Abstract

A code reservation technique is proposed to reduce the peak-to-average power ratio (PAPR) of digital code-division multiplexing (CDM) based channel aggregation for mobile fronthaul. We numerically investigate the relationship between the PAPR and the number of aggregated channels during the CDM based channel aggregation, and experimentally verify the transmission performance with the code reservation technique. The PAPR of aggregated signal, which is composed of 48x20MHz Long Term Evolution (LTE) signal mapped with 64 quadrature amplitude modulation (QAM), is reduced with the help of code reservation technique. The PAPR reduction enables larger optical modulation index (OMI) per channel at the linear operation region of a directly modulated laser (DML), leading to the optical signal-to-noise ratio (OSNR) improvement. After the transmission over 10km standard single mode fiber (SSMF), the receiver sensitivity can be improved by 4dB owing to the PAPR reduction.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Digital mobile fronthaul employing differential pulse code modulation with suppressed quantization noise

Lu Zhang, Xiaodan Pang, Oskars Ozolins, Aleksejs Udalcovs, Richard Schatz, Urban Westergren, Gunnar Jacobsen, Sergei Popov, Lena Wosinska, Shilin Xiao, Weisheng Hu, and Jiajia Chen
Opt. Express 25(25) 31921-31936 (2017)

Digital Mobile Fronthaul Based on Delta–Sigma Modulation for 32 LTE Carrier Aggregation and FBMC Signals

