

Liu, Y.

Z. Lu, Y. Liu, M. Wang, C. Zhang, Z. Li, Y. Huo, and S. Jiang, “A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytilus coruscus hybrid system,” Sensor Actuat. Biol. Chem. 261, 1–10 (2018).

S. Jiang, Z. Li, C. Zhang, S. Gao, Z. Li, H. Qiu, C. Li, C. Yang, M. Liu, and Y. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

Liu, Z.

L. Cheng, C. Yuan, S. Shen, X. Yi, H. Gong, K. Yang, and Z. Liu, “Bottom-up synthesis of metal-ion-doped WS2 nanoflakes for cancer theranostics,” ACS Nano 9(11), 11090–11101 (2015).
[Crossref] [PubMed]

Y. Yuan, R. Li, and Z. Liu, “Establishing water-soluble layered WS2 nanosheet as a platform for biosensing,” Anal. Chem. 86(7), 3610–3615 (2014).
[Crossref] [PubMed]

L. Cheng, W. Huang, Q. Gong, C. Liu, Z. Liu, Y. Li, and H. Dai, “Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction,” Angew. Chem. Int. Ed. Engl. 53(30), 7860–7863 (2014).
[Crossref] [PubMed]

Loh, K. P.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

López-Urías, F.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Lu, H.

X. Li, W. C. Choy, X. Ren, D. Zhang, and H. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Lu, J.

B. M. Sow, J. Lu, H. Liu, K. E. J. Goh, and C. H. Sow, “Enriched Fluorescence Emission from WS2 Monoflake Empowered by Au Nanoexplorers,” Adv. Opt. Mater. 5(14), 1700156 (2017).
[Crossref]

Lu, Z.

Z. Lu, Y. Liu, M. Wang, C. Zhang, Z. Li, Y. Huo, and S. Jiang, “A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytilus coruscus hybrid system,” Sensor Actuat. Biol. Chem. 261, 1–10 (2018).

Lumdee, C.

C. Lumdee, S. Toroghi, and P. G. Kik, “Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas,” ACS Nano 6(7), 6301–6307 (2012).
[Crossref] [PubMed]

Lv, R.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Ma, C.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Mak, K. F.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. Park, “High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity,” Nature 520(7549), 656–660 (2015).
[Crossref] [PubMed]

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
[Crossref] [PubMed]

Makarovsky, O.

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y. J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8(2), 100–103 (2013).
[Crossref] [PubMed]

Man, B.

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor Actuat. Biol. Chem. 258, 163–171 (2018).

Y. Xu, C. Yang, P. Ge, J. Liu, S. Jiang, C. Li, and B. Man, “As-grown uniform MoS2/mica saturable absorber for passively Q-switched mode-locked Nd: GdVO4 laser,” Opt. Laser Technol. 82, 139–144 (2016).
[Crossref]

Mandrus, D. G.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4(1), 1474–1479 (2013).
[Crossref] [PubMed]

Mao, D.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Marks, T. J.

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
[Crossref] [PubMed]

Martinelli, A.

Z. Zhan, L. Liu, W. Wang, Z. Cao, A. Martinelli, E. Wang, and J. Sun, “Ultrahigh Surface-Enhanced Raman Scattering of Graphene from Au/Graphene/Au Sandwiched Structures with Subnanometer Gap,” Adv. Opt. Mater. 4(12), 2021–2027 (2016).
[Crossref]

Mattevi, C.

F. M. Pesci, M. S. Sokolikova, C. Grotta, P. C. Sherrell, F. Reale, K. Sharda, and C. Mattevi, “MoS2/WS2 heterojunction for photoelectrochemical water oxidation,” ACS Catal. 7(8), 4990–4998 (2017).
[Crossref]

Mei, T.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Mishchenko, A.

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y. J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8(2), 100–103 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Morozov, S. V.

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y. J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8(2), 100–103 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Muller, D.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. Park, “High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity,” Nature 520(7549), 656–660 (2015).
[Crossref] [PubMed]

Nan, H.

Y. Cui, R. Xin, Z. Yu, Y. Pan, Z. Y. Ong, X. Wei, J. Wang, H. Nan, Z. Ni, Y. Wu, T. Chen, Y. Shi, B. Wang, G. Zhang, Y. W. Zhang, and X. Wang, “High‐performance monolayer WS2 field-effect transistors on high-κ dielectrics,” Adv. Mater. 27(35), 5230–5234 (2015).
[Crossref] [PubMed]

Ni, Z.

Y. Cui, R. Xin, Z. Yu, Y. Pan, Z. Y. Ong, X. Wei, J. Wang, H. Nan, Z. Ni, Y. Wu, T. Chen, Y. Shi, B. Wang, G. Zhang, Y. W. Zhang, and X. Wang, “High‐performance monolayer WS2 field-effect transistors on high-κ dielectrics,” Adv. Mater. 27(35), 5230–5234 (2015).
[Crossref] [PubMed]

Niu, Q.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(1), 887–891 (2012).
[Crossref] [PubMed]

Novoselov, K. S.

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y. J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8(2), 100–103 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Ong, Z. Y.

Y. Cui, R. Xin, Z. Yu, Y. Pan, Z. Y. Ong, X. Wei, J. Wang, H. Nan, Z. Ni, Y. Wu, T. Chen, Y. Shi, B. Wang, G. Zhang, Y. W. Zhang, and X. Wang, “High‐performance monolayer WS2 field-effect transistors on high-κ dielectrics,” Adv. Mater. 27(35), 5230–5234 (2015).
[Crossref] [PubMed]

Orofeo, C. M.

