Abstract

Laser machining can depend on the combination of many complex and nonlinear physical processes. Simulations of laser machining that are built from first-principles, such as the photon-atom interaction, are therefore challenging to scale-up to experimentally useful dimensions. Here, we demonstrate a simulation approach using a neural network, which requires zero knowledge of the underlying physical processes and instead uses experimental data directly to create the model of the experiment. The neural network modelling approach was shown to accurately predict the 3D surface profile of the laser machined surface after exposure to various spatial intensity profiles, and was used to discover trends inherent within the experimental data that would have otherwise been difficult to discover.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Predictive capabilities for laser machining via a neural network

Ben Mills, Daniel J. Heath, James A. Grant-Jacob, and Robert W. Eason
Opt. Express 26(13) 17245-17253 (2018)

Automated tree detection from 3D lidar images using image processing and machine learning

Kenta Itakura and Fumiki Hosoi
Appl. Opt. 58(14) 3807-3811 (2019)

Real-time particle pollution sensing using machine learning

James A. Grant-Jacob, Benita S. Mackay, James A. G. Baker, Daniel J. Heath, Yunhui Xie, Matthew Loxham, Robert W. Eason, and Ben Mills
Opt. Express 26(21) 27237-27246 (2018)

References

  • View by:
  • |
  • |
  • |

  1. E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
    [Crossref]
  2. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
    [Crossref]
  3. M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, “Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers,” Appl. Surf. Sci. 242(1–2), 162–167 (2005).
    [Crossref]
  4. O. Albert, S. Roger, Y. Glinec, J. C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perrière, and E. Millon, “Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers,” Appl. Phys., A Mater. Sci. Process. 76(3), 319–323 (2003).
    [Crossref]
  5. B. Rethfeld, D. S. Ivanov, M. E. Garcia, and S. I. Anisimov, “Modelling ultrafast laser ablation,” J. Phys. D Appl. Phys. 50(19), 193001 (2017).
    [Crossref]
  6. H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Appl. Surf. Sci. 197, 198839 (2002).
  7. J. K. Chen and J. E. Beraun, “Modelling of ultrashort laser ablation of gold films in vacuum,” J. Opt. A, Pure Appl. Opt. 5(3), 168–173 (2003).
    [Crossref]
  8. K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw. 2(5), 359–366 (1989).
    [Crossref]
  9. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature 323(6088), 533–536 (1986).
    [Crossref]
  10. P. Isola, J. Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional adversarial networks,” arXiv Prepr. 1125– 1134 (2017).
  11. S. Amoruso, R. Bruzzese, X. Wang, N. N. Nedialkov, and P. A. Atanasov, “Femtosecond laser ablation of nickel in vacuum,” J. Phys. D Appl. Phys. 40(2), 331–340 (2007).
    [Crossref]
  12. D. J. Heath, J. A. Grant-Jacob, M. Feinaeugle, B. Mills, and R. W. Eason, “Sub-diffraction limit laser ablation via multiple exposures using a digital micromirror device,” Appl. Opt. 56(22), 6398–6404 (2017).
    [Crossref] [PubMed]
  13. D. J. Heath, J. A. Grant-Jacob, R. W. Eason, and B. Mills, “Single-pulse ablation of multi-depth structures via spatially filtered binary intensity masks,” Appl. Opt. 57(8), 1904–1909 (2018).
    [Crossref] [PubMed]
  14. B. Mills, D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, and R. W. Eason, “Laser ablation via programmable image projection for submicron dimension machining in diamond,” J. Laser Appl. 26(4), 041501 (2014).
    [Crossref]
  15. D. J. Heath, B. Mills, M. Feinaeugle, and R. W. Eason, “Rapid bespoke laser ablation of variable period grating structures using a digital micromirror device for multi-colored surface images,” Appl. Opt. 54(16), 4984–4988 (2015).
    [Crossref] [PubMed]
  16. Zygo, “Optical Profiler Basics,” https://www.zygo.com/?/met/profilers/opticalprofilersabout.htm .
  17. P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best practices for convolutional neural networks applied to visual document analysis,” Seventh Int. Conf. Doc. Anal. Recognition, 2003. Proceedings. 1(Icdar), 958–963 (2003).
    [Crossref]
  18. O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolutional networks for biomedical image segmentation,” in Medical image computing and computer-assisted intervention–miccai 2015, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, eds. (Springer International Publishing, 2015), pp. 234–241.
  19. J. A. Grant-Jacob, S. J. Beecher, J. J. Prentice, D. P. Shepherd, J. I. Mackenzie, and R. W. Eason, “Pulsed laser deposition of crystalline garnet waveguides at a growth rate of 20 μm per hour,” Surf. Coatings Technol. 84(22), 4502–4504 (2018).
  20. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 343, 7–10 (2004).
  21. J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Parametric study of the rapid fabrication of glass nanofoam via femtosecond laser irradiation,” J. Phys. D Appl. Phys. 47(5), 055105 (2014).
    [Crossref]
  22. A. F. Courtier, J. A. Grant-Jacob, R. Ismaeel, D. J. Heath, G. Brambilla, W. J. Stewart, R. W. Eason, and B. Mills, “Laser-based fabrication of nanofoam inside a hollow capillary,” Mater. Sci. Appl. 08(12), 829–837 (2017).
    [Crossref]
  23. J. H. Yoo, J. B. Park, S. Ahn, and C. P. Grigoropoulos, “Laser-Induced direct graphene patterning and simultaneous transferring method for graphene sensor platform,” Small 9(24), 4269–4275 (2013).
    [Crossref] [PubMed]
  24. D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films,” Opt. Mater. Express 5(5), 1129 (2015).
    [Crossref]
  25. M. Feinaeugle, D. J. Heath, B. Mills, J. A. Grant-Jacob, G. Z. Mashanovich, and R. W. Eason, “Laser-induced backward transfer of nanoimprinted polymer elements,” Appl. Phys., A Mater. Sci. Process. 122(4), 398 (2016).
    [Crossref]
  26. R. C. Y. Auyeung, H. Kim, S. Mathews, and A. Piqué, “Laser forward transfer using structured light,” Opt. Express 23(1), 422–430 (2015).
    [Crossref] [PubMed]
  27. S. A. Mathews, R. C. Y. Auyeung, H. Kim, N. Charipar, and A. Piqué, “High-speed video study of laser-induced forward transfer of silver nano-suspensions,” J. Appl. Phys. 114(6), 064910 (2013).
    [Crossref]