Jing Wang, Zhenhua Yu, Kai Ying, Junwen Zhang, Feng Lu, Mu Xu, Lin Cheng, Xiaoli Ma, and Gee-Kung Chang
J. Opt. Commun. Netw. 9(2) A233-A244 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Pizzinat, P. Chanclou, F. Saliou, and T. Diallo, “Things you should know about fronthaul,” J. Lightwave Technol. 33(5), 1077–1083 (2015).
    [Crossref]
  2. X. Liu, F. Effenberger, N. Chand, L. Zhou, and H. Lin, “Efficient mobile fronthaul transmission of multiple LTE-A signals with 36.86-Gb/s CPRI-equivalent data rate using a directly-modulated laser and fiber dispersion mitigation,” in Asia Communications Photonics Conf. (ACP) (2014), paper AF4B.5.
    [Crossref]
  3. V. Jungnickel, K. Manolakis, W. Zirwas, B. Panzner, V. Braun, M. Lossow, M. Sternad, R. Apelfröjd, and T. Svensson, “The role of small cells, coordinated multipoint, and massive MIMO in 5G,” IEEE Commun. Mag. 52(5), 44–51 (2014).
    [Crossref]
  4. Common Public Radio Interface, “CPRI Specification V7.0,” Stand. Doc. Specif. 0, 128 (2015).
  5. X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Efficient mobile fronthaul via DSP-based channel aggregation,” J. Lightwave Technol. 34(6), 1556–1564 (2016).
    [Crossref]
  6. X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Experimental demonstration of high-throughput low-latency mobile fronthaul supporting 48 20-MHz LTE signals with 59-Gb/s CPRI-equivalent rate and 2-us processing latency,” in European Conference and Exhibition on Optical Communications (ECOC) (2015), Paper We.4.4.3.
    [Crossref]
  7. H. Li, Q. Yang, S. Fu, M. Luo, X. Li, Z. He, P. Jiang, Y. Liu, and S. Yu, “Digital code-division multiplexing channel aggregation for mobile fronthaul architecture with low complexity,” IEEE Photon. J. 10(2), 7902710 (2018).
  8. R. L. Pickholtz, D. L. Schilling, and L. B. Milstein, “Theory of spread-spectrum communications-a tutorial,” IEEE Trans. Commun. 30(5), 855–884 (1982).
    [Crossref]
  9. S. Kaiser, “OFDM code-division multiplexing in fading channels,” IEEE Trans. Commun. 50(8), 1266–1273 (2002).
    [Crossref]
  10. B. G. Kim, H. Kim, and Y. C. Chung, “Impact of multipath interference on the performance of RoF-based mobile fronthaul network implemented by using DML,” J. Lightwave Technol. 35(2), 145–151 (2017).
    [Crossref]
  11. S. S. K. C. Bulusu, M. Crussiere, J.-F. Helard, R. Mounzer, Y. Nasser, O. Rousset, and A. Untersee, “Quasi-optimal tone reservation PAPR reduction algorithm for next generation broadcasting systems : a performance/complexity/latency tradeoff with testbed implementation,” IEEE Trans. Broadcast. PP(99), 1–7 (2018).
  12. M. S. Hossain and T. Shimamura, “Spectrum efficient DSI-based OFDM PAPR reduction by subcarrier group modulation,” IEEE Trans. Broadcast. PP(99), 1–7 (2017).
  13. T. Jiang and Y. Wu, “An overview: peak-to-average power ratio reduction techniques for OFDM signals,” IEEE Trans. Broadcast 54(2), 257–268 (2008).
    [Crossref]
  14. S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techiques for multicarrier transmission,” IEEE Wirel. Commun. 12(2), 56–65 (2005).
    [Crossref]
  15. M. Sung, C. Han, S.-H. Cho, H. S. Chung, and J. H. Lee, “Improvement of the transmission performance in multi-IF-over-fiber mobile fronthaul by using tone-reservation technique,” Opt. Express 23(23), 29615–29624 (2015).
    [Crossref] [PubMed]
  16. F. Lu, M. Xu, L. Cheng, J. Wang, S. Shen, J. Zhang, and G. K. Chang, “Sub-band pre-distortion for PAPR reduction in spectral efficient 5G mobile fronthaul,” IEEE Photon. Technol. Lett. 29(1), 122–125 (2017).
    [Crossref]
  17. A. K. Ajami, H. A. Artail, and M. M. Mansour, “PAPR reduction in LTE-Advanced carrier aggregation using low-complexity joint interleaving technique,” in IEEE Wireless Communications and Networking Conference (WCNC) (2015), pp. 675–680.
    [Crossref]
  18. H. Chen, J. Li, C. Yin, K. Xu, Y. Dai, and F. Yin, “Multi-dimensional crest factor reduction and digital predistortion for multi-band radio-over-fiber links,” Opt. Express 22(17), 20982–20993 (2014).
    [Crossref] [PubMed]
  19. X. Liu, H. Zeng, and F. Effenberger, “Bandwidth-efficient synchronous transmission of I/Q waveforms and control words via frequency-division multiplexing for mobile fronthaul,” in IEEE Global Commun. Conf. (GLOBECOM) (2015), Paper SAC 21.
    [Crossref]
  20. E. H. Dinan and B. Jabbari, “Spreading codes for direct sequence CDMA and wideband CDMA cellular networks,” IEEE Commun. Mag. 36(9), 48–54 (1998).
    [Crossref]
  21. N. Wada and K. I. Kitayama, “A 10 Gb/s optical code division multiplexing using 8-chip optical bipolar code and coherent detection,” J. Lightwave Technol. 17(10), 1758–1765 (1999).
    [Crossref]
  22. W. O. Popoola, Z. Ghassemlooy, and B. G. Stewart, “Pilot-assisted PAPR reduction technique for optical OFDM communication systems,” J. Lightwave Technol. 32(7), 1374–1382 (2014).
    [Crossref]

2018 (1)

H. Li, Q. Yang, S. Fu, M. Luo, X. Li, Z. He, P. Jiang, Y. Liu, and S. Yu, “Digital code-division multiplexing channel aggregation for mobile fronthaul architecture with low complexity,” IEEE Photon. J. 10(2), 7902710 (2018).

2017 (2)

B. G. Kim, H. Kim, and Y. C. Chung, “Impact of multipath interference on the performance of RoF-based mobile fronthaul network implemented by using DML,” J. Lightwave Technol. 35(2), 145–151 (2017).
[Crossref]

F. Lu, M. Xu, L. Cheng, J. Wang, S. Shen, J. Zhang, and G. K. Chang, “Sub-band pre-distortion for PAPR reduction in spectral efficient 5G mobile fronthaul,” IEEE Photon. Technol. Lett. 29(1), 122–125 (2017).
[Crossref]

2016 (1)

2015 (3)

2014 (3)

2008 (1)

T. Jiang and Y. Wu, “An overview: peak-to-average power ratio reduction techniques for OFDM signals,” IEEE Trans. Broadcast 54(2), 257–268 (2008).
[Crossref]

2005 (1)