C. M. Orofeo, S. Suzuki, Y. Sekine, and H. Hibino, “Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films,” Appl. Phys. Lett. 105(8), 083112 (2014).
[Crossref]

Paillet, M.

M. Paillet, R. Parret, J. L. Sauvajol, and P. Colomban, “Graphene and related 2D materials: An overview of the Raman studies,” J. Raman Spectrosc. 49(1), 8–12 (2018).
[Crossref]

Pan, Y.

Y. Cui, R. Xin, Z. Yu, Y. Pan, Z. Y. Ong, X. Wei, J. Wang, H. Nan, Z. Ni, Y. Wu, T. Chen, Y. Shi, B. Wang, G. Zhang, Y. W. Zhang, and X. Wang, “High‐performance monolayer WS2 field-effect transistors on high-κ dielectrics,” Adv. Mater. 27(35), 5230–5234 (2015).
[Crossref] [PubMed]

Pang, J. R.

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

Park, J.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. Park, “High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity,” Nature 520(7549), 656–660 (2015).
[Crossref] [PubMed]

Park, J. H.

M. W. Iqbal, M. Z. Iqbal, M. F. Khan, M. A. Shehzad, Y. Seo, J. H. Park, C. Hwang, and J. Eom, “High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films,” Sci. Rep. 5(1), 10699 (2015).
[Crossref] [PubMed]

Parret, R.

M. Paillet, R. Parret, J. L. Sauvajol, and P. Colomban, “Graphene and related 2D materials: An overview of the Raman studies,” J. Raman Spectrosc. 49(1), 8–12 (2018).
[Crossref]

Pawbake, A. S.

A. S. Pawbake, R. G. Waykar, D. J. Late, and S. R. Jadkar, “Highly transparent wafer-scale synthesis of crystalline WS2 nanoparticle thin film for photodetector and humidity-sensing applications,” ACS Appl. Mater. Interfaces 8(5), 3359–3365 (2016).
[Crossref] [PubMed]

Perea-López, N.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C. I. Chia, and H. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3(1), 1755 (2013).
[Crossref]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Peres, N. M.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Pesci, F. M.

F. M. Pesci, M. S. Sokolikova, C. Grotta, P. C. Sherrell, F. Reale, K. Sharda, and C. Mattevi, “MoS2/WS2 heterojunction for photoelectrochemical water oxidation,” ACS Catal. 7(8), 4990–4998 (2017).
[Crossref]

Ponomarenko, L. A.

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y. J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8(2), 100–103 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Pullerits, T.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Materials Today Energy 5, 72–78 (2017).
[Crossref]

Qiao, S. Z.

J. Duan, S. Chen, B. A. Chambers, G. G. Andersson, and S. Z. Qiao, “3D WS2 nanolayers@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes,” Adv. Mater. 27(28), 4234–4241 (2015).
[Crossref] [PubMed]

Qiu, H.

S. Jiang, Z. Li, C. Zhang, S. Gao, Z. Li, H. Qiu, C. Li, C. Yang, M. Liu, and Y. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

Z. Li, S. Jiang, S. Xu, C. Zhang, H. Qiu, P. Chen, and M. Liu, “Facile synthesis of large-area and highly crystalline WS2 film on dielectric surfaces for SERS,” J. Alloys Compd. 666, 412–418 (2016).
[Crossref]

Reale, F.

F. M. Pesci, M. S. Sokolikova, C. Grotta, P. C. Sherrell, F. Reale, K. Sharda, and C. Mattevi, “MoS2/WS2 heterojunction for photoelectrochemical water oxidation,” ACS Catal. 7(8), 4990–4998 (2017).
[Crossref]

Ren, X.

X. Li, W. C. Choy, X. Ren, D. Zhang, and H. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Rodriguez-Nieva, J. F.

X. Ling, W. Fang, Y. H. Lee, P. T. Araujo, X. Zhang, J. F. Rodriguez-Nieva, Y. Lin, J. Zhang, J. Kong, and M. S. Dresselhaus, “Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2.,” Nano Lett. 14(6), 3033–3040 (2014).
[Crossref] [PubMed]

Ross, J. S.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4(1), 1474–1479 (2013).
[Crossref] [PubMed]

Ruan, S.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref] [PubMed]

Sangwan, V. K.

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
[Crossref] [PubMed]

Sauvajol, J. L.

M. Paillet, R. Parret, J. L. Sauvajol, and P. Colomban, “Graphene and related 2D materials: An overview of the Raman studies,” J. Raman Spectrosc. 49(1), 8–12 (2018).
[Crossref]

Schedin, F.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Sekine, Y.

C. M. Orofeo, S. Suzuki, Y. Sekine, and H. Hibino, “Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films,” Appl. Phys. Lett. 105(8), 083112 (2014).
[Crossref]

Seo, Y.

M. W. Iqbal, M. Z. Iqbal, M. F. Khan, M. A. Shehzad, Y. Seo, J. H. Park, C. Hwang, and J. Eom, “High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films,” Sci. Rep. 5(1), 10699 (2015).
[Crossref] [PubMed]

Seong, N. H.

Y. Fang, N. H. Seong, and D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering,” Science 321(5887), 388–392 (2008).
[Crossref] [PubMed]

Shan, J.

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
[Crossref] [PubMed]

Shang, J.

C. Cong, J. Shang, Y. Wang, and T. Yu, “Optical Properties of 2D Semiconductor WS2,” Adv. Opt. Mater. 6(1), 1700767 (2018).
[Crossref]

Sharda, K.

F. M. Pesci, M. S. Sokolikova, C. Grotta, P. C. Sherrell, F. Reale, K. Sharda, and C. Mattevi, “MoS2/WS2 heterojunction for photoelectrochemical water oxidation,” ACS Catal. 7(8), 4990–4998 (2017).
[Crossref]

Shehzad, M. A.