2018 (2)

D. J. Heath, J. A. Grant-Jacob, R. W. Eason, and B. Mills, “Single-pulse ablation of multi-depth structures via spatially filtered binary intensity masks,” Appl. Opt. 57(8), 1904–1909 (2018).
[Crossref] [PubMed]

J. A. Grant-Jacob, S. J. Beecher, J. J. Prentice, D. P. Shepherd, J. I. Mackenzie, and R. W. Eason, “Pulsed laser deposition of crystalline garnet waveguides at a growth rate of 20 μm per hour,” Surf. Coatings Technol. 84(22), 4502–4504 (2018).

2017 (3)

D. J. Heath, J. A. Grant-Jacob, M. Feinaeugle, B. Mills, and R. W. Eason, “Sub-diffraction limit laser ablation via multiple exposures using a digital micromirror device,” Appl. Opt. 56(22), 6398–6404 (2017).
[Crossref] [PubMed]

B. Rethfeld, D. S. Ivanov, M. E. Garcia, and S. I. Anisimov, “Modelling ultrafast laser ablation,” J. Phys. D Appl. Phys. 50(19), 193001 (2017).
[Crossref]

A. F. Courtier, J. A. Grant-Jacob, R. Ismaeel, D. J. Heath, G. Brambilla, W. J. Stewart, R. W. Eason, and B. Mills, “Laser-based fabrication of nanofoam inside a hollow capillary,” Mater. Sci. Appl. 08(12), 829–837 (2017).
[Crossref]

2016 (1)

M. Feinaeugle, D. J. Heath, B. Mills, J. A. Grant-Jacob, G. Z. Mashanovich, and R. W. Eason, “Laser-induced backward transfer of nanoimprinted polymer elements,” Appl. Phys., A Mater. Sci. Process. 122(4), 398 (2016).
[Crossref]

2015 (3)

2014 (2)

J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Parametric study of the rapid fabrication of glass nanofoam via femtosecond laser irradiation,” J. Phys. D Appl. Phys. 47(5), 055105 (2014).
[Crossref]

B. Mills, D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, and R. W. Eason, “Laser ablation via programmable image projection for submicron dimension machining in diamond,” J. Laser Appl. 26(4), 041501 (2014).
[Crossref]

2013 (2)

S. A. Mathews, R. C. Y. Auyeung, H. Kim, N. Charipar, and A. Piqué, “High-speed video study of laser-induced forward transfer of silver nano-suspensions,” J. Appl. Phys. 114(6), 064910 (2013).
[Crossref]

J. H. Yoo, J. B. Park, S. Ahn, and C. P. Grigoropoulos, “Laser-Induced direct graphene patterning and simultaneous transferring method for graphene sensor platform,” Small 9(24), 4269–4275 (2013).
[Crossref] [PubMed]

2007 (1)

S. Amoruso, R. Bruzzese, X. Wang, N. N. Nedialkov, and P. A. Atanasov, “Femtosecond laser ablation of nickel in vacuum,” J. Phys. D Appl. Phys. 40(2), 331–340 (2007).
[Crossref]

2005 (1)

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, “Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers,” Appl. Surf. Sci. 242(1–2), 162–167 (2005).
[Crossref]

2004 (1)

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 343, 7–10 (2004).

