Abstract

In this paper, the optical fiber Fabry–Perot (F-P) interferometer based on phase-shifting technique and birefringence crystals is proposed and demonstrated. We use the characteristics of birefringence and four birefringence crystals with different thicknesses to obtain the quadrature phase-shifted signals, which are demodulated by phase-shifting technique. Two types of sensing interferometers are used in the experiment. One is the optical fiber F-P sensor and the other is composed of the fiber end face and the glass surface fixed on the nanopositioning stage. The experimental results show that the normalized standard deviation (SD) of the calibration microphone centerline is 1.97 and 2.63 times larger than the optical fiber F-P interferometer under the sinusoidal sonic signals of 21 kHz and 40 kHz, and the interferometer is effective in avoiding phase ambiguity. The proposed interferometer has high stability and can adapt to a larger measurement range.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Five-step phase-shifting white-light interferometry for the measurement of fiber optic extrinsic Fabry–Perot interferometers

Hongchun Gao, Yi Jiang, Liuchao Zhang, and Lan Jiang
Appl. Opt. 57(5) 1168-1173 (2018)

Fiber strain sensor based on a π-phase-shifted Bragg grating and the Pound-Drever-Hall technique

D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta
Opt. Express 16(3) 1945-1950 (2008)

Fiber-optic extrinsic Fabry–Perot interferometer sensors with three-wavelength digital phase demodulation

Markus Schmidt and Norbert Fürstenau
Opt. Lett. 24(9) 599-601 (1999)

References

  • View by:
  • |
  • |
  • |

  1. S. Chatterjee and Y. P. Kumar, “Determination of surface roughness of plane optical components using quasimonochromatic light source and phase shifting interferometry,” Opt. Eng. 54(6), 64102 (2015).
    [Crossref]
  2. L. C. Chen, S. L. Yeh, A. M. Tapilouw, and J. C. Chang, “3-D surface profilometry using simultaneous phase-shifting interferometry,” Opt. Commun. 283(18), 3376–3382 (2010).
    [Crossref]
  3. H. Fan, H. Zhao, and Y. Tan, “Automated three-dimensional surface profilometry using dual-frequency optic fiber phase-shifting method,” Opt. Eng. 36(11), 3167–3171 (1997).
    [Crossref]
  4. I. Yamaguchi, J. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng. 42(5), 251–256 (2003).
  5. K. Hishiki and H. Li, “Phase-shift formed in a long period fiber grating and its application to the measurements of temperature and refractive index,” Opt. Express 21(10), 11901–11912 (2013).
    [Crossref] [PubMed]
  6. G. Hefferman, Z. Chen, L. Yuan, and T. Wei, “Phase-Shifted Terahertz Fiber Bragg Grating for Strain Sensing With Large Dynamic Range,” IEEE Photonics Technol. Lett. 27(15), 1649–1652 (2015).
    [Crossref]
  7. T. Das and K. Bhattacharya, “Polarizing phase shifting interferometry of total internal reflection light for measurement of refractive index and its spatial variation in liquid samples,” Opt. Eng. 55(7), 77102 (2016).
    [Crossref]
  8. L. Bruno and A. Poggialini, “Phase-shifting interferometry by an open-loop voltage controlled laser diode,” Opt. Commun. 290(1), 118–125 (2013).
    [Crossref]
  9. J. Jiang, T. Zhang, S. Wang, K. Liu, C. Li, Z. Zhao, and T. Liu, “Noncontact Ultrasonic Detection in Low-Pressure Carbon Dioxide Medium Using High Sensitivity Fiber-Optic Fabry–Perot Sensor System,” J. Lightwave Technol. 35(23), 5079–5085 (2017).
    [Crossref]
  10. M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous quadrature low-coherence interferometry with 3 x 3 fiber-optic couplers,” Opt. Lett. 28(22), 2162–2164 (2003).
    [Crossref] [PubMed]
  11. M. Dahlem, J. L. Santos, L. A. Ferreira, and F. M. Araujo, “Passive interrogation of low-finesse Fabry-Perot cavities using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 13(9), 990–992 (2001).
    [Crossref]
  12. X. Wu, J. Zhang, H. Wei, and Y. Li, “Phase-shifting interferometer using a frequency-tunable diode laser calibrated by an optical frequency comb,” Rev. Sci. Instrum. 83(7), 073107 (2012).
    [Crossref] [PubMed]
  13. G. S. Han and S. W. Kim, “Numerical correction of reference phases in phase-shifting interferometry by iterative least-squares fitting,” Appl. Opt. 33(31), 7321–7325 (1994).
    [Crossref] [PubMed]
  14. Z. Wang and B. Han, “Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms,” Opt. Lett. 29(14), 1671–1673 (2004).
    [Crossref] [PubMed]
  15. Q. Hao, Q. Zhu, and Y. Hu, “Random phase-shifting interferometry without accurately controlling or calibrating the phase shifts,” Opt. Lett. 34(8), 1288–1290 (2009).
    [Crossref] [PubMed]
  16. J. Schmit and K. Creath, “Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry,” Appl. Opt. 34(19), 3610–3619 (1995).
    [Crossref] [PubMed]
  17. B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
    [Crossref]