M. W. Iqbal, M. Z. Iqbal, M. F. Khan, M. A. Shehzad, Y. Seo, J. H. Park, C. Hwang, and J. Eom, “High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films,” Sci. Rep. 5(1), 10699 (2015).
[Crossref] [PubMed]

Shen, S.

L. Cheng, C. Yuan, S. Shen, X. Yi, H. Gong, K. Yang, and Z. Liu, “Bottom-up synthesis of metal-ion-doped WS2 nanoflakes for cancer theranostics,” ACS Nano 9(11), 11090–11101 (2015).
[Crossref] [PubMed]

Sherrell, P. C.

F. M. Pesci, M. S. Sokolikova, C. Grotta, P. C. Sherrell, F. Reale, K. Sharda, and C. Mattevi, “MoS2/WS2 heterojunction for photoelectrochemical water oxidation,” ACS Catal. 7(8), 4990–4998 (2017).
[Crossref]

Shi, J.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(1), 887–891 (2012).
[Crossref] [PubMed]

Shi, Y.

Y. Cui, R. Xin, Z. Yu, Y. Pan, Z. Y. Ong, X. Wei, J. Wang, H. Nan, Z. Ni, Y. Wu, T. Chen, Y. Shi, B. Wang, G. Zhang, Y. W. Zhang, and X. Wang, “High‐performance monolayer WS2 field-effect transistors on high-κ dielectrics,” Adv. Mater. 27(35), 5230–5234 (2015).
[Crossref] [PubMed]

Shin, H. S.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Shvets, I.

D. Zhang, Y. C. Wu, M. Yang, X. Liu, C. Ó. Coileáin, M. Abid, M. Abid, J. J. Wang, I. Shvets, H. Xu, B. S. Chun, H. Liu, and H. C. Wu, “Surface enhanced Raman scattering of monolayer MX2 with metallic nano particles,” Sci. Rep. 6(1), 30320 (2016).
[Crossref] [PubMed]

Sokolikova, M. S.

F. M. Pesci, M. S. Sokolikova, C. Grotta, P. C. Sherrell, F. Reale, K. Sharda, and C. Mattevi, “MoS2/WS2 heterojunction for photoelectrochemical water oxidation,” ACS Catal. 7(8), 4990–4998 (2017).
[Crossref]

Sow, B. M.

B. M. Sow, J. Lu, H. Liu, K. E. J. Goh, and C. H. Sow, “Enriched Fluorescence Emission from WS2 Monoflake Empowered by Au Nanoexplorers,” Adv. Opt. Mater. 5(14), 1700156 (2017).
[Crossref]

Sow, C. H.

B. M. Sow, J. Lu, H. Liu, K. E. J. Goh, and C. H. Sow, “Enriched Fluorescence Emission from WS2 Monoflake Empowered by Au Nanoexplorers,” Adv. Opt. Mater. 5(14), 1700156 (2017).
[Crossref]

Sridhara, K.

W. Bao, X. Cai, D. Kim, K. Sridhara, and M. S. Fuhrer, “High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects,” Appl. Phys. Lett. 102(4), 042104 (2013).
[Crossref]

Sun, J.

Z. Zhan, L. Liu, W. Wang, Z. Cao, A. Martinelli, E. Wang, and J. Sun, “Ultrahigh Surface-Enhanced Raman Scattering of Graphene from Au/Graphene/Au Sandwiched Structures with Subnanometer Gap,” Adv. Opt. Mater. 4(12), 2021–2027 (2016).
[Crossref]

Sun, M.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Materials Today Energy 5, 72–78 (2017).
[Crossref]

Suzuki, S.

C. M. Orofeo, S. Suzuki, Y. Sekine, and H. Hibino, “Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films,” Appl. Phys. Lett. 105(8), 083112 (2014).
[Crossref]

Tan, P.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(1), 887–891 (2012).
[Crossref] [PubMed]

Tan, P. H.

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2.,” ACS Nano 7(1), 791–797 (2013).
[Crossref] [PubMed]

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

Terrones, H.

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C. I. Chia, and H. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3(1), 1755 (2013).
[Crossref]

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Terrones, M.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Toh, M.

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2.,” ACS Nano 7(1), 791–797 (2013).
[Crossref] [PubMed]

Toroghi, S.

C. Lumdee, S. Toroghi, and P. G. Kik, “Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas,” ACS Nano 6(7), 6301–6307 (2012).
[Crossref] [PubMed]

Wang, B.

Y. Cui, R. Xin, Z. Yu, Y. Pan, Z. Y. Ong, X. Wei, J. Wang, H. Nan, Z. Ni, Y. Wu, T. Chen, Y. Shi, B. Wang, G. Zhang, Y. W. Zhang, and X. Wang, “High‐performance monolayer WS2 field-effect transistors on high-κ dielectrics,” Adv. Mater. 27(35), 5230–5234 (2015).
[Crossref] [PubMed]

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Wang, E.

Z. Zhan, L. Liu, W. Wang, Z. Cao, A. Martinelli, E. Wang, and J. Sun, “Ultrahigh Surface-Enhanced Raman Scattering of Graphene from Au/Graphene/Au Sandwiched Structures with Subnanometer Gap,” Adv. Opt. Mater. 4(12), 2021–2027 (2016).
[Crossref]

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(1), 887–891 (2012).
[Crossref] [PubMed]

Wang, G.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(1), 887–891 (2012).
[Crossref] [PubMed]

Wang, H.

Wang, J.