2003 (2)

O. Albert, S. Roger, Y. Glinec, J. C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perrière, and E. Millon, “Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers,” Appl. Phys., A Mater. Sci. Process. 76(3), 319–323 (2003).
[Crossref]

J. K. Chen and J. E. Beraun, “Modelling of ultrashort laser ablation of gold films in vacuum,” J. Opt. A, Pure Appl. Opt. 5(3), 168–173 (2003).
[Crossref]

2002 (2)

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Appl. Surf. Sci. 197, 198839 (2002).

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

1996 (1)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

1989 (1)

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw. 2(5), 359–366 (1989).
[Crossref]

1986 (1)

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature 323(6088), 533–536 (1986).
[Crossref]

Ahn, S.

J. H. Yoo, J. B. Park, S. Ahn, and C. P. Grigoropoulos, “Laser-Induced direct graphene patterning and simultaneous transferring method for graphene sensor platform,” Small 9(24), 4269–4275 (2013).
[Crossref] [PubMed]

Albert, O.

O. Albert, S. Roger, Y. Glinec, J. C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perrière, and E. Millon, “Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers,” Appl. Phys., A Mater. Sci. Process. 76(3), 319–323 (2003).
[Crossref]

Amer, M. S.

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, “Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers,” Appl. Surf. Sci. 242(1–2), 162–167 (2005).
[Crossref]

Amoruso, S.

S. Amoruso, R. Bruzzese, X. Wang, N. N. Nedialkov, and P. A. Atanasov, “Femtosecond laser ablation of nickel in vacuum,” J. Phys. D Appl. Phys. 40(2), 331–340 (2007).
[Crossref]

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 343, 7–10 (2004).

Anisimov, S. I.

B. Rethfeld, D. S. Ivanov, M. E. Garcia, and S. I. Anisimov, “Modelling ultrafast laser ablation,” J. Phys. D Appl. Phys. 50(19), 193001 (2017).
[Crossref]

Atanasov, P. A.

S. Amoruso, R. Bruzzese, X. Wang, N. N. Nedialkov, and P. A. Atanasov, “Femtosecond laser ablation of nickel in vacuum,” J. Phys. D Appl. Phys. 40(2), 331–340 (2007).
[Crossref]

Ausanio, G.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 343, 7–10 (2004).

Auyeung, R. C. Y.

R. C. Y. Auyeung, H. Kim, S. Mathews, and A. Piqué, “Laser forward transfer using structured light,” Opt. Express 23(1), 422–430 (2015).
[Crossref] [PubMed]

S. A. Mathews, R. C. Y. Auyeung, H. Kim, N. Charipar, and A. Piqué, “High-speed video study of laser-induced forward transfer of silver nano-suspensions,” J. Appl. Phys. 114(6), 064910 (2013).
[Crossref]

Beecher, S. J.

J. A. Grant-Jacob, S. J. Beecher, J. J. Prentice, D. P. Shepherd, J. I. Mackenzie, and R. W. Eason, “Pulsed laser deposition of crystalline garnet waveguides at a growth rate of 20 μm per hour,” Surf. Coatings Technol. 84(22), 4502–4504 (2018).

Beraun, J. E.

J. K. Chen and J. E. Beraun, “Modelling of ultrashort laser ablation of gold films in vacuum,” J. Opt. A, Pure Appl. Opt. 5(3), 168–173 (2003).
[Crossref]

Bonse, J.

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Appl. Surf. Sci. 197, 198839 (2002).

Boulmer-Leborgne, C.

O. Albert, S. Roger, Y. Glinec, J. C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perrière, and E. Millon, “Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers,” Appl. Phys., A Mater. Sci. Process. 76(3), 319–323 (2003).
[Crossref]

Brambilla, G.

A. F. Courtier, J. A. Grant-Jacob, R. Ismaeel, D. J. Heath, G. Brambilla, W. J. Stewart, R. W. Eason, and B. Mills, “Laser-based fabrication of nanofoam inside a hollow capillary,” Mater. Sci. Appl. 08(12), 829–837 (2017).
[Crossref]

Bruzzese, R.

S. Amoruso, R. Bruzzese, X. Wang, N. N. Nedialkov, and P. A. Atanasov, “Femtosecond laser ablation of nickel in vacuum,” J. Phys. D Appl. Phys. 40(2), 331–340 (2007).
[Crossref]

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 343, 7–10 (2004).

Charipar, N.

S. A. Mathews, R. C. Y. Auyeung, H. Kim, N. Charipar, and A. Piqué, “High-speed video study of laser-induced forward transfer of silver nano-suspensions,” J. Appl. Phys. 114(6), 064910 (2013).
[Crossref]

Chen, J. K.