S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techiques for multicarrier transmission,” IEEE Wirel. Commun. 12(2), 56–65 (2005).
[Crossref]

2002 (1)

S. Kaiser, “OFDM code-division multiplexing in fading channels,” IEEE Trans. Commun. 50(8), 1266–1273 (2002).
[Crossref]

1999 (1)

1998 (1)

E. H. Dinan and B. Jabbari, “Spreading codes for direct sequence CDMA and wideband CDMA cellular networks,” IEEE Commun. Mag. 36(9), 48–54 (1998).
[Crossref]

1982 (1)

R. L. Pickholtz, D. L. Schilling, and L. B. Milstein, “Theory of spread-spectrum communications-a tutorial,” IEEE Trans. Commun. 30(5), 855–884 (1982).
[Crossref]

Ajami, A. K.

A. K. Ajami, H. A. Artail, and M. M. Mansour, “PAPR reduction in LTE-Advanced carrier aggregation using low-complexity joint interleaving technique,” in IEEE Wireless Communications and Networking Conference (WCNC) (2015), pp. 675–680.
[Crossref]

Apelfröjd, R.

V. Jungnickel, K. Manolakis, W. Zirwas, B. Panzner, V. Braun, M. Lossow, M. Sternad, R. Apelfröjd, and T. Svensson, “The role of small cells, coordinated multipoint, and massive MIMO in 5G,” IEEE Commun. Mag. 52(5), 44–51 (2014).
[Crossref]

Artail, H. A.

A. K. Ajami, H. A. Artail, and M. M. Mansour, “PAPR reduction in LTE-Advanced carrier aggregation using low-complexity joint interleaving technique,” in IEEE Wireless Communications and Networking Conference (WCNC) (2015), pp. 675–680.
[Crossref]

Braun, V.

V. Jungnickel, K. Manolakis, W. Zirwas, B. Panzner, V. Braun, M. Lossow, M. Sternad, R. Apelfröjd, and T. Svensson, “The role of small cells, coordinated multipoint, and massive MIMO in 5G,” IEEE Commun. Mag. 52(5), 44–51 (2014).
[Crossref]

Chanclou, P.

Chand, N.

X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Efficient mobile fronthaul via DSP-based channel aggregation,” J. Lightwave Technol. 34(6), 1556–1564 (2016).
[Crossref]

X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Experimental demonstration of high-throughput low-latency mobile fronthaul supporting 48 20-MHz LTE signals with 59-Gb/s CPRI-equivalent rate and 2-us processing latency,” in European Conference and Exhibition on Optical Communications (ECOC) (2015), Paper We.4.4.3.
[Crossref]

Chang, G. K.

F. Lu, M. Xu, L. Cheng, J. Wang, S. Shen, J. Zhang, and G. K. Chang, “Sub-band pre-distortion for PAPR reduction in spectral efficient 5G mobile fronthaul,” IEEE Photon. Technol. Lett. 29(1), 122–125 (2017).
[Crossref]

Chen, H.

Cheng, L.

F. Lu, M. Xu, L. Cheng, J. Wang, S. Shen, J. Zhang, and G. K. Chang, “Sub-band pre-distortion for PAPR reduction in spectral efficient 5G mobile fronthaul,” IEEE Photon. Technol. Lett. 29(1), 122–125 (2017).
[Crossref]

Cho, S.-H.

Chung, H. S.

Chung, Y. C.

Dai, Y.

Diallo, T.

Dinan, E. H.

E. H. Dinan and B. Jabbari, “Spreading codes for direct sequence CDMA and wideband CDMA cellular networks,” IEEE Commun. Mag. 36(9), 48–54 (1998).
[Crossref]

Effenberger, F.

X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Efficient mobile fronthaul via DSP-based channel aggregation,” J. Lightwave Technol. 34(6), 1556–1564 (2016).
[Crossref]

X. Liu, H. Zeng, and F. Effenberger, “Bandwidth-efficient synchronous transmission of I/Q waveforms and control words via frequency-division multiplexing for mobile fronthaul,” in IEEE Global Commun. Conf. (GLOBECOM) (2015), Paper SAC 21.
[Crossref]

X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Experimental demonstration of high-throughput low-latency mobile fronthaul supporting 48 20-MHz LTE signals with 59-Gb/s CPRI-equivalent rate and 2-us processing latency,” in European Conference and Exhibition on Optical Communications (ECOC) (2015), Paper We.4.4.3.
[Crossref]

Fu, S.