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2.,” Opt. Express 23(20), 26723–26737 (2015).
[Crossref] [PubMed]

Y. Cui, R. Xin, Z. Yu, Y. Pan, Z. Y. Ong, X. Wei, J. Wang, H. Nan, Z. Ni, Y. Wu, T. Chen, Y. Shi, B. Wang, G. Zhang, Y. W. Zhang, and X. Wang, “High‐performance monolayer WS2 field-effect transistors on high-κ dielectrics,” Adv. Mater. 27(35), 5230–5234 (2015).
[Crossref] [PubMed]

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref] [PubMed]

Wang, J. J.

D. Zhang, Y. C. Wu, M. Yang, X. Liu, C. Ó. Coileáin, M. Abid, M. Abid, J. J. Wang, I. Shvets, H. Xu, B. S. Chun, H. Liu, and H. C. Wu, “Surface enhanced Raman scattering of monolayer MX2 with metallic nano particles,” Sci. Rep. 6(1), 30320 (2016).
[Crossref] [PubMed]

Wang, M.

Z. Lu, Y. Liu, M. Wang, C. Zhang, Z. Li, Y. Huo, and S. Jiang, “A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytilus coruscus hybrid system,” Sensor Actuat. Biol. Chem. 261, 1–10 (2018).

Wang, R.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Materials Today Energy 5, 72–78 (2017).
[Crossref]

Wang, W.

Z. Zhan, L. Liu, W. Wang, Z. Cao, A. Martinelli, E. Wang, and J. Sun, “Ultrahigh Surface-Enhanced Raman Scattering of Graphene from Au/Graphene/Au Sandwiched Structures with Subnanometer Gap,” Adv. Opt. Mater. 4(12), 2021–2027 (2016).
[Crossref]

Wang, X.

Y. Cui, R. Xin, Z. Yu, Y. Pan, Z. Y. Ong, X. Wei, J. Wang, H. Nan, Z. Ni, Y. Wu, T. Chen, Y. Shi, B. Wang, G. Zhang, Y. W. Zhang, and X. Wang, “High‐performance monolayer WS2 field-effect transistors on high-κ dielectrics,” Adv. Mater. 27(35), 5230–5234 (2015).
[Crossref] [PubMed]

Wang, Y.

C. Cong, J. Shang, Y. Wang, and T. Yu, “Optical Properties of 2D Semiconductor WS2,” Adv. Opt. Mater. 6(1), 1700767 (2018).
[Crossref]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Waykar, R. G.

A. S. Pawbake, R. G. Waykar, D. J. Late, and S. R. Jadkar, “Highly transparent wafer-scale synthesis of crystalline WS2 nanoparticle thin film for photodetector and humidity-sensing applications,” ACS Appl. Mater. Interfaces 8(5), 3359–3365 (2016).
[Crossref] [PubMed]

Wei, X.

Y. Cui, R. Xin, Z. Yu, Y. Pan, Z. Y. Ong, X. Wei, J. Wang, H. Nan, Z. Ni, Y. Wu, T. Chen, Y. Shi, B. Wang, G. Zhang, Y. W. Zhang, and X. Wang, “High‐performance monolayer WS2 field-effect transistors on high-κ dielectrics,” Adv. Mater. 27(35), 5230–5234 (2015).
[Crossref] [PubMed]

Wei, Z.

N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes,” Sci. Rep. 4(1), 05209 (2014).
[Crossref]

Wu, H. C.

D. Zhang, Y. C. Wu, M. Yang, X. Liu, C. Ó. Coileáin, M. Abid, M. Abid, J. J. Wang, I. Shvets, H. Xu, B. S. Chun, H. Liu, and H. C. Wu, “Surface enhanced Raman scattering of monolayer MX2 with metallic nano particles,” Sci. Rep. 6(1), 30320 (2016).
[Crossref] [PubMed]

Wu, K.

Wu, S.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4(1), 1474–1479 (2013).
[Crossref] [PubMed]

Wu, W.

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4(10), e342 (2015).
[Crossref]

Wu, Y.

Y. Cui, R. Xin, Z. Yu, Y. Pan, Z. Y. Ong, X. Wei, J. Wang, H. Nan, Z. Ni, Y. Wu, T. Chen, Y. Shi, B. Wang, G. Zhang, Y. W. Zhang, and X. Wang, “High‐performance monolayer WS2 field-effect transistors on high-κ dielectrics,” Adv. Mater. 27(35), 5230–5234 (2015).
[Crossref] [PubMed]

Wu, Y. C.

D. Zhang, Y. C. Wu, M. Yang, X. Liu, C. Ó. Coileáin, M. Abid, M. Abid, J. J. Wang, I. Shvets, H. Xu, B. S. Chun, H. Liu, and H. C. Wu, “Surface enhanced Raman scattering of monolayer MX2 with metallic nano particles,” Sci. Rep. 6(1), 30320 (2016).
[Crossref] [PubMed]

Wysmolek, A.

K. Gołasa, M. Grzeszczyk, J. Binder, R. Bożek, A. Wysmołek, and A. Babiński, “The disorder-induced Raman scattering in Au/MoS2 heterostructures,” AIP Adv. 5(7), 077120 (2015).
[Crossref]

Xia, J. B.

N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes,” Sci. Rep. 4(1), 05209 (2014).
[Crossref]

Xiao, D.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4(1), 1474–1479 (2013).
[Crossref] [PubMed]

Xiao, X. H.

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4(10), e342 (2015).
[Crossref]

Xie, S.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. Park, “High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity,” Nature 520(7549), 656–660 (2015).
[Crossref] [PubMed]

Xin, R.