J. K. Chen and J. E. Beraun, “Modelling of ultrashort laser ablation of gold films in vacuum,” J. Opt. A, Pure Appl. Opt. 5(3), 168–173 (2003).
[Crossref]

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Courtier, A. F.

A. F. Courtier, J. A. Grant-Jacob, R. Ismaeel, D. J. Heath, G. Brambilla, W. J. Stewart, R. W. Eason, and B. Mills, “Laser-based fabrication of nanofoam inside a hollow capillary,” Mater. Sci. Appl. 08(12), 829–837 (2017).
[Crossref]

Dosser, L. R.

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, “Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers,” Appl. Surf. Sci. 242(1–2), 162–167 (2005).
[Crossref]

Eason, R. W.

J. A. Grant-Jacob, S. J. Beecher, J. J. Prentice, D. P. Shepherd, J. I. Mackenzie, and R. W. Eason, “Pulsed laser deposition of crystalline garnet waveguides at a growth rate of 20 μm per hour,” Surf. Coatings Technol. 84(22), 4502–4504 (2018).

D. J. Heath, J. A. Grant-Jacob, R. W. Eason, and B. Mills, “Single-pulse ablation of multi-depth structures via spatially filtered binary intensity masks,” Appl. Opt. 57(8), 1904–1909 (2018).
[Crossref] [PubMed]

D. J. Heath, J. A. Grant-Jacob, M. Feinaeugle, B. Mills, and R. W. Eason, “Sub-diffraction limit laser ablation via multiple exposures using a digital micromirror device,” Appl. Opt. 56(22), 6398–6404 (2017).
[Crossref] [PubMed]

A. F. Courtier, J. A. Grant-Jacob, R. Ismaeel, D. J. Heath, G. Brambilla, W. J. Stewart, R. W. Eason, and B. Mills, “Laser-based fabrication of nanofoam inside a hollow capillary,” Mater. Sci. Appl. 08(12), 829–837 (2017).
[Crossref]

M. Feinaeugle, D. J. Heath, B. Mills, J. A. Grant-Jacob, G. Z. Mashanovich, and R. W. Eason, “Laser-induced backward transfer of nanoimprinted polymer elements,” Appl. Phys., A Mater. Sci. Process. 122(4), 398 (2016).
[Crossref]

D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films,” Opt. Mater. Express 5(5), 1129 (2015).
[Crossref]

D. J. Heath, B. Mills, M. Feinaeugle, and R. W. Eason, “Rapid bespoke laser ablation of variable period grating structures using a digital micromirror device for multi-colored surface images,” Appl. Opt. 54(16), 4984–4988 (2015).
[Crossref] [PubMed]

B. Mills, D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, and R. W. Eason, “Laser ablation via programmable image projection for submicron dimension machining in diamond,” J. Laser Appl. 26(4), 041501 (2014).
[Crossref]

J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Parametric study of the rapid fabrication of glass nanofoam via femtosecond laser irradiation,” J. Phys. D Appl. Phys. 47(5), 055105 (2014).
[Crossref]

El-Ashry, M. A.

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, “Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers,” Appl. Surf. Sci. 242(1–2), 162–167 (2005).
[Crossref]

Etchepare, J.

O. Albert, S. Roger, Y. Glinec, J. C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perrière, and E. Millon, “Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers,” Appl. Phys., A Mater. Sci. Process. 76(3), 319–323 (2003).
[Crossref]

Feinaeugle, M.

Gamaly, E. G.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

Garcia, M. E.

B. Rethfeld, D. S. Ivanov, M. E. Garcia, and S. I. Anisimov, “Modelling ultrafast laser ablation,” J. Phys. D Appl. Phys. 50(19), 193001 (2017).
[Crossref]

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Appl. Surf. Sci. 197, 198839 (2002).

Glinec, Y.

O. Albert, S. Roger, Y. Glinec, J. C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perrière, and E. Millon, “Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers,” Appl. Phys., A Mater. Sci. Process. 76(3), 319–323 (2003).
[Crossref]

Grant-Jacob, J. A.

J. A. Grant-Jacob, S. J. Beecher, J. J. Prentice, D. P. Shepherd, J. I. Mackenzie, and R. W. Eason, “Pulsed laser deposition of crystalline garnet waveguides at a growth rate of 20 μm per hour,” Surf. Coatings Technol. 84(22), 4502–4504 (2018).