H. Li, Q. Yang, S. Fu, M. Luo, X. Li, Z. He, P. Jiang, Y. Liu, and S. Yu, “Digital code-division multiplexing channel aggregation for mobile fronthaul architecture with low complexity,” IEEE Photon. J. 10(2), 7902710 (2018).

Ghassemlooy, Z.

Han, C.

Han, S. H.

S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techiques for multicarrier transmission,” IEEE Wirel. Commun. 12(2), 56–65 (2005).
[Crossref]

He, Z.

H. Li, Q. Yang, S. Fu, M. Luo, X. Li, Z. He, P. Jiang, Y. Liu, and S. Yu, “Digital code-division multiplexing channel aggregation for mobile fronthaul architecture with low complexity,” IEEE Photon. J. 10(2), 7902710 (2018).

Jabbari, B.

E. H. Dinan and B. Jabbari, “Spreading codes for direct sequence CDMA and wideband CDMA cellular networks,” IEEE Commun. Mag. 36(9), 48–54 (1998).
[Crossref]

Jiang, P.

H. Li, Q. Yang, S. Fu, M. Luo, X. Li, Z. He, P. Jiang, Y. Liu, and S. Yu, “Digital code-division multiplexing channel aggregation for mobile fronthaul architecture with low complexity,” IEEE Photon. J. 10(2), 7902710 (2018).

Jiang, T.

T. Jiang and Y. Wu, “An overview: peak-to-average power ratio reduction techniques for OFDM signals,” IEEE Trans. Broadcast 54(2), 257–268 (2008).
[Crossref]

Jungnickel, V.

V. Jungnickel, K. Manolakis, W. Zirwas, B. Panzner, V. Braun, M. Lossow, M. Sternad, R. Apelfröjd, and T. Svensson, “The role of small cells, coordinated multipoint, and massive MIMO in 5G,” IEEE Commun. Mag. 52(5), 44–51 (2014).
[Crossref]

Kaiser, S.

S. Kaiser, “OFDM code-division multiplexing in fading channels,” IEEE Trans. Commun. 50(8), 1266–1273 (2002).
[Crossref]

Kim, B. G.

Kim, H.

Kitayama, K. I.

Lee, J. H.

Li, H.

H. Li, Q. Yang, S. Fu, M. Luo, X. Li, Z. He, P. Jiang, Y. Liu, and S. Yu, “Digital code-division multiplexing channel aggregation for mobile fronthaul architecture with low complexity,” IEEE Photon. J. 10(2), 7902710 (2018).

Li, J.

Li, X.

H. Li, Q. Yang, S. Fu, M. Luo, X. Li, Z. He, P. Jiang, Y. Liu, and S. Yu, “Digital code-division multiplexing channel aggregation for mobile fronthaul architecture with low complexity,” IEEE Photon. J. 10(2), 7902710 (2018).

Liu, X.

X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Efficient mobile fronthaul via DSP-based channel aggregation,” J. Lightwave Technol. 34(6), 1556–1564 (2016).
[Crossref]

X. Liu, H. Zeng, and F. Effenberger, “Bandwidth-efficient synchronous transmission of I/Q waveforms and control words via frequency-division multiplexing for mobile fronthaul,” in IEEE Global Commun. Conf. (GLOBECOM) (2015), Paper SAC 21.
[Crossref]

X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Experimental demonstration of high-throughput low-latency mobile fronthaul supporting 48 20-MHz LTE signals with 59-Gb/s CPRI-equivalent rate and 2-us processing latency,” in European Conference and Exhibition on Optical Communications (ECOC) (2015), Paper We.4.4.3.
[Crossref]

Liu, Y.

H. Li, Q. Yang, S. Fu, M. Luo, X. Li, Z. He, P. Jiang, Y. Liu, and S. Yu, “Digital code-division multiplexing channel aggregation for mobile fronthaul architecture with low complexity,” IEEE Photon. J. 10(2), 7902710 (2018).

Lossow, M.