2017 (1)

2016 (1)

T. Das and K. Bhattacharya, “Polarizing phase shifting interferometry of total internal reflection light for measurement of refractive index and its spatial variation in liquid samples,” Opt. Eng. 55(7), 77102 (2016).
[Crossref]

2015 (2)

S. Chatterjee and Y. P. Kumar, “Determination of surface roughness of plane optical components using quasimonochromatic light source and phase shifting interferometry,” Opt. Eng. 54(6), 64102 (2015).
[Crossref]

G. Hefferman, Z. Chen, L. Yuan, and T. Wei, “Phase-Shifted Terahertz Fiber Bragg Grating for Strain Sensing With Large Dynamic Range,” IEEE Photonics Technol. Lett. 27(15), 1649–1652 (2015).
[Crossref]

2013 (2)

K. Hishiki and H. Li, “Phase-shift formed in a long period fiber grating and its application to the measurements of temperature and refractive index,” Opt. Express 21(10), 11901–11912 (2013).
[Crossref] [PubMed]

L. Bruno and A. Poggialini, “Phase-shifting interferometry by an open-loop voltage controlled laser diode,” Opt. Commun. 290(1), 118–125 (2013).
[Crossref]

2012 (1)

X. Wu, J. Zhang, H. Wei, and Y. Li, “Phase-shifting interferometer using a frequency-tunable diode laser calibrated by an optical frequency comb,” Rev. Sci. Instrum. 83(7), 073107 (2012).
[Crossref] [PubMed]

2010 (1)

L. C. Chen, S. L. Yeh, A. M. Tapilouw, and J. C. Chang, “3-D surface profilometry using simultaneous phase-shifting interferometry,” Opt. Commun. 283(18), 3376–3382 (2010).
[Crossref]

2009 (1)

2004 (1)

2003 (3)

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

I. Yamaguchi, J. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng. 42(5), 251–256 (2003).

M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous quadrature low-coherence interferometry with 3 x 3 fiber-optic couplers,” Opt. Lett. 28(22), 2162–2164 (2003).
[Crossref] [PubMed]

2001 (1)

M. Dahlem, J. L. Santos, L. A. Ferreira, and F. M. Araujo, “Passive interrogation of low-finesse Fabry-Perot cavities using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 13(9), 990–992 (2001).
[Crossref]

1997 (1)

H. Fan, H. Zhao, and Y. Tan, “Automated three-dimensional surface profilometry using dual-frequency optic fiber phase-shifting method,” Opt. Eng. 36(11), 3167–3171 (1997).
[Crossref]

1995 (1)

1994 (1)

Araujo, F. M.

M. Dahlem, J. L. Santos, L. A. Ferreira, and F. M. Araujo, “Passive interrogation of low-finesse Fabry-Perot cavities using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 13(9), 990–992 (2001).
[Crossref]

Bhattacharya, K.