D. J. Heath, J. A. Grant-Jacob, R. W. Eason, and B. Mills, “Single-pulse ablation of multi-depth structures via spatially filtered binary intensity masks,” Appl. Opt. 57(8), 1904–1909 (2018).
[Crossref] [PubMed]

D. J. Heath, J. A. Grant-Jacob, M. Feinaeugle, B. Mills, and R. W. Eason, “Sub-diffraction limit laser ablation via multiple exposures using a digital micromirror device,” Appl. Opt. 56(22), 6398–6404 (2017).
[Crossref] [PubMed]

A. F. Courtier, J. A. Grant-Jacob, R. Ismaeel, D. J. Heath, G. Brambilla, W. J. Stewart, R. W. Eason, and B. Mills, “Laser-based fabrication of nanofoam inside a hollow capillary,” Mater. Sci. Appl. 08(12), 829–837 (2017).
[Crossref]

M. Feinaeugle, D. J. Heath, B. Mills, J. A. Grant-Jacob, G. Z. Mashanovich, and R. W. Eason, “Laser-induced backward transfer of nanoimprinted polymer elements,” Appl. Phys., A Mater. Sci. Process. 122(4), 398 (2016).
[Crossref]

D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films,” Opt. Mater. Express 5(5), 1129 (2015).
[Crossref]

B. Mills, D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, and R. W. Eason, “Laser ablation via programmable image projection for submicron dimension machining in diamond,” J. Laser Appl. 26(4), 041501 (2014).
[Crossref]

J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Parametric study of the rapid fabrication of glass nanofoam via femtosecond laser irradiation,” J. Phys. D Appl. Phys. 47(5), 055105 (2014).
[Crossref]

Grigoropoulos, C. P.

J. H. Yoo, J. B. Park, S. Ahn, and C. P. Grigoropoulos, “Laser-Induced direct graphene patterning and simultaneous transferring method for graphene sensor platform,” Small 9(24), 4269–4275 (2013).
[Crossref] [PubMed]

Heath, D. J.

D. J. Heath, J. A. Grant-Jacob, R. W. Eason, and B. Mills, “Single-pulse ablation of multi-depth structures via spatially filtered binary intensity masks,” Appl. Opt. 57(8), 1904–1909 (2018).
[Crossref] [PubMed]

A. F. Courtier, J. A. Grant-Jacob, R. Ismaeel, D. J. Heath, G. Brambilla, W. J. Stewart, R. W. Eason, and B. Mills, “Laser-based fabrication of nanofoam inside a hollow capillary,” Mater. Sci. Appl. 08(12), 829–837 (2017).
[Crossref]

D. J. Heath, J. A. Grant-Jacob, M. Feinaeugle, B. Mills, and R. W. Eason, “Sub-diffraction limit laser ablation via multiple exposures using a digital micromirror device,” Appl. Opt. 56(22), 6398–6404 (2017).
[Crossref] [PubMed]

M. Feinaeugle, D. J. Heath, B. Mills, J. A. Grant-Jacob, G. Z. Mashanovich, and R. W. Eason, “Laser-induced backward transfer of nanoimprinted polymer elements,” Appl. Phys., A Mater. Sci. Process. 122(4), 398 (2016).
[Crossref]

D. J. Heath, B. Mills, M. Feinaeugle, and R. W. Eason, “Rapid bespoke laser ablation of variable period grating structures using a digital micromirror device for multi-colored surface images,” Appl. Opt. 54(16), 4984–4988 (2015).
[Crossref] [PubMed]

D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films,” Opt. Mater. Express 5(5), 1129 (2015).
[Crossref]

B. Mills, D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, and R. W. Eason, “Laser ablation via programmable image projection for submicron dimension machining in diamond,” J. Laser Appl. 26(4), 041501 (2014).
[Crossref]

Hinton, G. E.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature 323(6088), 533–536 (1986).
[Crossref]

Hix, K. E.

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, “Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers,” Appl. Surf. Sci. 242(1–2), 162–167 (2005).
[Crossref]

Hornik, K.

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw. 2(5), 359–366 (1989).
[Crossref]

Iannotti, V.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 343, 7–10 (2004).

Irwin, B.

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, “Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers,” Appl. Surf. Sci. 242(1–2), 162–167 (2005).
[Crossref]

Ismaeel, R.

A. F. Courtier, J. A. Grant-Jacob, R. Ismaeel, D. J. Heath, G. Brambilla, W. J. Stewart, R. W. Eason, and B. Mills, “Laser-based fabrication of nanofoam inside a hollow capillary,” Mater. Sci. Appl. 08(12), 829–837 (2017).
[Crossref]

Ivanov, D. S.

B. Rethfeld, D. S. Ivanov, M. E. Garcia, and S. I. Anisimov, “Modelling ultrafast laser ablation,” J. Phys. D Appl. Phys. 50(19), 193001 (2017).
[Crossref]

Jeschke, H. O.

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Appl. Surf. Sci. 197, 198839 (2002).

Kautek, W.

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Appl. Surf. Sci. 197, 198839 (2002).

Kim, H.

R. C. Y. Auyeung, H. Kim, S. Mathews, and A. Piqué, “Laser forward transfer using structured light,” Opt. Express 23(1), 422–430 (2015).
[Crossref] [PubMed]

S. A. Mathews, R. C. Y. Auyeung, H. Kim, N. Charipar, and A. Piqué, “High-speed video study of laser-induced forward transfer of silver nano-suspensions,” J. Appl. Phys. 114(6), 064910 (2013).
[Crossref]

Krüger, J.