V. Jungnickel, K. Manolakis, W. Zirwas, B. Panzner, V. Braun, M. Lossow, M. Sternad, R. Apelfröjd, and T. Svensson, “The role of small cells, coordinated multipoint, and massive MIMO in 5G,” IEEE Commun. Mag. 52(5), 44–51 (2014).
[Crossref]

Lu, F.

F. Lu, M. Xu, L. Cheng, J. Wang, S. Shen, J. Zhang, and G. K. Chang, “Sub-band pre-distortion for PAPR reduction in spectral efficient 5G mobile fronthaul,” IEEE Photon. Technol. Lett. 29(1), 122–125 (2017).
[Crossref]

Luo, M.

H. Li, Q. Yang, S. Fu, M. Luo, X. Li, Z. He, P. Jiang, Y. Liu, and S. Yu, “Digital code-division multiplexing channel aggregation for mobile fronthaul architecture with low complexity,” IEEE Photon. J. 10(2), 7902710 (2018).

Manolakis, K.

V. Jungnickel, K. Manolakis, W. Zirwas, B. Panzner, V. Braun, M. Lossow, M. Sternad, R. Apelfröjd, and T. Svensson, “The role of small cells, coordinated multipoint, and massive MIMO in 5G,” IEEE Commun. Mag. 52(5), 44–51 (2014).
[Crossref]

Mansour, M. M.

A. K. Ajami, H. A. Artail, and M. M. Mansour, “PAPR reduction in LTE-Advanced carrier aggregation using low-complexity joint interleaving technique,” in IEEE Wireless Communications and Networking Conference (WCNC) (2015), pp. 675–680.
[Crossref]

Milstein, L. B.

R. L. Pickholtz, D. L. Schilling, and L. B. Milstein, “Theory of spread-spectrum communications-a tutorial,” IEEE Trans. Commun. 30(5), 855–884 (1982).
[Crossref]

Panzner, B.

V. Jungnickel, K. Manolakis, W. Zirwas, B. Panzner, V. Braun, M. Lossow, M. Sternad, R. Apelfröjd, and T. Svensson, “The role of small cells, coordinated multipoint, and massive MIMO in 5G,” IEEE Commun. Mag. 52(5), 44–51 (2014).
[Crossref]

Pickholtz, R. L.

R. L. Pickholtz, D. L. Schilling, and L. B. Milstein, “Theory of spread-spectrum communications-a tutorial,” IEEE Trans. Commun. 30(5), 855–884 (1982).
[Crossref]

Pizzinat, A.

Popoola, W. O.

Saliou, F.

Schilling, D. L.

R. L. Pickholtz, D. L. Schilling, and L. B. Milstein, “Theory of spread-spectrum communications-a tutorial,” IEEE Trans. Commun. 30(5), 855–884 (1982).
[Crossref]

Shen, S.

F. Lu, M. Xu, L. Cheng, J. Wang, S. Shen, J. Zhang, and G. K. Chang, “Sub-band pre-distortion for PAPR reduction in spectral efficient 5G mobile fronthaul,” IEEE Photon. Technol. Lett. 29(1), 122–125 (2017).
[Crossref]

Sternad, M.

V. Jungnickel, K. Manolakis, W. Zirwas, B. Panzner, V. Braun, M. Lossow, M. Sternad, R. Apelfröjd, and T. Svensson, “The role of small cells, coordinated multipoint, and massive MIMO in 5G,” IEEE Commun. Mag. 52(5), 44–51 (2014).
[Crossref]

Stewart, B. G.

Sung, M.

Svensson, T.

V. Jungnickel, K. Manolakis, W. Zirwas, B. Panzner, V. Braun, M. Lossow, M. Sternad, R. Apelfröjd, and T. Svensson, “The role of small cells, coordinated multipoint, and massive MIMO in 5G,” IEEE Commun. Mag. 52(5), 44–51 (2014).
[Crossref]

Wada, N.

Wang, J.

F. Lu, M. Xu, L. Cheng, J. Wang, S. Shen, J. Zhang, and G. K. Chang, “Sub-band pre-distortion for PAPR reduction in spectral efficient 5G mobile fronthaul,” IEEE Photon. Technol. Lett. 29(1), 122–125 (2017).
[Crossref]

Wu, Y.

T. Jiang and Y. Wu, “An overview: peak-to-average power ratio reduction techniques for OFDM signals,” IEEE Trans. Broadcast 54(2), 257–268 (2008).
[Crossref]

Xu, K.