T. Das and K. Bhattacharya, “Polarizing phase shifting interferometry of total internal reflection light for measurement of refractive index and its spatial variation in liquid samples,” Opt. Eng. 55(7), 77102 (2016).
[Crossref]

Bruno, L.

L. Bruno and A. Poggialini, “Phase-shifting interferometry by an open-loop voltage controlled laser diode,” Opt. Commun. 290(1), 118–125 (2013).
[Crossref]

Chang, J. C.

L. C. Chen, S. L. Yeh, A. M. Tapilouw, and J. C. Chang, “3-D surface profilometry using simultaneous phase-shifting interferometry,” Opt. Commun. 283(18), 3376–3382 (2010).
[Crossref]

Chatterjee, S.

S. Chatterjee and Y. P. Kumar, “Determination of surface roughness of plane optical components using quasimonochromatic light source and phase shifting interferometry,” Opt. Eng. 54(6), 64102 (2015).
[Crossref]

Chen, L. C.

L. C. Chen, S. L. Yeh, A. M. Tapilouw, and J. C. Chang, “3-D surface profilometry using simultaneous phase-shifting interferometry,” Opt. Commun. 283(18), 3376–3382 (2010).
[Crossref]

Chen, Z.

G. Hefferman, Z. Chen, L. Yuan, and T. Wei, “Phase-Shifted Terahertz Fiber Bragg Grating for Strain Sensing With Large Dynamic Range,” IEEE Photonics Technol. Lett. 27(15), 1649–1652 (2015).
[Crossref]

Choma, M. A.

Creath, K.

Dahlem, M.

M. Dahlem, J. L. Santos, L. A. Ferreira, and F. M. Araujo, “Passive interrogation of low-finesse Fabry-Perot cavities using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 13(9), 990–992 (2001).
[Crossref]

Das, T.

T. Das and K. Bhattacharya, “Polarizing phase shifting interferometry of total internal reflection light for measurement of refractive index and its spatial variation in liquid samples,” Opt. Eng. 55(7), 77102 (2016).
[Crossref]

Duan, Y.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Fan, H.

H. Fan, H. Zhao, and Y. Tan, “Automated three-dimensional surface profilometry using dual-frequency optic fiber phase-shifting method,” Opt. Eng. 36(11), 3167–3171 (1997).
[Crossref]

Ferreira, L. A.

M. Dahlem, J. L. Santos, L. A. Ferreira, and F. M. Araujo, “Passive interrogation of low-finesse Fabry-Perot cavities using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 13(9), 990–992 (2001).
[Crossref]

Han, B.

Han, G. S.

Hao, Q.

Hefferman, G.

G. Hefferman, Z. Chen, L. Yuan, and T. Wei, “Phase-Shifted Terahertz Fiber Bragg Grating for Strain Sensing With Large Dynamic Range,” IEEE Photonics Technol. Lett. 27(15), 1649–1652 (2015).
[Crossref]

Hishiki, K.

Hu, Y.

Huang, Z.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Huo, W.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Izatt, J. A.

Jiang, J.

Kato, J.

I. Yamaguchi, J. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng. 42(5), 251–256 (2003).

Kim, S. W.

Kumar, Y. P.

S. Chatterjee and Y. P. Kumar, “Determination of surface roughness of plane optical components using quasimonochromatic light source and phase shifting interferometry,” Opt. Eng. 54(6), 64102 (2015).
[Crossref]

Li, C.

Li, H.

Li, Y.

X. Wu, J. Zhang, H. Wei, and Y. Li, “Phase-shifting interferometer using a frequency-tunable diode laser calibrated by an optical frequency comb,” Rev. Sci. Instrum. 83(7), 073107 (2012).
[Crossref] [PubMed]

Liu, K.

Liu, T.

Matsuzaki, H.

I. Yamaguchi, J. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng. 42(5), 251–256 (2003).

May, R. G.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Peng, W.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Pickrell, G. R.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Poggialini, A.