Y. Cui, R. Xin, Z. Yu, Y. Pan, Z. Y. Ong, X. Wei, J. Wang, H. Nan, Z. Ni, Y. Wu, T. Chen, Y. Shi, B. Wang, G. Zhang, Y. W. Zhang, and X. Wang, “High‐performance monolayer WS2 field-effect transistors on high-κ dielectrics,” Adv. Mater. 27(35), 5230–5234 (2015).
[Crossref] [PubMed]

Xu, H.

D. Zhang, Y. C. Wu, M. Yang, X. Liu, C. Ó. Coileáin, M. Abid, M. Abid, J. J. Wang, I. Shvets, H. Xu, B. S. Chun, H. Liu, and H. C. Wu, “Surface enhanced Raman scattering of monolayer MX2 with metallic nano particles,” Sci. Rep. 6(1), 30320 (2016).
[Crossref] [PubMed]

Xu, S.

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor Actuat. Biol. Chem. 258, 163–171 (2018).

Z. Li, S. Jiang, S. Xu, C. Zhang, H. Qiu, P. Chen, and M. Liu, “Facile synthesis of large-area and highly crystalline WS2 film on dielectric surfaces for SERS,” J. Alloys Compd. 666, 412–418 (2016).
[Crossref]

Xu, X.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4(1), 1474–1479 (2013).
[Crossref] [PubMed]

Xu, Y.

Y. Xu, C. Yang, P. Ge, J. Liu, S. Jiang, C. Li, and B. Man, “As-grown uniform MoS2/mica saturable absorber for passively Q-switched mode-locked Nd: GdVO4 laser,” Opt. Laser Technol. 82, 139–144 (2016).
[Crossref]

Yan, J.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4(1), 1474–1479 (2013).
[Crossref] [PubMed]

Yan, P.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref] [PubMed]

Yang, C.

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor Actuat. Biol. Chem. 258, 163–171 (2018).

S. Jiang, Z. Li, C. Zhang, S. Gao, Z. Li, H. Qiu, C. Li, C. Yang, M. Liu, and Y. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

Y. Xu, C. Yang, P. Ge, J. Liu, S. Jiang, C. Li, and B. Man, “As-grown uniform MoS2/mica saturable absorber for passively Q-switched mode-locked Nd: GdVO4 laser,” Opt. Laser Technol. 82, 139–144 (2016).
[Crossref]

Yang, K.

L. Cheng, C. Yuan, S. Shen, X. Yi, H. Gong, K. Yang, and Z. Liu, “Bottom-up synthesis of metal-ion-doped WS2 nanoflakes for cancer theranostics,” ACS Nano 9(11), 11090–11101 (2015).
[Crossref] [PubMed]

Yang, M.

D. Zhang, Y. C. Wu, M. Yang, X. Liu, C. Ó. Coileáin, M. Abid, M. Abid, J. J. Wang, I. Shvets, H. Xu, B. S. Chun, H. Liu, and H. C. Wu, “Surface enhanced Raman scattering of monolayer MX2 with metallic nano particles,” Sci. Rep. 6(1), 30320 (2016).
[Crossref] [PubMed]

Yang, S.

N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes,” Sci. Rep. 4(1), 05209 (2014).
[Crossref]

Yang, X.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Materials Today Energy 5, 72–78 (2017).
[Crossref]

Yao, W.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4(1), 1474–1479 (2013).
[Crossref] [PubMed]

Ye, H.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(1), 887–891 (2012).
[Crossref] [PubMed]

Ye, X. L.

E. J. Liang, X. L. Ye, and W. Kiefer, “Surface-enhanced Raman spectroscopy of crystal violet in the presence of halide and halate ions with near-infrared wavelength excitation,” J. Phys. Chem. A 101(40), 7330–7335 (1997).
[Crossref]

Yi, X.

L. Cheng, C. Yuan, S. Shen, X. Yi, H. Gong, K. Yang, and Z. Liu, “Bottom-up synthesis of metal-ion-doped WS2 nanoflakes for cancer theranostics,” ACS Nano 9(11), 11090–11101 (2015).
[Crossref] [PubMed]

Yu, H.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Materials Today Energy 5, 72–78 (2017).
[Crossref]

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4(1), 1474–1479 (2013).
[Crossref] [PubMed]

Yu, J.

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor Actuat. Biol. Chem. 258, 163–171 (2018).

Yu, T.

C. Cong, J. Shang, Y. Wang, and T. Yu, “Optical Properties of 2D Semiconductor WS2,” Adv. Opt. Mater. 6(1), 1700767 (2018).
[Crossref]

Yu, Z.

Y. Cui, R. Xin, Z. Yu, Y. Pan, Z. Y. Ong, X. Wei, J. Wang, H. Nan, Z. Ni, Y. Wu, T. Chen, Y. Shi, B. Wang, G. Zhang, Y. W. Zhang, and X. Wang, “High‐performance monolayer WS2 field-effect transistors on high-κ dielectrics,” Adv. Mater. 27(35), 5230–5234 (2015).
[Crossref] [PubMed]

Yuan, C.

L. Cheng, C. Yuan, S. Shen, X. Yi, H. Gong, K. Yang, and Z. Liu, “Bottom-up synthesis of metal-ion-doped WS2 nanoflakes for cancer theranostics,” ACS Nano 9(11), 11090–11101 (2015).
[Crossref] [PubMed]

Yuan, Y.

Y. Yuan, R. Li, and Z. Liu, “Establishing water-soluble layered WS2 nanosheet as a platform for biosensing,” Anal. Chem. 86(7), 3610–3615 (2014).
[Crossref] [PubMed]

Zhan, Z.

Z. Zhan, L. Liu, W. Wang, Z. Cao, A. Martinelli, E. Wang, and J. Sun, “Ultrahigh Surface-Enhanced Raman Scattering of Graphene from Au/Graphene/Au Sandwiched Structures with Subnanometer Gap,” Adv. Opt. Mater. 4(12), 2021–2027 (2016).
[Crossref]

Zhang, C.