Xu, M.

F. Lu, M. Xu, L. Cheng, J. Wang, S. Shen, J. Zhang, and G. K. Chang, “Sub-band pre-distortion for PAPR reduction in spectral efficient 5G mobile fronthaul,” IEEE Photon. Technol. Lett. 29(1), 122–125 (2017).
[Crossref]

Yang, Q.

H. Li, Q. Yang, S. Fu, M. Luo, X. Li, Z. He, P. Jiang, Y. Liu, and S. Yu, “Digital code-division multiplexing channel aggregation for mobile fronthaul architecture with low complexity,” IEEE Photon. J. 10(2), 7902710 (2018).

Yin, C.

Yin, F.

Yu, S.

H. Li, Q. Yang, S. Fu, M. Luo, X. Li, Z. He, P. Jiang, Y. Liu, and S. Yu, “Digital code-division multiplexing channel aggregation for mobile fronthaul architecture with low complexity,” IEEE Photon. J. 10(2), 7902710 (2018).

Zeng, H.

X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Efficient mobile fronthaul via DSP-based channel aggregation,” J. Lightwave Technol. 34(6), 1556–1564 (2016).
[Crossref]

X. Liu, H. Zeng, and F. Effenberger, “Bandwidth-efficient synchronous transmission of I/Q waveforms and control words via frequency-division multiplexing for mobile fronthaul,” in IEEE Global Commun. Conf. (GLOBECOM) (2015), Paper SAC 21.
[Crossref]

X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Experimental demonstration of high-throughput low-latency mobile fronthaul supporting 48 20-MHz LTE signals with 59-Gb/s CPRI-equivalent rate and 2-us processing latency,” in European Conference and Exhibition on Optical Communications (ECOC) (2015), Paper We.4.4.3.
[Crossref]

Zhang, J.

F. Lu, M. Xu, L. Cheng, J. Wang, S. Shen, J. Zhang, and G. K. Chang, “Sub-band pre-distortion for PAPR reduction in spectral efficient 5G mobile fronthaul,” IEEE Photon. Technol. Lett. 29(1), 122–125 (2017).
[Crossref]

Zirwas, W.

V. Jungnickel, K. Manolakis, W. Zirwas, B. Panzner, V. Braun, M. Lossow, M. Sternad, R. Apelfröjd, and T. Svensson, “The role of small cells, coordinated multipoint, and massive MIMO in 5G,” IEEE Commun. Mag. 52(5), 44–51 (2014).
[Crossref]

IEEE Commun. Mag. (2)

V. Jungnickel, K. Manolakis, W. Zirwas, B. Panzner, V. Braun, M. Lossow, M. Sternad, R. Apelfröjd, and T. Svensson, “The role of small cells, coordinated multipoint, and massive MIMO in 5G,” IEEE Commun. Mag. 52(5), 44–51 (2014).
[Crossref]

E. H. Dinan and B. Jabbari, “Spreading codes for direct sequence CDMA and wideband CDMA cellular networks,” IEEE Commun. Mag. 36(9), 48–54 (1998).
[Crossref]

IEEE Photon. J. (1)

H. Li, Q. Yang, S. Fu, M. Luo, X. Li, Z. He, P. Jiang, Y. Liu, and S. Yu, “Digital code-division multiplexing channel aggregation for mobile fronthaul architecture with low complexity,” IEEE Photon. J. 10(2), 7902710 (2018).

IEEE Photon. Technol. Lett. (1)

F. Lu, M. Xu, L. Cheng, J. Wang, S. Shen, J. Zhang, and G. K. Chang, “Sub-band pre-distortion for PAPR reduction in spectral efficient 5G mobile fronthaul,” IEEE Photon. Technol. Lett. 29(1), 122–125 (2017).
[Crossref]

IEEE Trans. Broadcast (1)

T. Jiang and Y. Wu, “An overview: peak-to-average power ratio reduction techniques for OFDM signals,” IEEE Trans. Broadcast 54(2), 257–268 (2008).
[Crossref]

IEEE Trans. Commun. (2)

R. L. Pickholtz, D. L. Schilling, and L. B. Milstein, “Theory of spread-spectrum communications-a tutorial,” IEEE Trans. Commun. 30(5), 855–884 (1982).
[Crossref]

S. Kaiser, “OFDM code-division multiplexing in fading channels,” IEEE Trans. Commun. 50(8), 1266–1273 (2002).
[Crossref]

IEEE Wirel. Commun. (1)

S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techiques for multicarrier transmission,” IEEE Wirel. Commun. 12(2), 56–65 (2005).
[Crossref]

J. Lightwave Technol. (5)

Opt. Express (2)

Stand. Doc. Specif. (1)

Common Public Radio Interface, “CPRI Specification V7.0,” Stand. Doc. Specif. 0, 128 (2015).