L. Bruno and A. Poggialini, “Phase-shifting interferometry by an open-loop voltage controlled laser diode,” Opt. Commun. 290(1), 118–125 (2013).
[Crossref]

Qi, B.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Santos, J. L.

M. Dahlem, J. L. Santos, L. A. Ferreira, and F. M. Araujo, “Passive interrogation of low-finesse Fabry-Perot cavities using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 13(9), 990–992 (2001).
[Crossref]

Schmit, J.

Tan, Y.

H. Fan, H. Zhao, and Y. Tan, “Automated three-dimensional surface profilometry using dual-frequency optic fiber phase-shifting method,” Opt. Eng. 36(11), 3167–3171 (1997).
[Crossref]

Tapilouw, A. M.

L. C. Chen, S. L. Yeh, A. M. Tapilouw, and J. C. Chang, “3-D surface profilometry using simultaneous phase-shifting interferometry,” Opt. Commun. 283(18), 3376–3382 (2010).
[Crossref]

Wang, A.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Wang, S.

Wang, Z.

Wei, H.

X. Wu, J. Zhang, H. Wei, and Y. Li, “Phase-shifting interferometer using a frequency-tunable diode laser calibrated by an optical frequency comb,” Rev. Sci. Instrum. 83(7), 073107 (2012).
[Crossref] [PubMed]

Wei, T.

G. Hefferman, Z. Chen, L. Yuan, and T. Wei, “Phase-Shifted Terahertz Fiber Bragg Grating for Strain Sensing With Large Dynamic Range,” IEEE Photonics Technol. Lett. 27(15), 1649–1652 (2015).
[Crossref]

Wu, X.

X. Wu, J. Zhang, H. Wei, and Y. Li, “Phase-shifting interferometer using a frequency-tunable diode laser calibrated by an optical frequency comb,” Rev. Sci. Instrum. 83(7), 073107 (2012).
[Crossref] [PubMed]

Xiao, H.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Xu, J.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Yamaguchi, I.

I. Yamaguchi, J. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng. 42(5), 251–256 (2003).

Yang, C.

Yeh, S. L.

L. C. Chen, S. L. Yeh, A. M. Tapilouw, and J. C. Chang, “3-D surface profilometry using simultaneous phase-shifting interferometry,” Opt. Commun. 283(18), 3376–3382 (2010).
[Crossref]

Yuan, L.

G. Hefferman, Z. Chen, L. Yuan, and T. Wei, “Phase-Shifted Terahertz Fiber Bragg Grating for Strain Sensing With Large Dynamic Range,” IEEE Photonics Technol. Lett. 27(15), 1649–1652 (2015).
[Crossref]

Zhang, J.

X. Wu, J. Zhang, H. Wei, and Y. Li, “Phase-shifting interferometer using a frequency-tunable diode laser calibrated by an optical frequency comb,” Rev. Sci. Instrum. 83(7), 073107 (2012).
[Crossref] [PubMed]

Zhang, P.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Zhang, T.

Zhao, H.

H. Fan, H. Zhao, and Y. Tan, “Automated three-dimensional surface profilometry using dual-frequency optic fiber phase-shifting method,” Opt. Eng. 36(11), 3167–3171 (1997).
[Crossref]

Zhao, Z.

Zhu, Q.

Appl. Opt. (2)

IEEE Photonics Technol. Lett. (2)

M. Dahlem, J. L. Santos, L. A. Ferreira, and F. M. Araujo, “Passive interrogation of low-finesse Fabry-Perot cavities using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 13(9), 990–992 (2001).
[Crossref]

G. Hefferman, Z. Chen, L. Yuan, and T. Wei, “Phase-Shifted Terahertz Fiber Bragg Grating for Strain Sensing With Large Dynamic Range,” IEEE Photonics Technol. Lett. 27(15), 1649–1652 (2015).
[Crossref]

J. Lightwave Technol. (1)

Opt. Commun. (2)