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Appl. Surf. Sci. 197, 198839 (2002).

Lanotte, L.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 343, 7–10 (2004).

Lenzner, M.

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Appl. Surf. Sci. 197, 198839 (2002).

Loulergue, J. C.

O. Albert, S. Roger, Y. Glinec, J. C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perrière, and E. Millon, “Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers,” Appl. Phys., A Mater. Sci. Process. 76(3), 319–323 (2003).
[Crossref]

Luther-Davies, B.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

Mackenzie, J. I.

J. A. Grant-Jacob, S. J. Beecher, J. J. Prentice, D. P. Shepherd, J. I. Mackenzie, and R. W. Eason, “Pulsed laser deposition of crystalline garnet waveguides at a growth rate of 20 μm per hour,” Surf. Coatings Technol. 84(22), 4502–4504 (2018).

Maguire, J. F.

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, “Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers,” Appl. Surf. Sci. 242(1–2), 162–167 (2005).
[Crossref]

Mashanovich, G. Z.

M. Feinaeugle, D. J. Heath, B. Mills, J. A. Grant-Jacob, G. Z. Mashanovich, and R. W. Eason, “Laser-induced backward transfer of nanoimprinted polymer elements,” Appl. Phys., A Mater. Sci. Process. 122(4), 398 (2016).
[Crossref]

Mathews, S.

Mathews, S. A.

S. A. Mathews, R. C. Y. Auyeung, H. Kim, N. Charipar, and A. Piqué, “High-speed video study of laser-induced forward transfer of silver nano-suspensions,” J. Appl. Phys. 114(6), 064910 (2013).
[Crossref]

Millon, E.

O. Albert, S. Roger, Y. Glinec, J. C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perrière, and E. Millon, “Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers,” Appl. Phys., A Mater. Sci. Process. 76(3), 319–323 (2003).
[Crossref]

Mills, B.

D. J. Heath, J. A. Grant-Jacob, R. W. Eason, and B. Mills, “Single-pulse ablation of multi-depth structures via spatially filtered binary intensity masks,” Appl. Opt. 57(8), 1904–1909 (2018).
[Crossref] [PubMed]

D. J. Heath, J. A. Grant-Jacob, M. Feinaeugle, B. Mills, and R. W. Eason, “Sub-diffraction limit laser ablation via multiple exposures using a digital micromirror device,” Appl. Opt. 56(22), 6398–6404 (2017).
[Crossref] [PubMed]

A. F. Courtier, J. A. Grant-Jacob, R. Ismaeel, D. J. Heath, G. Brambilla, W. J. Stewart, R. W. Eason, and B. Mills, “Laser-based fabrication of nanofoam inside a hollow capillary,” Mater. Sci. Appl. 08(12), 829–837 (2017).
[Crossref]

M. Feinaeugle, D. J. Heath, B. Mills, J. A. Grant-Jacob, G. Z. Mashanovich, and R. W. Eason, “Laser-induced backward transfer of nanoimprinted polymer elements,” Appl. Phys., A Mater. Sci. Process. 122(4), 398 (2016).
[Crossref]

D. J. Heath, B. Mills, M. Feinaeugle, and R. W. Eason, “Rapid bespoke laser ablation of variable period grating structures using a digital micromirror device for multi-colored surface images,” Appl. Opt. 54(16), 4984–4988 (2015).
[Crossref] [PubMed]

D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films,” Opt. Mater. Express 5(5), 1129 (2015).
[Crossref]

B. Mills, D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, and R. W. Eason, “Laser ablation via programmable image projection for submicron dimension machining in diamond,” J. Laser Appl. 26(4), 041501 (2014).
[Crossref]

J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Parametric study of the rapid fabrication of glass nanofoam via femtosecond laser irradiation,” J. Phys. D Appl. Phys. 47(5), 055105 (2014).
[Crossref]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Nedialkov, N. N.

S. Amoruso, R. Bruzzese, X. Wang, N. N. Nedialkov, and P. A. Atanasov, “Femtosecond laser ablation of nickel in vacuum,” J. Phys. D Appl. Phys. 40(2), 331–340 (2007).
[Crossref]

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Park, J. B.

J. H. Yoo, J. B. Park, S. Ahn, and C. P. Grigoropoulos, “Laser-Induced direct graphene patterning and simultaneous transferring method for graphene sensor platform,” Small 9(24), 4269–4275 (2013).
[Crossref] [PubMed]

Perrière, J.

O. Albert, S. Roger, Y. Glinec, J. C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perrière, and E. Millon, “Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers,” Appl. Phys., A Mater. Sci. Process. 76(3), 319–323 (2003).
[Crossref]

Piqué, A.