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor Actuat. Biol. Chem. 258, 163–171 (2018).

Z. Lu, Y. Liu, M. Wang, C. Zhang, Z. Li, Y. Huo, and S. Jiang, “A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytilus coruscus hybrid system,” Sensor Actuat. Biol. Chem. 261, 1–10 (2018).

S. Jiang, Z. Li, C. Zhang, S. Gao, Z. Li, H. Qiu, C. Li, C. Yang, M. Liu, and Y. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

Z. Li, S. Jiang, S. Xu, C. Zhang, H. Qiu, P. Chen, and M. Liu, “Facile synthesis of large-area and highly crystalline WS2 film on dielectric surfaces for SERS,” J. Alloys Compd. 666, 412–418 (2016).
[Crossref]

Zhang, D.

D. Zhang, Y. C. Wu, M. Yang, X. Liu, C. Ó. Coileáin, M. Abid, M. Abid, J. J. Wang, I. Shvets, H. Xu, B. S. Chun, H. Liu, and H. C. Wu, “Surface enhanced Raman scattering of monolayer MX2 with metallic nano particles,” Sci. Rep. 6(1), 30320 (2016).
[Crossref] [PubMed]

X. Li, W. C. Choy, X. Ren, D. Zhang, and H. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Zhang, G.

Y. Cui, R. Xin, Z. Yu, Y. Pan, Z. Y. Ong, X. Wei, J. Wang, H. Nan, Z. Ni, Y. Wu, T. Chen, Y. Shi, B. Wang, G. Zhang, Y. W. Zhang, and X. Wang, “High‐performance monolayer WS2 field-effect transistors on high-κ dielectrics,” Adv. Mater. 27(35), 5230–5234 (2015).
[Crossref] [PubMed]

Zhang, H.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Zhang, J.

X. Ling, W. Fang, Y. H. Lee, P. T. Araujo, X. Zhang, J. F. Rodriguez-Nieva, Y. Lin, J. Zhang, J. Kong, and M. S. Dresselhaus, “Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2.,” Nano Lett. 14(6), 3033–3040 (2014).
[Crossref] [PubMed]

Zhang, W.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Zhang, X.

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2.,” Opt. Express 23(20), 26723–26737 (2015).
[Crossref] [PubMed]

X. Ling, W. Fang, Y. H. Lee, P. T. Araujo, X. Zhang, J. F. Rodriguez-Nieva, Y. Lin, J. Zhang, J. Kong, and M. S. Dresselhaus, “Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2.,” Nano Lett. 14(6), 3033–3040 (2014).
[Crossref] [PubMed]

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

Zhang, Y. P.

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4(10), e342 (2015).
[Crossref]

Zhang, Y. W.

Y. Cui, R. Xin, Z. Yu, Y. Pan, Z. Y. Ong, X. Wei, J. Wang, H. Nan, Z. Ni, Y. Wu, T. Chen, Y. Shi, B. Wang, G. Zhang, Y. W. Zhang, and X. Wang, “High‐performance monolayer WS2 field-effect transistors on high-κ dielectrics,” Adv. Mater. 27(35), 5230–5234 (2015).
[Crossref] [PubMed]

Zhao, J.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Zhao, W.

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2.,” ACS Nano 7(1), 791–797 (2013).
[Crossref] [PubMed]

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

Zhu, C.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(1), 887–891 (2012).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

A. S. Pawbake, R. G. Waykar, D. J. Late, and S. R. Jadkar, “Highly transparent wafer-scale synthesis of crystalline WS2 nanoparticle thin film for photodetector and humidity-sensing applications,” ACS Appl. Mater. Interfaces 8(5), 3359–3365 (2016).
[Crossref] [PubMed]

ACS Catal. (1)

F. M. Pesci, M. S. Sokolikova, C. Grotta, P. C. Sherrell, F. Reale, K. Sharda, and C. Mattevi, “MoS2/WS2 heterojunction for photoelectrochemical water oxidation,” ACS Catal. 7(8), 4990–4998 (2017).
[Crossref]

ACS Nano (5)

L. Cheng, C. Yuan, S. Shen, X. Yi, H. Gong, K. Yang, and Z. Liu, “Bottom-up synthesis of metal-ion-doped WS2 nanoflakes for cancer theranostics,” ACS Nano 9(11), 11090–11101 (2015).
[Crossref] [PubMed]

C. Lumdee, S. Toroghi, and P. G. Kik, “Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas,” ACS Nano 6(7), 6301–6307 (2012).
[Crossref] [PubMed]

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
[Crossref] [PubMed]

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2.,” ACS Nano 7(1), 791–797 (2013).
[Crossref] [PubMed]

K. C. Kwon, C. Kim, Q. V. Le, S. Gim, J. M. Jeon, J. Y. Ham, J. L. Lee, H. W. Jang, and S. Y. Kim, “Synthesis of atomically thin transition metal disulfides for charge transport layers in optoelectronic devices,” ACS Nano 9(4), 4146–4155 (2015).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

X. Li, W. C. Choy, X. Ren, D. Zhang, and H. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Adv. Mater. (2)

J. Duan, S. Chen, B. A. Chambers, G. G. Andersson, and S. Z. Qiao, “3D WS2 nanolayers@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes,” Adv. Mater. 27(28), 4234–4241 (2015).
[Crossref] [PubMed]

Y. Cui, R. Xin, Z. Yu, Y. Pan, Z. Y. Ong, X. Wei, J. Wang, H. Nan, Z. Ni, Y. Wu, T. Chen, Y. Shi, B. Wang, G. Zhang, Y. W. Zhang, and X. Wang, “High‐performance monolayer WS2 field-effect transistors on high-κ dielectrics,” Adv. Mater. 27(35), 5230–5234 (2015).
[Crossref] [PubMed]