L. Bruno and A. Poggialini, “Phase-shifting interferometry by an open-loop voltage controlled laser diode,” Opt. Commun. 290(1), 118–125 (2013).
[Crossref]

L. C. Chen, S. L. Yeh, A. M. Tapilouw, and J. C. Chang, “3-D surface profilometry using simultaneous phase-shifting interferometry,” Opt. Commun. 283(18), 3376–3382 (2010).
[Crossref]

Opt. Eng. (5)

H. Fan, H. Zhao, and Y. Tan, “Automated three-dimensional surface profilometry using dual-frequency optic fiber phase-shifting method,” Opt. Eng. 36(11), 3167–3171 (1997).
[Crossref]

I. Yamaguchi, J. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng. 42(5), 251–256 (2003).

S. Chatterjee and Y. P. Kumar, “Determination of surface roughness of plane optical components using quasimonochromatic light source and phase shifting interferometry,” Opt. Eng. 54(6), 64102 (2015).
[Crossref]

T. Das and K. Bhattacharya, “Polarizing phase shifting interferometry of total internal reflection light for measurement of refractive index and its spatial variation in liquid samples,” Opt. Eng. 55(7), 77102 (2016).
[Crossref]

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

X. Wu, J. Zhang, H. Wei, and Y. Li, “Phase-shifting interferometer using a frequency-tunable diode laser calibrated by an optical frequency comb,” Rev. Sci. Instrum. 83(7), 073107 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the optical fiber F-P interferometer based on phase-shifting technique and birefringence crystals.
Fig. 2
Fig. 2 Configuration of the optical fiber F-P sensor.
Fig. 3
Fig. 3 Phase error simulation results of the proposed interferometer when cavity length of sensing interferometer varies in the range [ 10 μ m , 10 μ m ] with actual thicknesses of the four birefringence crystals in the experiment being used.
Fig. 4
Fig. 4 Schematic of the experimental setup. (a) The sensing interferometer is the optical fiber F-P sensor. (b) The sensing interferometer is composed of the fiber end face and the glass surface fixed on the nanopositioning stage. (c) The experimental photo. ① Birefringence-crystal-based Demodulator. ② F-P sensor. ③ Calibration microphone. ④ F-P interferometer controlled by nanopositioning stage.
Fig. 5
Fig. 5 Experimental results of sinusoidal sonic signals under frequency of 21 kHz. (a) The quadrature phase-shifted signals that are normalized. (b) The phase value calculated by four-step phase-shifting algorithm and the centerline of the optical fiber F-P interferometer. (c) The response signal and the centerline of the calibration microphone. (d) FFT of the phase value and the response signal of the calibration microphone.
Fig. 6
Fig. 6 Experimental results of sinusoidal sonic signals under frequency of 40 kHz. (a) The quadrature phase-shifted signals that are normalized. (b) The phase value calculated by four-step phase-shifting algorithm and the centerline of the optical fiber F-P interferometer. (c) The response signal and the centerline of the calibration microphone. (d) FFT of the phase value and the response signal of the calibration microphone.
Fig. 7
Fig. 7 Experimental results of sinusoidal displacement under frequency of 10 Hz in the nanopositioning stage. (a) The quadrature phase-shifted signals that are normalized. (b) The quadrature phase-shifted signals that are normalized in the range of [ 100 m s , 250 m s ] . (c) The phase value calculated by four-step phase-shifting algorithm. (d) FFT of the phase value.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P ( k ) = 2 ln 2 π Δ k exp { [ 2 ln 2 ( k k 0 ) Δ k ] 2 } ,
I ( L ) = 0 + P ( k ) cos [ k ( Δ n d 2 L ) ] d k = exp [ Δ k 2 ( Δ n d 2 L ) 2 16 ln 2 ] cos [ k 0 ( Δ n d 2 L ) ] ,
tan [ Φ ( L ) ] = I 4 ( L ) I 2 ( L ) I 1 ( L ) I 3 ( L ) ,

Metrics