Other (6)

X. Liu, F. Effenberger, N. Chand, L. Zhou, and H. Lin, “Efficient mobile fronthaul transmission of multiple LTE-A signals with 36.86-Gb/s CPRI-equivalent data rate using a directly-modulated laser and fiber dispersion mitigation,” in Asia Communications Photonics Conf. (ACP) (2014), paper AF4B.5.
[Crossref]

S. S. K. C. Bulusu, M. Crussiere, J.-F. Helard, R. Mounzer, Y. Nasser, O. Rousset, and A. Untersee, “Quasi-optimal tone reservation PAPR reduction algorithm for next generation broadcasting systems : a performance/complexity/latency tradeoff with testbed implementation,” IEEE Trans. Broadcast. PP(99), 1–7 (2018).

M. S. Hossain and T. Shimamura, “Spectrum efficient DSI-based OFDM PAPR reduction by subcarrier group modulation,” IEEE Trans. Broadcast. PP(99), 1–7 (2017).

X. Liu, H. Zeng, and F. Effenberger, “Bandwidth-efficient synchronous transmission of I/Q waveforms and control words via frequency-division multiplexing for mobile fronthaul,” in IEEE Global Commun. Conf. (GLOBECOM) (2015), Paper SAC 21.
[Crossref]

A. K. Ajami, H. A. Artail, and M. M. Mansour, “PAPR reduction in LTE-Advanced carrier aggregation using low-complexity joint interleaving technique,” in IEEE Wireless Communications and Networking Conference (WCNC) (2015), pp. 675–680.
[Crossref]

X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Experimental demonstration of high-throughput low-latency mobile fronthaul supporting 48 20-MHz LTE signals with 59-Gb/s CPRI-equivalent rate and 2-us processing latency,” in European Conference and Exhibition on Optical Communications (ECOC) (2015), Paper We.4.4.3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic of mobile fronthaul with the channel aggregation, (b) operation principle of digital CDM-based channel aggregation/de-aggregation.
Fig. 2
Fig. 2 CCDF of PAPR versus the number of aggregated channels.
Fig. 3
Fig. 3 (a) Operation principle of code reservation technique, (b) signal with the code reservation technique, (c) signal without the code reservation technique, (d) CCDF of PAPR with respect to the clipping ratio, (e) CCDF of PAPR with respect to the iteration time.
Fig. 4
Fig. 4 Experimental setup for the CDM-based channel aggregation.
Fig. 5
Fig. 5 P-I curve of DML used in the experiment.
Fig. 6
Fig. 6 Mean EVM of 48 channels versus the OMI/ch under the condition of optical B2B transmission.
Fig. 7
Fig. 7 (a) EVMs of all 48 channels under conditions of optical B2B and 10km SSMF transmission, (b-c) constellation diagrams of signal with/without the code reservation under the condition of optical B2B transmission, (d-e) constellation diagrams of signal with/without the code reservation under the condition of 10km SSMF transmission.
Fig. 8
Fig. 8 Mean EVM of 48 channels versus the ROP under condition of optical B2B and 10km SSMF transmission.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S = k = 1 2 M n = x n ( k ) w a l ( k ) ( t n T )
S c l i p = { S | S | A ± A | S | > A
f n ( p ) = ( n 1 ) T n T F ( t ) w a l ( p ) ( t n T ) d t / N ; 2 M + 1 p N
F R = p = 2 M + 1 N n = f n ( p ) w a l ( p ) ( t n T ) ;
S ' = S + F R = k = 1 2 M n = x n ( k ) w a l ( k ) ( t n T ) + p = 2 M + 1 N n = f n ( p ) w a l ( p ) ( t n T )
O M I = V i n / ( I b i a s I t h ) R

Metrics