Adv. Opt. Mater. (3)

C. Cong, J. Shang, Y. Wang, and T. Yu, “Optical Properties of 2D Semiconductor WS2,” Adv. Opt. Mater. 6(1), 1700767 (2018).
[Crossref]

Z. Zhan, L. Liu, W. Wang, Z. Cao, A. Martinelli, E. Wang, and J. Sun, “Ultrahigh Surface-Enhanced Raman Scattering of Graphene from Au/Graphene/Au Sandwiched Structures with Subnanometer Gap,” Adv. Opt. Mater. 4(12), 2021–2027 (2016).
[Crossref]

B. M. Sow, J. Lu, H. Liu, K. E. J. Goh, and C. H. Sow, “Enriched Fluorescence Emission from WS2 Monoflake Empowered by Au Nanoexplorers,” Adv. Opt. Mater. 5(14), 1700156 (2017).
[Crossref]

AIP Adv. (1)

K. Gołasa, M. Grzeszczyk, J. Binder, R. Bożek, A. Wysmołek, and A. Babiński, “The disorder-induced Raman scattering in Au/MoS2 heterostructures,” AIP Adv. 5(7), 077120 (2015).
[Crossref]

Anal. Chem. (1)

Y. Yuan, R. Li, and Z. Liu, “Establishing water-soluble layered WS2 nanosheet as a platform for biosensing,” Anal. Chem. 86(7), 3610–3615 (2014).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

L. Cheng, W. Huang, Q. Gong, C. Liu, Z. Liu, Y. Li, and H. Dai, “Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction,” Angew. Chem. Int. Ed. Engl. 53(30), 7860–7863 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

W. Bao, X. Cai, D. Kim, K. Sridhara, and M. S. Fuhrer, “High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects,” Appl. Phys. Lett. 102(4), 042104 (2013).
[Crossref]

C. M. Orofeo, S. Suzuki, Y. Sekine, and H. Hibino, “Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films,” Appl. Phys. Lett. 105(8), 083112 (2014).
[Crossref]

J. Alloys Compd. (1)

Z. Li, S. Jiang, S. Xu, C. Zhang, H. Qiu, P. Chen, and M. Liu, “Facile synthesis of large-area and highly crystalline WS2 film on dielectric surfaces for SERS,” J. Alloys Compd. 666, 412–418 (2016).
[Crossref]

J. Phys. Chem. A (1)

E. J. Liang, X. L. Ye, and W. Kiefer, “Surface-enhanced Raman spectroscopy of crystal violet in the presence of halide and halate ions with near-infrared wavelength excitation,” J. Phys. Chem. A 101(40), 7330–7335 (1997).
[Crossref]

J. Phys. D Appl. Phys. (1)

S. Jiang, Z. Li, C. Zhang, S. Gao, Z. Li, H. Qiu, C. Li, C. Yang, M. Liu, and Y. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

J. Raman Spectrosc. (1)

M. Paillet, R. Parret, J. L. Sauvajol, and P. Colomban, “Graphene and related 2D materials: An overview of the Raman studies,” J. Raman Spectrosc. 49(1), 8–12 (2018).
[Crossref]

Light Sci. Appl. (1)

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4(10), e342 (2015).
[Crossref]

Materials Today Energy (1)

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Materials Today Energy 5, 72–78 (2017).
[Crossref]

Nano Lett. (2)

X. Ling, W. Fang, Y. H. Lee, P. T. Araujo, X. Zhang, J. F. Rodriguez-Nieva, Y. Lin, J. Zhang, J. Kong, and M. S. Dresselhaus, “Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2.,” Nano Lett. 14(6), 3033–3040 (2014).
[Crossref] [PubMed]

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Nanoscale (1)

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

Nat. Chem. (1)

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Nat. Commun. (2)

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4(1), 1474–1479 (2013).
[Crossref] [PubMed]

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(1), 887–891 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
[Crossref] [PubMed]

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y. J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8(2), 100–103 (2013).
[Crossref] [PubMed]

Nature (2)

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. Park, “High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity,” Nature 520(7549), 656–660 (2015).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Laser Technol. (1)

Y. Xu, C. Yang, P. Ge, J. Liu, S. Jiang, C. Li, and B. Man, “As-grown uniform MoS2/mica saturable absorber for passively Q-switched mode-locked Nd: GdVO4 laser,” Opt. Laser Technol. 82, 139–144 (2016).
[Crossref]

Phys. Rev. Lett. (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Sci. Rep. (6)

D. Zhang, Y. C. Wu, M. Yang, X. Liu, C. Ó. Coileáin, M. Abid, M. Abid, J. J. Wang, I. Shvets, H. Xu, B. S. Chun, H. Liu, and H. C. Wu, “Surface enhanced Raman scattering of monolayer MX2 with metallic nano particles,” Sci. Rep. 6(1), 30320 (2016).
[Crossref] [PubMed]

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref] [PubMed]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes,” Sci. Rep. 4(1), 05209 (2014).
[Crossref]

M. W. Iqbal, M. Z. Iqbal, M. F. Khan, M. A. Shehzad, Y. Seo, J. H. Park, C. Hwang, and J. Eom, “High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films,” Sci. Rep. 5(1), 10699 (2015).
[Crossref] [PubMed]

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C. I. Chia, and H. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3(1), 1755 (2013).
[Crossref]

Science (2)

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Y. Fang, N. H. Seong, and D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering,” Science 321(5887), 388–392 (2008).
[Crossref] [PubMed]

Sensor Actuat. Biol. Chem. (2)

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor Actuat. Biol. Chem. 258, 163–171 (2018).