R. C. Y. Auyeung, H. Kim, S. Mathews, and A. Piqué, “Laser forward transfer using structured light,” Opt. Express 23(1), 422–430 (2015).
[Crossref] [PubMed]

S. A. Mathews, R. C. Y. Auyeung, H. Kim, N. Charipar, and A. Piqué, “High-speed video study of laser-induced forward transfer of silver nano-suspensions,” J. Appl. Phys. 114(6), 064910 (2013).
[Crossref]

Prentice, J. J.

J. A. Grant-Jacob, S. J. Beecher, J. J. Prentice, D. P. Shepherd, J. I. Mackenzie, and R. W. Eason, “Pulsed laser deposition of crystalline garnet waveguides at a growth rate of 20 μm per hour,” Surf. Coatings Technol. 84(22), 4502–4504 (2018).

Rethfeld, B.

B. Rethfeld, D. S. Ivanov, M. E. Garcia, and S. I. Anisimov, “Modelling ultrafast laser ablation,” J. Phys. D Appl. Phys. 50(19), 193001 (2017).
[Crossref]

Rode, A. V.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

Roger, S.

O. Albert, S. Roger, Y. Glinec, J. C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perrière, and E. Millon, “Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers,” Appl. Phys., A Mater. Sci. Process. 76(3), 319–323 (2003).
[Crossref]

Rumelhart, D. E.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature 323(6088), 533–536 (1986).
[Crossref]

Shepherd, D. P.

J. A. Grant-Jacob, S. J. Beecher, J. J. Prentice, D. P. Shepherd, J. I. Mackenzie, and R. W. Eason, “Pulsed laser deposition of crystalline garnet waveguides at a growth rate of 20 μm per hour,” Surf. Coatings Technol. 84(22), 4502–4504 (2018).

Spinelli, N.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 343, 7–10 (2004).

Stewart, W. J.

A. F. Courtier, J. A. Grant-Jacob, R. Ismaeel, D. J. Heath, G. Brambilla, W. J. Stewart, R. W. Eason, and B. Mills, “Laser-based fabrication of nanofoam inside a hollow capillary,” Mater. Sci. Appl. 08(12), 829–837 (2017).
[Crossref]

Stinchcombe, M.

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw. 2(5), 359–366 (1989).
[Crossref]

Tikhonchuk, V. T.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Velotta, R.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 343, 7–10 (2004).

Vitiello, M.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 343, 7–10 (2004).

von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Wang, X.

S. Amoruso, R. Bruzzese, X. Wang, N. N. Nedialkov, and P. A. Atanasov, “Femtosecond laser ablation of nickel in vacuum,” J. Phys. D Appl. Phys. 40(2), 331–340 (2007).
[Crossref]

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 343, 7–10 (2004).

White, H.

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw. 2(5), 359–366 (1989).
[Crossref]

Williams, R. J.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature 323(6088), 533–536 (1986).
[Crossref]

Yoo, J. H.

J. H. Yoo, J. B. Park, S. Ahn, and C. P. Grigoropoulos, “Laser-Induced direct graphene patterning and simultaneous transferring method for graphene sensor platform,” Small 9(24), 4269–4275 (2013).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 343, 7–10 (2004).

Appl. Phys., A Mater. Sci. Process. (3)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

O. Albert, S. Roger, Y. Glinec, J. C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perrière, and E. Millon, “Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers,” Appl. Phys., A Mater. Sci. Process. 76(3), 319–323 (2003).
[Crossref]

M. Feinaeugle, D. J. Heath, B. Mills, J. A. Grant-Jacob, G. Z. Mashanovich, and R. W. Eason, “Laser-induced backward transfer of nanoimprinted polymer elements,” Appl. Phys., A Mater. Sci. Process. 122(4), 398 (2016).
[Crossref]

Appl. Surf. Sci. (2)

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, “Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers,” Appl. Surf. Sci. 242(1–2), 162–167 (2005).
[Crossref]

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Appl. Surf. Sci. 197, 198839 (2002).

J. Appl. Phys. (1)

S. A. Mathews, R. C. Y. Auyeung, H. Kim, N. Charipar, and A. Piqué, “High-speed video study of laser-induced forward transfer of silver nano-suspensions,” J. Appl. Phys. 114(6), 064910 (2013).
[Crossref]

J. Laser Appl. (1)

B. Mills, D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, and R. W. Eason, “Laser ablation via programmable image projection for submicron dimension machining in diamond,” J. Laser Appl. 26(4), 041501 (2014).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

J. K. Chen and J. E. Beraun, “Modelling of ultrashort laser ablation of gold films in vacuum,” J. Opt. A, Pure Appl. Opt. 5(3), 168–173 (2003).
[Crossref]

J. Phys. D Appl. Phys. (3)

B. Rethfeld, D. S. Ivanov, M. E. Garcia, and S. I. Anisimov, “Modelling ultrafast laser ablation,” J. Phys. D Appl. Phys. 50(19), 193001 (2017).
[Crossref]

J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Parametric study of the rapid fabrication of glass nanofoam via femtosecond laser irradiation,” J. Phys. D Appl. Phys. 47(5), 055105 (2014).
[Crossref]

S. Amoruso, R. Bruzzese, X. Wang, N. N. Nedialkov, and P. A. Atanasov, “Femtosecond laser ablation of nickel in vacuum,” J. Phys. D Appl. Phys. 40(2), 331–340 (2007).
[Crossref]

Mater. Sci. Appl. (1)

A. F. Courtier, J. A. Grant-Jacob, R. Ismaeel, D. J. Heath, G. Brambilla, W. J. Stewart, R. W. Eason, and B. Mills, “Laser-based fabrication of nanofoam inside a hollow capillary,” Mater. Sci. Appl. 08(12), 829–837 (2017).
[Crossref]

Nature (1)

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature 323(6088), 533–536 (1986).
[Crossref]

Neural Netw. (1)

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw. 2(5), 359–366 (1989).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Plasmas (1)

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

Small (1)

J. H. Yoo, J. B. Park, S. Ahn, and C. P. Grigoropoulos, “Laser-Induced direct graphene patterning and simultaneous transferring method for graphene sensor platform,” Small 9(24), 4269–4275 (2013).
[Crossref] [PubMed]

Surf. Coatings Technol. (1)

J. A. Grant-Jacob, S. J. Beecher, J. J. Prentice, D. P. Shepherd, J. I. Mackenzie, and R. W. Eason, “Pulsed laser deposition of crystalline garnet waveguides at a growth rate of 20 μm per hour,” Surf. Coatings Technol. 84(22), 4502–4504 (2018).

Other (4)

Zygo, “Optical Profiler Basics,” https://www.zygo.com/?/met/profilers/opticalprofilersabout.htm .

P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best practices for convolutional neural networks applied to visual document analysis,” Seventh Int. Conf. Doc. Anal. Recognition, 2003. Proceedings. 1(Icdar), 958–963 (2003).
[Crossref]

O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolutional networks for biomedical image segmentation,” in Medical image computing and computer-assisted intervention–miccai 2015, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, eds. (Springer International Publishing, 2015), pp. 234–241.

P. Isola, J. Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional adversarial networks,” arXiv Prepr. 1125– 1134 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Concept diagram of transforming a laser spatial intensity profile into a predicted 3D surface profile of the laser-machined surface, via a neural network. The input to the neural network was a laser spatial intensity profile, and the output was the predicted 3D laser-machined surface profile. Added in the conceptual depth prediction are an imperfect flatness at the bottom of the machined structure, raised lip, or burr, around the perimeter, and redeposited debris, all typical of laser machining.
Fig. 2
Fig. 2 Experimental approaches for collecting appropriate training data, along with training data examples. Showing a) schematic of the laser machining setup, b) illustration of the sample characterisation method, and c) three examples from the training data set.
Fig. 3
Fig. 3 Predicted surface profiles from both a CNN architecture (no discriminator, top two rows) and a CAN architecture (with discriminator, bottom two rows) after a) 50, b) 5000, and c) 50000 training iterations, showing distinct improvements in appearance. Training on each single image took about 250 milliseconds. Insets in (a) show the input bitmaps used by the NNs to predict the depth profiles.
Fig. 4
Fig. 4 Comparison of generated and experimentally measured images for spatial intensity patterns shaped into the letter ‘X’ in (a) and (b) respectively, and an inverted intensity ‘X’ in (c) and (d). Clear similarities are observed for both cases, in particular the depth, width and profile of the laser machined features, along with analytically difficult to predict features, such as burr height.
Fig. 5
Fig. 5 Predicted output from the NN when machining with a circular top-hat beam with diameter a) 1 µm, b), 3 µm, c) 5 µm and d) 7 µm, along with the radial averages of the profiles shown below each 3D profile.
Fig. 6
Fig. 6 Calculated intensity at the central position on the sample as a function of beam diameter, as predicted by an optical filtering model in (a) and (b) and laser-machined depth predicted by the NN in (c). The optical filtering model predicts the intensity and the NN predicts the depths of machining. The simulated aperture used for optical filtering in (a) was shifted from a central position laterally by an amount corresponding to ~28 µm in the experiment to produce (b), and consequently more closely matches (c) than does (a), suggesting a previously unknown optical misalignment on the laser machining setup, discovered owing to the interrogation of the trained NN.
Fig. 7
Fig. 7 Further analytics generated via interrogation of the NN output: a) volume of removed material, and recast material as debris in the surrounding area, and b) percentage of removed material that is recast as debris.

Metrics