Z. Lu, Y. Liu, M. Wang, C. Zhang, Z. Li, Y. Huo, and S. Jiang, “A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytilus coruscus hybrid system,” Sensor Actuat. Biol. Chem. 261, 1–10 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic illustration of the fabrication of the AuNPs/WS2 @ AuNPs hybrids.
Fig. 2
Fig. 2 (a) AFM image of Au film with 10 s sputtering time on the SiO2 substrate. The inset pattern exhibits the corresponding measured thickness. (b) SEM image of the 2# AuNPs annealed by Au film through two annealing process under 800 °C. (c) The size distribution of AuNPs from (b). (d) SERS behaviors of R6G molecules with concentrations range from 10−5 to 10−8 M on AuNPs substrate.
Fig. 3
Fig. 3 (a) SEM image of the WS2@AuNPs composites. (b) The size distribution of AuNPs encapsulated with the WS2 film. (c) Raman spectra of WS2 randomly collected from 50 × 50 µm2 area on WS2@AuNPs substrate. (d) TEM image of WS2@AuNPs hybrid plasmonic nanostructures. The inset pattern is the HRTEM image of WS2@AuNPs composites. The green dotted circles label the general outline of AuNPs.
Fig. 4
Fig. 4 (a) XRD spectrum for WS2@AuNPs hybrids. (b)-(d) represent the Au 4f, W 4f, S 2p XPS spectra of WS2@AuNPs composites respectively. (e) Raman spectra of R6G molecules with different concentrations from 10−5 to 10−9 M on WS2@AuNPs hybrids. (f) SERS intensity of R6G molecules at 612 cm−1 as a function of the varying concentrations.
Fig. 5
Fig. 5 (a) AFM image of Au film with 5 s sputtering time which is estimated on the SiO2 substrate. The inset pattern exhibits the corresponding measured thickness (b) SEM image of the AuNPs/WS2@AuNPs hybrids. The inset pattern shows the size distribution of small AuNPs achieved through annealing process of 3 nm Au film. (c) TEM image of the AuNPs/WS2@AuNPs composites. The green and red dotted circles label the outline of AuNPs with different average diameters, respectively. (d) HRTEM pattern of the AuNPs/WS2@AuNPs composites in a high magnification. (e) Raman spectra of WS2 randomly collected from 50 × 50 µm2 area on AuNPs/WS2@AuNPs substrate. (f) UV-Vis absorbance spectra of AuNPs, WS2@AuNPs and AuNPs/WS2@AuNPs substrates. The black dashed line represents the shift of absorption bands.
Fig. 6
Fig. 6 (a) SERS spectra of R6G molecules with different concentrations from 10−5 to 10−11 M on AuNPs/WS2@AuNPs hybrids. (b) SERS intensity of R6G molecules at 612 cm−1 as a function of the varying concentrations. (c) SERS spectra of CV molecules with different concentrations from 10−5 to 10−9 M on AuNPs/WS2@AuNPs hybrids. (d) SERS intensity of CV molecules at 1622 cm−1 as a function of the varying concentrations. (e) SEM image of the AuNPs/AuNPs substrate, the inset was a large-scale SEM pattern. (f) SERS spectra of R6G with the concentration of 10−5 M collected from AuNPs/WS2@AuNPs and AuNPs/AuNPs substrates.
Fig. 7
Fig. 7 (a) SERS spectra of R6G molecules (10−5 M) collected from 20 random positions of the same AuNPs/WS2@AuNPs substrate. (b) Corresponding peak intensity variations of 612 cm−1 for the same AuNPs/WS2@AuNPs substrate. (c) SERS spectra of R6G molecules (10−5 M) collected from 10 AuNPs/WS2@AuNPs substrates in different batches. (d) Corresponding peak intensity variations of 612 cm−1 for different AuNPs/WS2@AuNPs substrates. (e) SERS responses of R6G molecules (10−5 M) obtained from the same AuNPs/WS2@AuNPs substrate every three days. (f) The changing curve of the peak intensity of R6G at 612 cm−1 versus days.
Fig. 8
Fig. 8 (a) Simulation set-up of WS2@AuNPs hybrids in y–z view. (b) Simulation set-up of AuNPs/WS2@AuNPs hybrids in x–y view and in y–z view respectively. Insets in (a) and (b) are the SEM images of corresponding nanostructures. (c) COMSOL-simulated y-z view of the electric field distribution for WS2@AuNPs hybrids that the diameter of AgNPs is 55 nm, the thickness of WS2 film is 1.6 nm. (d) COMSOL-simulated y-z view of the electric field distribution for AuNPs/WS2@AuNPs hybrids that the diameter of small AgNPs is 15 nm, the gap is 5 nm.
Fig. 9
Fig. 9 (a)-(b) respectively display the optical images of the droplet-covered area of 10−5 R6G solution on AuNPs, WS2@AuNPs and AuNPs/WS2@AuNPs substrates. The red dotted lines exhibit the general measured area on different substrates, which is about 60 × 60 µm2.
Fig. 10
Fig. 10 SEM images of AuNPs annealed by the Au film with (a) 5 s, (b) 10 s and (c) 15 s sputtering time through two annealing process under 800 °C, which are respectively labeled as 1#, 2#, and 3# AuNPs. Some AuNPs with irregular sphere shape are marked with red circles in (c). (d) SERS signals of 10−5 M R6G collected from three different substrates.
Fig. 11
Fig. 11 XPS spectrum for WS2@AuNPs hybrids.

Tables (1)

Tables Icon

Table 1 The SERS intensity of vibrations of R6G from substrates

Metrics